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Continuous variation of the discrete
Godbillion-Vey invariant

By N. HAsHIGUCHI and H. MINAKAWA

Abstract. For each pair of integers (s, m) satisfying that s>2 and
Im|<2s—2, we construct a continuous family {¢,: =,(3,)>PL(S")},er of
homomorphism from the fundamental group of the closed oriented
surface of genus s to the group of orientation preserving piecewise
linear homoeomorphisms of the circle such that the Euler number of
the associated S!'-bundler is equal to m and the discrete Godbillon-Vey
invariant of ¢, is equal to ¢.

1. Introduction.

The discrete Godbillon-Vey invariant GV is a 2-cocycle of PL,(S
defined in [2] and [4]. Here PL.(S') denotes the group of all orientation
preserving homeomorphisms of the circle whose lifts via the projection
R—S'=R/Z are piecewise linear homeomorphisms of the real line R.
Let X, be a closed oriented surface of genus s>2. For any homomor-
phism ¢: 7,(2,)—>PL.(S"), the discrete Godbillon-Vey invariant GV(¢) of
¢ is defined by GV (¢)=GV($4[2.]), where [3.] denotes the fundamental
class of X,. On the other hand, any homomorphism ¢: =,(3,)—>G% deter-
mines a foliated S'-bundle E;, whose total holonomy is ¢. Here G is
the group of all orientation preserving homeomorphisms of S'. So the
Euler number eu(¢) of ¢ is defined by eu(¢)=<e(Ey),[2.]), where e(E,)
is the Euler class of the S'-bundle E;. Then we have the Milnor-Wood
inequality |eu(¢)| <|X(2,)|=2s—2 (see [8]). As for the discrete Godbillon-
Vey invariant, in [2] Ghys shows that there exists a continuous family
(6% 7,(2)—>PL,(S")}icx of homomorphisms with respect to the C° topology
of PL.(S") such that GV(¢%)=t. In this paper, we consider the existence
of such families in the case where s>2 and prove the following theorem.

THEOREM 1.1. For any integers s>2 and m with |m|<2s—2, there
exists a continuous family {p, = (X,)—>PL,(SV}er of homomorphisms
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which satisfies the following conditions.
(1) eulg)=m,
(2) GV(p)=t (tER).

The continuous variation of GV (¢) is caused by the continuous varia-
tion of right derivatives, left derivatives and bending points of elements
of Im(¢) c PL,(S'). In Ghys’ example, GV varies as the right derivatives
and the left derivatives of the holonomy of the two toral leaves vary.
On the other hand, when the Euler number is maximal, our example
is a cylinder-plane foliation (see [3] and [7]), and it is finite cylinder
leaves that contain its bending points.

We can use Ghys’ example to prove the case where m=0. There
exists a branched covering b: 3,—23, such that b,[3,]=s[3,]. So, {#ob,:
m(2,)—>PL,(S"}icr satisfies eu(¢lob)=0 and GV(¢lb,)=st. Hence, we
will prove Theorem 1.1 in the case where m=0.

In the differentiable case, there is a next conjecture;

Is a C> foliated S'-bundle which has the maximal Euler number
diffierentiably conjugate to the Anosov foliation?

As a corollary of Theorem 1.1, we know this conjecture is false in
the PL case.

COROLLARY 1.2. There are uncountably many PL conjugacy classes
of PL foliated S™-bundles whose Euler numbers are maximal.

2. Construction of a continuous family {(J§).}s50.

A one punctured torus 3/ is developed as follows.

[a, 8]
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The fundamental group =,(3{) is the free group generated by the
homotopy classes of the two closed loops ¢ and b. That is, 7,(2})=<a, bD.
If we define a 2-chain Z,, of <a,b) by Z,,=(a,b)—(b, a)—([a, b], ba), then
Z,, represents the fundamental class in H;(<a, b, {[a, b]); Z)=H,(3!,03}; Z).

LEMMA 2.1. Let G be a group and a, B, 7, elements of G. If Br=71B,
then the chain Z., , is homologous to the chain Z,z+(r, B)— (B, 7).

PrOOF. 0{(a, B,7) — (a, 7, B) — ([a, Bl Ba, 7) — (B, s 7)} = Zaysp — Zarp —
{r.B)—=B7} H

We define two-parameter families f,; §op and hqs(a>1,8>0) of
piecewise linear homeomorphisms of R which commute with the trans-
lation Ty, , by l.s=(a+1)(@+B8). To do so, we determine such homeo-
morphisms on an interval of the length [, ;.

ax if x€[—a, 1]
Fap(®)= 8 (@—1)(a+p) ; _
B a—|—8—1x+ pory if x€[1,1l.s—a]
N a 'z if z€[—ala+p),0]
e ﬁ(x):{ .
alx if x€[0,a+p8]
o) {fa,,a(x) if z€[0, a+5]
*f - x if xE[a+,@, la,ﬁ]'

Let M, R—R be the multiplication map M,(x)=az and p: G,—G’ the
universal covering projection. G% is the naturally identified with the
group of all orientation preserving homeomorphisms of R which commute
with the translation T,. For any real numbers a>1, >0, we define
homomorphisms ¢ ,: 7,(2)—PL,(S") (¢==+1) by

apala)= i?;fn(b)ZP(Mz_al,fT511°ga,ﬁ°(ﬁa.ﬂ)"°Mla,p)y
Ss,n (D) =50 (a) =D(Mi g0 S apo Mig p)-
Since m,(27) is the free group of rank 2, any homomoerism ¢: m(2) G
has a lift ¢ of ¢. That is, there is a homomorphism ¢: 7,(2])—G% such
that pog=¢. For any lift ¢<% . of ¢Y% ., we have
[gzc(zu,ii,'n(a)v ~g:)ﬁ,'n(b)]: (Ml:xtﬁo[Tgilogu,ﬁo(ﬁa,ﬁ)nv fa,ﬂ]oMla,p)g
= (MtT,T,q°[TZil°ga,p, Saslo M, 5)°
=(Tav1a,)" = Tota-1?ita,p (0==%1).
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For a real number 2(0<1<1), put a=a(ﬂ,2):ﬁ2+;gij)*/D , Where

2
D= (B2+1+2)°+4(1—2)(82—1), then we have Bl:.l)_zz.
b
Given an integer s>2, there exists a 2s—1 fold covering map =,

>'—3! satisfying the following properties, where X’ is a one punctured
orientable surface of genus s. We can take generators a, b, - -, a., b, of
7,(2!) such that [a,, bJ¥ - - - #[a., b,] is represented by the oriented bound-
ary loop 0, and (x,),(0.)=[a,b}""'. We intrcduced an orientation of 27
such that =, is an orientation preserving map. That is, (z,)«([27, 027])=
(2s—1)[21,827]. By the consideration above and Milnor’s algorithm to
calculate the Euler number, for any integers s>2 and 0<m<2s—2, the
families {5 mize—1)p.n0(T)s}ss0.nez naturally induce families {¢§: 7, (2,)—
PL . (S")}s50,ncz such that eu(¢f’,)=omc= