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On the solvability of ordinary differential equations
in the space of distributions

By Naofumi HONDA

0. Introduction

In this paper, we study the solvability of a system of ordinary dif-
ferential equations with real analytic coefficients in the space of ultra-
distributions.

It is well known that systems of ordinary differential equations are
always surjective on the space of hyperfunctions (Sato [S]). Moreover
we can easily calculate the dimension of the hyperfunction solutions of
a homogeneous equation (Kashiwara [K 1], Komatsu [Ko 2]). On the
other hand, although the structure of distribution solutions is more com-
licated and depends not only on the irregularity of the equation but on
its Stokes lines, Malgrange showed, in his paper [Ma 1], the solvability
in the distributions always holds. He proved this fact using the exis-
tence theorem of asymptotic expansion solutions in C* category. Here
we shall show that the solvability for ultra-distributions also holds by
constructing holomorphic solutions satisfying suitable growth conditions
in the complex domain and taking their boundary values.

Let X=C and M=R with a coordinate z=x++/—1y, Z=R",
p=(0; v/ —1dz) € T4X and q=0€ M. We denote by 9y the sheaf of
differential operators with holomorphic coefficients.

THEOREM 0.1. Let M be a coherent 9Dy module in a mneighborhood
of q. Then we have

H'RYomy (M, ";F),=0
where F denotes Diy or D’ (s€ (1, 0)).

For the notations of the theorem, refer to the next section. This
theorem implies that a system of ordinary differential equations is solv-
able on the space of (ultra-)distributions with support in the half line.

COROLLARY 0.2. Let P+0 be a differential operator with real analy-
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tic coefficients. Then P s surjective on the space of distributions and
ultradistributions of Beurling class (x) (x € (1, o0)).

We remark again that Malgrange showed this corollary in the case
of distributions by different method. We also obtain microlocal version
of this result.

THEOREM 0.3. Let M be a coherent £x module at p. Then we have
HlRﬂomé‘x(ﬂv Ef)p:()

where S denotes CRx, Ci/x, Cl or C (s€ (1, )) (Refer to Section 1
for the definition of these sheaves.)

The plan of our paper is as follows. In Section 1, we give a review
of the several sheaves which appear as solution sheaves. In Section 2,
we construet solutions of a system on small sectors and give estimates
of their growth order. In Section 3, the solutions constructed in Section
2 are connected with each other, and we obtain a holomorphic function
which represents an ultra-distribution solution as boundary value.

The author would like to express his gratitude to Prof. N. Tose for
valuable advice. He is also grateful to Prof. H. Komatsu for encourage-
ment.

1. Preliminary

In this section, we briefly recall the definitions of several sheaves
which appear in this paper. Let M be a real analytic manifold of
dimension n» and X its complexification. The sheaf &5 of micro-differen-
tial operators on the cotangent bundle T*X of X was first constructed
by Sato-Kashiwara-Kawai (see [S-K-K]). Sato also introduced the sheaf
By of Sato’s hyperfunctions on M and C, of microfunctions on the
conormal bundle T#X of M. These sheaves are defined as follows.

CM ::ﬂM(Ox)[n:l@wM
where wy is the orientation sheaf of M and py(-) is Sato’s microlocaliza-

tion functor (see Kashiwara-Schapira [K-Se 1] and [K-Se 2]). There
exist the exact sequence and the spectrum map
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O*JM—".@M—’TF*CM—’Q

(1.0) Sp: 7 By —>Cu—0

where 7 : T5X— M is the canonical projection and (A, is the sheaf of
real analytic functions. Remark that Cy is an &y module. For the
properties of By, Cx and Ey, refer to [S-K-K] and Schapira [Sc].

We denote by 9y and 9D’ the sheaf of distributions and that of
ultra-distributions of Beurling class (s) (s€(1,)). 9Dy and 9’ can be
regarded as subsheaves of B,.

Next we recall the definitions of tempered microfunctions C# and
Cy the microfunctions of Beurling class (s). The sheaf C} was first
introduced by Martineau [M] and functorially constructed by Andronikof
[A] (see also [Be-Sc]). These are subsheaves of Cy on THX and defined
by

Cle :=sp(a(Di)),
Cy :=sp(z (D))

where sp is the spectrum map defined in (1.0). We have the exact
sequences

(1.1)

0> Ay — Dy— i Ci—0,
0> Ay—> DY -, CP—0.

From now on, we consider the one dimensional case and assume M=

R and X=C with a coordinate z=x++/—1y. Let s€(l,), and set

o ::%. Since hyperfunctions are expressed as boundary values of
S_

holomorphic functions, 9y and 9§’ are also represented by holomorphic

functions satisfying suitable growth conditions. To describe them, we

make several preparations. Let U be an open subset in C. We define

the norms |-|4* and |-|§ as follows.
Ifl’z}“=szlég| Exp(—I(dist(z, CU))~’)f (2)I,
Ifl??=Sggl(dist(z,CU))”f(2)l-

Let B, be an open ball with radius ¢ and center at 0, and Z=R*. We
introduce the spaces O-“(U) and O¥(U) as

0-“(U)={f € O(U); | f1s' <o},
OM(U)={feO(U); IfIF<o}.

(1.2)

(1.3)

(1.4)
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Now we give alternative definitions of I',9} and I',9{  as the bound-
ary values of holomorphic functions.

lim OY(B\Z)

(Fz@fu)o: HD'N%O

(1.5) . ’
lim O""(B\Z)

(L2 D Y=t

Here (), denotes the stalk of Oy at the origin. Finally we review the
sheaves Cf, x and C%{; which were introduced by Sato-Kashiwara-Kawai
[S-K-K] and Andronikof [A]. These are the sheaves on T%%X and func-
torially defined by

Cloyx= 0 (Ox)[1],
Clilx=T — 0y (Ox)[1].
For the definition of the functor 7T—pg(-), refer to [A]. These sheaves

are also represented by the boundary values of holomorphie functions.
Set

(1.6)

T.={z € B,; €|3z| >NRz}.
Then we have

lim OY(T.)

(1.7) (CBx) 0:am= iN*«bo—

2. Construction of solutions on small sectors

Throughout this and next sections, we consider the following system
of ordinary differential equations.
d

(2.0) Pu= (zd_+ A(z))u: fla).

dz
Here deN, A(z) € gl(m,,), and f(2) is a column vector of holomorphie
functions of size m, which represent ultra-distributions with support in
the half line. The aim of this section is to give the estimates of the
integrals which appear in the solutions of the system (2.0). There are
many works for the estimates by the distance from the origin (that is
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the singular point of the system), which assure existence of solutions
satisfying desired asymptotic expansions (Hukuhara [H 1], [H 2], Iwano
[1], Wasow [W] and ete.). We need, however, the estimates of the inte-
grals by the distance from the real axis to show the surjectivity of the
system (2.0) in the space of (ultra-)distributions.

Let X=C with a coordinate z=2+4/—1y, U an open subset of C,

l a positive constant and s¢ (1, ). Set ¢ : We introduce a new

=1

s—1
norm |-||5* which is slightly different from the norm |-|}* defined by
(1.3).

(2.1) 171l = sup | Exp(—(dist(z, RY))™)f(2)]  for feO().

We abbreviate ||-||4* to ||-||", if there is no risk of confusion. Now we
define the space of holomorphic functions (7"“”(U) which is also slightly
different from the space O"*(U) in Section 1.

DEFINITION 2.1. The space O-“(U) is defined by

0"9(U) :=1{f € Ox(U) N CONR); || 5 <o}
Let 2=2,>--->2,=0 be positive real numbers (n>1), and

M-

(2.2) AR)= 3 apz*

k=1

1

where a,€C, a,#0 and a,=1. Remark that we consider z=%¢ as a holo-
morphic function on Riemann domain, and always choose its branch
which has positive real values on argz=0. Set A(2):=a;z* and w,=
arg(a,;). Then we have

(2.3) %(A(pefﬂ)):kil |l 0% cOS( — 2,60 +w4).
Let L be an open half line starting from the origin.

DEFINITION 2.2. (i) We say L is a separate line of 4(z) if the real
part of /A(z) vanishes on L.

(ii) An open subset {RA4(z)<0 (resp. >0), 0<argz<2r} is said to
be a negative (resp. positive) region of A.

It is easy to see that L=R*¢” is a separate line of A4 if and only
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if —20+w1—%6 rZ.

Let 6, and 6, be real numbers satisfying 27>6,>6,>0, and R>0.
Set.

(2.4) S(0,, 0, R)={z € C; 6,<argz<6,, 0<|z|<R}.

If ,=0 (resp. 6,=0 and 6,=2x), we denote S(6,, 6,, R) by S(0,, R) (resp.
S(R)). Now we consider the integral

25) L)) :=Exp(—A()| Exp(d(z))f(e)dz
K]
where f€O(S(6,,6,, R)) and 2, is a point in S(6,, 6,, B) which will be
determined later on.
The first step is to show the following proposition.

PROPOSITION 2.3. There exist 01€<0, —725] and l,>0 with the following

property; for any 1>1, there exist positive constants I’ and C, such that
we have

(2.6) LD 5 <Cill flsior  Sfor feO0-(S(6:, R)),

if we take z,€ S(6,, R) and the path of the integral (2.5) in a suitable
way which will be shown in the proof of this proposition.

We consider the problem in the following three cases. The first
case is that ¢>2, which is trivial. The second is that neither R* nor
R*¢"r is a separate line of 4, and S(6,, R) intersects with at most one
component of a negative region of 4. The last is the most important
case in which the positive part of the real axis is a separate line.

(I) The first case.

We consider the problem under the condition ¢>4. Since |z|>|y|,
we can easily show Proposition 2.3. In this case, we can choose an
arbitrary point in S(6,, R) as 2,, Thus from now on, we always assume
A>0>0.

(II) The second case.

We consider the problem in the following situation.
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27 2>0>0 and alg%

(2.8) The sector S(4,, R) intersects with at most one separate line of
A, and neither R*¢'* nor R* is a separate line.
Set \

(2.9) R0 (2) =R A(2) +l<§)”.

Let z,=p,¢" be a point in S(4,, R). First we choose the point 2, in the
sector S(6,, R), real numbers ¢,€ (0,6,] and €€ (0, R] to determine the
path of (2.5) as follows.
(II. A): Assume the sector S(6,, R) intersects with a negative
region of 4. Then we take ¢, and ¢ so that a half line R*ei%
intersects with a negative region of 4, and R"®(te'%) is an in-
creasing function of ¢ on (0,¢]. Moreover we take the origin as z,.
(IT. B): Assume the sector S(4,, R) does not intersect with a nega-
tive region of A. Then ¢, is arbitrary, and e is chosen so that
R"“(tei%) is a decreasing function of ¢ on (0,€¢]. Moreover we set
Zo=¢€6'%,
Let a(¢) be a real valued piecewise continuous function on [0, 6,]
with values (0, 7). We define the functions g:S(6,, R) >R and %:S(4,, R)
—C by

p(z=pe?) :=p Exp( — j: cotan a(¢)d¢>.

0

(2.10)
Z(z) :=p(=)e'.

The path I'. from 2, to 2z, of the integral (2.5) consists of two parts
I',, and I',, (see fig 2.1): the path I',, is the segment from 2z, to
Z(z)), and the path I';, is

~ ¢ i
Tasy: 9 €190 61— 2=(pleBxp( [ cotan a(g)dg) ).
We take the path I',. inspired by the papers [H 1], [H 2] and [I].

Let r be a parameter of length along the curve I',.. By direct
calculations, we obtain

W(pew):ikzilmkukp—*rlcos(—z,,+w,,+a(¢)) it +4<g,
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2

#(2y)
2y 2L

The path of (II. A) The path of (II. B)

2
Fig. 2.1.

Now we give the proof of Proposition 2.3 in the case (II).

PROOF OF PROPOSITION 2.3 IN THE CASE (II). It is easy to see I (f)€
O(S(6,, R)). To obtain the estimate, we choose the function a(f) so that
Exp(R4) is an increasing function of » along [I,.. It is possible under
the condition (2.8) because the path [I',. does necessarily pass form a
negative region to a positive region when I’z,,1 intersects a separate
line of /4, and because the boundary lines of the sector are not separate
lines. Remark that there exists a positive constant m, such that for
any interval [0, 0"]C]O0, 6.],

mi 1<Exp<§ cotan a(f )d0>gm1.

For any fe0"®(S(6,, R)) and any point 2, € S(6,, R) satisfying #(z) € (0, €],

Exp(ERA( )+l< = )”)dz

Exp(?RA +l< = )”)dz

<A1 Bxp (7)) JERPOR(— A+ ()

11 max { DI o))}

We have for any z€ 1.,
3¢l =pising Exp( || cotan a(g)dg)> (3| sing
?1 sin ¢

1

u,om(zl)gufu“Exp(—mA(zo)j

Fl,zl

+||f||l'“Exp<—mA<zl)>§

FZZI
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sing

Since >sing, there exists I’>0 so that

1

b {EXP <l( |31z| )0>}£EXD (ll< lSlzl| >>

Thus we obtain, for any point z,( € S(4,, R)) satisfying |5(2,)| <e,

(2.11) 1L, (7)) | <CBxn(v( lslzll DS

Moreover (2.11) is valid for all points in S(6,, R), if we replace I’ and C
larger. This completes the proof. K

(III) The third case.

We assume the following conditions.

2.12) 1>0>0 and 6,<mi {E,l .
( ) 4>0>0 and 6;,<min 5 2]}
(2.13) A positive real axis is a separate line of 4, and the sector

S(0;, R)\R does not intersect with any separate line.
Set

ko :=min{k; Ra,+£0, 1<k <n}.
Then we have
kog—1
RA(te?)= X sgn(a)as|t™"sin(4g)
=1

(2.14) )
+k=zk |ak|t_1k COS( —2,,¢—|—w,,)

with sgn(a:)= IngI' Under the conditions (2.12) and (2.18), it is suffi-
k

cient to study, case by case, the following three cases (III. A), (III. B)
and (III. C).

Case (III. A): Assume that R4<0 on S(6,, R). In this case, we can
apply the same argument as the second case to the problem. We choose
the origin as z, and the path I", as (II. A), and obtain the estimate (2.6)
in the same way.

Case (III. B): Assume R/4>0 on S(4,, R) and Ra,,>0. To choose the
path, we prepare the following lemma.
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LEMMA 2.4. There exists a positiv constant r with the property that
Sfor any ¢ €[0,0,], RA(te*?) s a decreasing function of t on (0,r].

PrROOF. We have

id Bl
(2.15) % = —|a|At*"*sin(29) — Zzzzsgn(ak)lakllkt—‘rlsin(qus)
_k—ik || At~ cos(— A+ wy)
0 kg—1 i
. Sin(2¢)<|a1|2+ :Z::2 sgn(a) |ak|2ktl—zk%;(('z+§))>

_— t_xk0_1<ki |a,,|2kt“‘o_1k COS( _2k¢+wk)>-
=k0
Since Ra,, >0, there exists a positive constant x€(0,6,] so that
cos(— A P+wy)>€>0 on [0,x]. If ¢>yx, since sin(ip)>sin(dy)>0, we
M<0 for sufficiently small t. If ¢<y, since M
dt sin(4¢)

<1, the both terms of the right hand side of (2.15) are less than or
equal to 0 for small £. This completes the proof. W

obtain easily

Let z,=p,e": be a point in S(4,,r) where r is given in Lemma 2.4.
Now we determine the point 2, and the path I'.. We set 2,= Re', and
the path I'. consists of three parts: I', is the segment from z, to res,
I, is the arc

FZ,ZI . ¢ e [011 ¢1]_)z:‘rei¢v

and /', is the segment from re to 2, (see fig. 2.2).

%

2

Fig. 2.2.

PROOF OF PROPOSITION 2.3 IN THE CASE (III. B). By Lemma 2.4, there
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exists a positive constant m, such that
Exp(—R4(z)) <m, (ze S(6,, R)).

Then we have

|1, (f) (@) SEXp(—ER/l(zl))S Exp(R4(2))|f(2)|dz

I"l+['2,zl

+Exp(—4()|  ExpR4()] £(2)|dz

3,2y

<Iflme Exp(z<_lmllw)">gm% Exp($4(z))dz

(i o))

Thus we have the estimate (2.6). This completes the proof of the case
(IIl. B). H

Case (III. C): Assume $4(2)>0 on S(6,, R) and $Ra, <0. In this
case, we need several lemmas to determine the path. Let a>1. We
define the function w,: R*—C by

(2.16) We(x) =2+ — 12

LEMMA 2.5. There exist [, and x,>0 with the property that for any
1>, and any x¢€(0,x,], R"“(tw.(x)) is a decreasing function of t on
(0,1], if one of the following conditions is satisfied.

(1) a€(l,2—4,+1).
(2) a=2A—A,+1 and ao>2,

Proor. We may assume 2,<<1. We have

L, (3) kg—1
(2.17) d—%: - kzzjl sgn(a.) | @] At wq(2) | A% sin(2,04())

—kik || At | W) |25 COS( — A4fa(6) + 3) — o701
=kg
where 0.(r)=arg(w.(x)). We remark that for any p, g, with g#,>p,>0

and < —72.[—

(2.18) 1< Sin(ed)
- osin(pmg) e
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If 0<x<1,
(2.19) 2 < |w,(z)| <A 2.
Thereby there exist positive constants m, and m, so that

dR"® (tw,(x))

7 < —mx A Sin(0a (@) + e Aot Mkt — g0t

for sufficiently small x. Since

ma—l
2

< sin(f.(z)) <xe?,

A

we obtain the estimate

(2.20) %Mg(m)“‘l(—max“—{—mzt"‘kox“‘ko“)—lox""“’t“’*l
where m, is a positive constant. If a<i—X,+1, the first term of the
right hand side of (2.20) is negative for small x. This proves the first
assertion of the lemma. Now we assume a=2—k +1. If we take ¢>0
small enough, the first term of (2.20) has negative values for t€ (0, ¢].
Thus it is enough to show the lemma when t&[¢/, 1], and we obtain

(tx)~1—1(_maxa+m2t1—1koxl—xko+l)S(E/x)—x—l(_maxa+m2x1—1ko+1) Sm4x—1k0.
Thus we have the estimate

AR" (twq(x))

it <m0 —lx~e (tele, 1)),

and this has negative values for large ! because of ac>2,. This com-
pletes the proof. [

LEMMA 2.6. (i) Assume 6(2—4,+1)>24,. Then there exist positive
constants I, and x, so that R"“(w.(x)) 18 a decreasing function of x on
(0, z,] for any a>2—2,+1 and 1>1,.

(i) Assume o(A—2 +1)<2,. Then for any a satisfying 0(2— Ay +1)
<ao<k, and any 1>0, there exists a positive constant ., such that
R (w,(x)) is an increasing function of x on (0, X141

FROOF. We have
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AR " gn(anasl s i) (2] - sin(a o)

'S 2sgn(e) ol h@) |45 (@)cos(t(a)

— 3 sgn(adladis g;’“k ) [ wa()| 2 cos( — A (@) +w1)

k=kg

+I§ Apsgn(a) |a |wa(z)| OZ: (2)sin( — Au0a(x) +wy)

—aloxz~'=(I)+IL)+II)+(IV)+ (V).
From now on, we always assume xg%. There exists a positive constant

m, which does not depend on « so that

d|we| _ 14z

(2.21) 1<

Vfgen =
Moreover since sin(ﬁa(x))zlw ol and a>1,
dao 1 o
. 2 <
(2.22) dx (oc)i l co8(f.(x)) <]wa >l <latm)o”

Set a= max {|a;|}. Then we have
1<k<n

()| L alky—1)amyze=2, [(IIT)| <a(—ko+n41) A mux 0"
and
[(ID)| <ala+m) (ko—1) 222272, |(IV)|<ala+m)(—k+n+ 1) Axe*e?

We first consider the case (i) of the lemma. Since a—2—2>—24, —1,
we have

ARY ) (W

(223) dx ( )) Sa(mzx—,lko—l_lo.x—aa—l)’

where a positive constant m, does not depend on « and I. If I is suf-
ficiently large, (2.28) is negative because of aoc>2,. Next we consider
the case (ii) of the lemma. Since Ra, <0, there exist constants (€ (0, 6,))
and m;>0 so that cos(—2,9+wi)<—m; on [0,)]. Moreover we take x,
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so that arg(w.(x,))<y. Then we have for x¢€ (0, x,],
the first term of (ITI)>|ay |4, mex=*0",
and
|the rest term of (I11)|<a(—ky+n)d =0+
Thus we obtain the estimate

AR (w,(x))
x

(2.24)

> M ko — Mg o1t — gt A2 — qlo et

where positive constants m,, m; and ms do not depend on « and I. Since
—a+2+2<A4,+1 and «ao<2,, the right hand side of (2.24) becomes
positive for small x. This completes the proof.

LEMMA 2.7. (i) Assume az%. Then there exist positive con-

g

stants I, and x, with the property that for any x € (0, x2,] and 1>1, R-©®
(lwa(x)|€?) s a decreasing function of ¢ on [0, arg(w.(x))].
2:1 and a>1. Then for any 1>0, there exists a
[
positive constant x,, with the property that for any x€(0,,,]
R¥©(Jwa(x)|€) s an increasing function of ¢ on [arg(w.(x)), 6,].

(ii) Assume a<<

Proor. We have

dR"(|w,()|€*)

(2.25) i

= A|au||wa(2)|~* cos(1g)

— ézz,,m,,nwa(x)]—xk Sin(— A + o)
—lo cos @|w,(x)|(sin @|w.(z)|)~“+D.
Then if z is sufficiently small, we obtain the estimate

AR (|wa(x)|e*)
dg

< |wa(x) | (M2~ —lo cos(fa(x))a—aC D)

if ¢<arg(wa(x)),
dR" ) (|wa(x)|e*)
dé

> |wa(2)| (M= —lo cos (B (x)) > +D)

if ¢>arg(w.(x))
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where positive constants m, and m, are independent of « and I. Then
we can easily show the lemma. B

Now we choose the point 2z, and the path I" which consists of two
parts I, and I', in the case (III. C). Let I be a positive real number
satisfying {>l=max{l,, l,,l;} where I, 1, and [, are given in Lemma 2.5,
Lemma 2.6 and Lemma 2.7. We denote by L, the line through the
origin and the point 2z, and by C, the curve: t>0—w,(t). We consider
this problem in the following two cases (see fig. 2.3).

2 Y=1x
© ()
2
(B) .
(®) y=an
(A)
2, (A)
2 L
The path of (IIL C. 1) ’ The path of (IIL C. 2)
Fig. 2.3.

Case (III. C. 1): Assume ¢(2—2, +1)>4, Set a=21—2,+1 and a
real number %=min {x,, 2;, x,} where x, x, and x, are given in Lemma
2.5, Lemma 2.6 and Lemma 2.7. We choose the point w.(%) as 2, of the
integral (2.5). To determine the path, we divide the sector S(6,, R) into
three regions.

Region (A) is {z€ S(6,, R); Jz<(Rz)°*}. For the point z,=pe* in the
region (A), we take the point % on the curve C, which satisfies |Z|=p,.
The path I',. joins the points 2, to Z along the curve C., and the path
I',. from Z to z, is the arc with radius p, and center at 0.

Region (B) is {z€S(6,, R); Jz>(R2)*, argz<0,(%)}. Let 2z be an
intersecting point between the curve C, and the line L.. Then I',, is
the same as Region (A), and [, is the segment from %, to z.

Region (C) is {z€ S(6,, R); J2>(Rz)?, arg(z)>0.(%)}. Let 2, be a point
on the line L, which satisfies |Z|=p,, Then I',, is the segment from
% to %, and I',. is the arc from % to z,.

Case (III. C. 2): Assume 0(2—2,+1)<Z, Let a; and a, be positive
real numbers satisfying
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2
2—2k0+1<a2<2-1‘—1 <

c+1 o

We take the origin as 2, of the integral (2.5). We divide the sector
S(6,, R) into three regions.

Region (A) is {z€ S(6,, R); J2<(R2)n}. For the point z,=p,e" in the
region (A), we take the point 2, on the curve C, which satisfies |z|=p,.
Then the path I',. joints 2, to Z along the curve Ce,» and the path
I’,. from % to z, is the arc with radius p, and center at 0.

Region (B) is {z€ S(0,, R); Jz>(Rz)™, Jz<(Rz)2}. In this region, the
path I', consists of only one part which joins 2, to 2, along the curve
C, for some B € [a, ail-

Region (C) is {z€ S(6,, R); J2>(R2)2}). We choose the path in such
a way as region (A).

PROOF OF THE PROPOSITION 2.3 IN THE CASE (III. C). If we take the
point 2, close to the origin, the function R"*(z) is increasing along the
path ', by Lemma 2.5, Lemma 2.6 and Lemma 2.7. Thus we can easily
show the estimate (2.6). This completes the long proof of Proposition

23. W

Next we consider the same problem on the sector S(6,, 6, B) when
0<6,<0,<2r.

PROPOSITION 2.8. Assume the sector S(6, 0, R) intersects with at
most one separate line of A, and neither Re'% nor Re™ is a separate
line. ~ Then for large 1, there exist positive constants I’ and C such that

(2.20) Lol )15, 00, S CIL sl S € OV2(S(00, 61, R))

where the point z, is chosen 1in such a way a3 the second case of the
proof of Proposition 2.3.

Since the proof goes in the same way as the second case of Propo-
sition 2.3, we omit it.

Now we construct solutions on small sectors of the system (2.0). It
is known that there exists the formal fundamental solutions P(z)z* Exp
(—A4) of (2.0) where
(1) P(z) is the matrix of the formal power series of 27,

(2) A is a constant matrix, and
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(8) A(z) is the diagonal matrix whose (j, j) component 4,(z) is the poly-
nomial of z7'/» and written as

(2.21) A;(2)= 3 a; 27tk (1<i<m).
1
Here a;.€C, a,,#0, a;.,=1 and 2;,€ Z[l] satisfying
D

X]' ::1]’,1> e >2j”"’j:0'
Set

A=max{k, -+, 4.}, and Z,=2,

(2.22) .
where k;=min {k; Ra;,#0, 1<k<n;.

Note that we choose the branch of 2 which has positive real values on
argz=0. We quote the existence theorem of the fundamental solutions
due to Hukuhara ([H 1], [H 2]) and Wasow ([W]).

PROPOSITION 2.9 (CF. [W]). Given any ¢. Then for some constants
R>0, ¢, and ¢, with ¢, <$<¢, the system (2.0) has the fundamental
solution U(z)Exp(—A(2)) on the sector S(@,, ¢1, R) satisfying the conditions;

(2.23) U(z) € GL(m, O(S(6,, 6., R))) N C*(S(6,, 6, R)\{0}).

(2.24) There exist positive constants C and N so that U(z) has the

estimate

|U(2)|<Clz|™,
U (2)|<Clz|™ (€ S(¢0, $1, R)).

We determine the positive constant R, and the partition 0=6,<6,
<---<6,=2r so that on each sector S(f;_,8;, R,) (1<t1<q), there exists
the fundamental solution U,(z)Exp(—A4(z)) of (2.0) which satisfies the
conditions (2.23) and (2.24) of Proposition 2.9. Moreover dividing [0, 2]
into smaller sectors, we may assume the following conditions.

(2.25) For 2<i<q—1, the sector S(6._,, 6. R,) intersects with at

most one separate line of each 4,, and neither R*e“-! nor R*e": is

a separate line of each 4,.

(2.26) For =1 and 1=gq, 6,-—0,-_1<min{%, é%} and the open sector

S(6;_,, 0, R,) contains no separate line of each A,.
Let I, ; be a positive real number which is determined in Proposition
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2.3 or Proposition 2.8 for 4; on S(0,_,, 6., R,). Set

I= max {I;,}.
1<i<q,1<5<m
Let 2y, (1<1<q,1<j<m) be a point in S(0,_,, 6; B, which is chosen
in such a way that the integral (2.5) has the estimate (2.6) or (2.20)
when we replace 4 of (2.5) with 4,. Let z be a point in S(0,_,, 6, R,).
For any I>1 and f€0"“(S(6;_., 6, R,))", we define the solution of (2.0)
on S(0,_,, 0, R, as

(2.27) Gi(f)(z):Ui(z)EXp(_A(z))S Exp(4)Ui'z~"fdz.
iz

Here [';. is the set of m paths (I';,., ---, ["i..) with I',;. the path in
S(6:_s, 0;, R,) which joins 2,;; to z as described in the proof of Proposi-
tion 2.3 or Proposition 2.9. By the results of the same propositions,
there exist positive constants I’ and C such that we have Gi(f) e 0"
(S(6;_1, 6;, Ry))™ and
(2.28) IG5, 0,89 SCIS 156, 0,59

REMARK. (1) Although G(f) can be continued over S(0,2r, B,) as
the solution of (2.0) if fe0"®(S(0,2r, R,))", we cannot expect the esti-
mate (2.28) on whole domain.

(2) If 2,,,#0, we can take the point z,,; close to the origin.

Summing up, we have

THEOREM 2.10. Assume 1>1. Then there exists a constant U such
that for any f€O0"“(S(0, 2z, R))™ and 1 €[1, ql, the solution of (2.0) on
S(6:_1, 6;, R,) given by (2.27) belongs to O (S(8;_1, 0;, Ry))™.

3. Construction of ultra-distribution solutions

In the previous section, we have constructed holomorphic solutions
of (2.0) on small sectors which satisfy suitable growth conditions. The
aim of this section is to prove the main theorems by connecting them.
However we can not expect that they are directly connected with each
other, and we need to consider this problem modulo holomorphic fune-
tions at the origin. To do this, we make several preparations. Through-
out this section, we use the same notations as Section 2. Set
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(3.0) a= max {2, L}

jefl,m] g

where 1;’s are given in (2.22), and set
R=C\{z€ C; Rz>0, [IJe| < (|Rz])}.

Let %, (t€[1,q—1]) be a point satisfying argZz =60, and || € (0, R,)
where R, and 0, are given after Proposition 2.9 in Section 2. For con-
venience, we set Z,=%, and Z,=%, ;. Now we define a C linear morphism
D, :=(0""(8(6;_y, 0;, Ry)))"—C*™ (1=1, -- -, q) as follows.

31 0. ::{SM_ Exp(A)Ui'z-%fdz, g B_Exp(A)Uzlz—dfdz}

where I'; ;. is the same set of paths as (2.27). Set
O=0,P- - DD, : 0" (S(R,))™ — C*.
LEMMA 3.1. Assume that 1>l and 2’s are contained in 2. Then
there exists a constant C with the property that the estimate
DN C|flsrpna  FEO(S(R,))™

where the norm |-|skyno 8 defined in Section 1.
Proor. We will show that @, is continuous. The problem is to
estimate the integrals in (3.1) whose paths start from the origin and

touch the real axis tangentially at the origin. For any 1<a<a® and
5>0, we obtain

dist(Bw.(t), C\Q)~dist(Bw.(t), R) (t— +0).
Thus by Lemma 2.6 (ii), we can easily show the lemma. [l
Let P(D)=>%..¢.D* be a differential operator of infinite order which
satisfies the estimate
(3.2) e < Cl¥(k!) =

with positive constants C and [. The differential operator which satisfies
the estimate (3.2) is said to be the differential operator of Gevrey class
{l, (s)}. Let R and a be positive constants satisfying a<R.
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PROPOSITION 3.2. For any I, there exist a constant I'>1 and a dif-
Sferential operator P(D) of Gevrey class {l/, (s)} which satisfy the following
properties.

For any fe€O““(S(R)), there ewxist holomorphic functions g(z) and
g(2) satisfying the conditions (i), (ii) and (iii);

(1) flz)=P(D)g(z)+9(2). o

(ii) g s holomorphic and bounded on C\R*N{Rz<a}.

(iii) g is holomorphic on BrN{Rz<a}, and satisfies the estimate

131530 res<a) S C| f |50y
with a positive constant C.

Proor. We use the technique of [Ko 4]. Let ¢ be a positive real

number such that ‘HZ'R +dt€S(R). Set t.= ‘HZ'R +0i. We define the

Fourier-Borel transformation and its inverse by

Foi=|_ etflade,

oy

hz) ;—LS"_ R (Q)dL

T 2

where 4, is the path starting from t_, turning around the origin and
ending at ¢, (see fig. 3.1).

ty

7‘
I
%. £ \

Fig. 3.1. Fig. 3.2.
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It is easily to see that for any feO(S(R)),
(1) /(¢) is an entire function, and
(2) we have the estimate for any €>0,

IFQI<Ce™  (CER)

with a positive constant C..
Thus we know that (f)V is well defined and holomorphic on Rz<0.
Moreover we have for any $z2<0,

- (@)= ], eeaptwpdudc
. _1 Sflw) 4. _ 1 Flw)
e P R A0

Here ¥, is the path starting from ¢_, turning around 2z and ending at
t, (see fig. 3.1). By deforming the path 4, the second term of the
right hand side of (3.3) is holomorphic on BrN{Rz<a}.

Let

p=1i(1-5).
p=1 P

Then we have the estimate

IPz(C)"‘]ZAlEXp<%(l|CI)”“), (RC<0)

with a positive constant A, (see [Ko 1]). We will show that g¢,.(z):=
(P.()"*£(€)V is holomorphic and bounded on C\R*N{R{<a} for any
feO-(S(R)), if I is sufficiently large. It is enough to show that for
large R,> >0,

S P7(2) f(L)de

—oo

satisfies the above claim. Set

(3.4) 70 =2EE s =10,

We divide f(¢) into three parts as follows.
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o= ez + |, e+ etz

i 74O

= (I)+ (IT) +(III).

Here 4{,(() is the path starting from y_({), turning around the origin
and ending at 7.({). Then (I), (II) and (III) are holomorphic on

{7?(12—0) <arg({< P29 (3+a) |C|>R1}. Since we have
cos( - )1 < (7. (@) < I

on T= {%<argc<§2£, |C|>R1}, we obtain the estimate

(3.5) [(I)and(III)IgClExp<a+RERC) (R N{L|>R)),

(D) <CeBxp( (2+1cos( =) )ie) e ).
Thus we obtain on T,
(3.6) |Pl,(c)-1*(m)|gcl,Exp(<—@2)1i+2+zcos(ﬁ)_”)w/s)
with a positive constant C,.. Since we have
37) | Meepoa

= Teepuo i+ e [ epu@ e,

—oco

the first term of the right hand side of (8.7) is holomorphic on Rz< a—;R

and by rotating the path of the second term as fig. 3.2, we easily find

the second term is holomorphic and bounded on C\R* if we take I
sufficiently large. Finally we remark that

(3.8) PL(D)(P.(Q)7 £ (2))Y = (F(Q)).
This completes the proof. B

PROPOSITION 3.3. For any l, there exists I! so that O(C) is dense in
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0" (S(R)) with respect to the morm |-|5une for anmy positive nmumber
a<R.

ProOF. First we quote the theorem of Mergelyan.

LEMMA 3.4 ([ME; THEOREM 1.4]). If K is a compact set in C whose
complement 1s connected, then O(C) is dense i O(int K)NC'(K) with
respect to uniform convergence norm on K.

Let K=S(a)n2. We take !’ sufficiently large so that Proposition
3.2 holds. The holomorphic function ¢(z) constructed in the same pro-
position is bounded on int K. By integrating ¢(z), we may assume
g(z) €O(int K)NC*(K). Applying Lemma 3.4 to g(z), we can find the
uniformly convergence sequences g,.(2)—>g(z) on K where ¢,(2)’s are
entire functions. Then it is easy to see that

P(D)g.(2)— P(D)g(2)

with respect to the norm |-|5 .o for large 1”. Note that P(D)g,(2) is
an entire function. Applying Runge approximation theorem to §(z) in
Proposition 3.2, we obtain the desired result.

Now we give the proof of Theorem 0.1 and Corollary 0.2.

Proor. We first reduce the problem to the case that .5} has the
form (2.0) in Section 2.

LEMMA 3.5. Let M be a coherent Dy module. Then there exist a
coherent 9Dy module Jl which has the form (2.0) and an injective Dy
morphism ¢ : M — Tl

ProorF. We may assume char(M)CTEXU T%X. Let p=(0; v/ —1dz).
We define the dual system M* of M by

Mr=Eats, (H, DIDO5.

Since the dual funector is involutive in the ecategory of holonomic systems,
it is enough to show that there exists a surjective morphism &: Il — H*
where Jl has the form (2.0). We endow a good filtration F*( G*) to
M* and consider the graded module Gr(M*). Since supp(Gr(M*))c
TEXU T X, we can find an integer N, such that 2¥Gr(H*),=0. Since
support of Gr(M*) is conic, we have supp(z¥oGr(M*)cT%X, and
2YoGr(M*) is a coherent Oy module. Thus the increasing sequence of
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coherent Oy modules G*:=2zYo kEB Gr*(M*) is locally stationary. This
<i

implies that there exists an integer k, such that zYGr*(H*)=0 for
k>k, Choosing generators u,, - --,u, of F*( M*), we can find the matrix
A(z) € gl(l,O,) such that

0 5= AR
0z

where %= (u,, - -+, w;)’. This completes the proof. W

Continue to the proof of Theorem 0.1. Since we have the exact
sequence

Euty (I, I',F) - Euty (M, I';F) -0,

we may assume, from the beginning, (¥ has the form (2.0).

We prove this theorem in the case ¥=9'. For the other cases,
we need slight modifications in Section 2 and 3. The essential part of
the proof, however, is the same, and we omit their proofs. Given a
he (I';9*)™. Then there existl, e>>0and f € (0" (S(e)))™ which represents
h as boundary value. By Theorem 2.10, we can find the solution u; of
the system (2.0) on the each sector S(6;,0:,,, ¢) for a sufficiently small
¢. Here u;’s are given by the integral (2.27). We know @((0O"®(S(¢')))™)
is closed because of its finite dimensionality. Moreover O(C) is dense
in O+®(S(¢’)) with respect to the norm |-|4:) .o for small €” and large
I’ by Proposition 8.3. If we choose the point z,,; in (2.27) close to the
origin, @ is continuous with respect to the same norm by Lemma 3.1.
Thus we have

(3.9) PO (R())") =2(OC)™).

Then we can find f¢€(O(C))" such that @(f)=®@(f). We replace each
u; to

G f —F) =UExp(— )| Exp(4)Ure(f —F)dz.
We have w;(%)=1u;,1(%) and |{u}|s,<co for some !”. Thus {w:} give

the holomorphic function on S(¢/) which represents an ultradistribution
of Beurling class (s), and we obtain

Plu}=f mod O(C).
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This completes the proof of Theorem 0.1.
To prove Corollary 0.2, we remark the exact sequence

(3.10) 010D =TI, DB, DY — D" — 0.

PROOF OF THEOREM 0.3. We only show the case ¥=(C%. By the
results of [Ma 2], we may assume M is a coherent 9y module. Then
we remark the following exact sequence

(311) 0 — L)qfo - @éa)l - (C(B))(0;—V:dz)®(c(8))(0;1/——_ldz) g 0-

Applying the functor R4 omo, (M, -) to (3.11), we easily obtain the
result. |
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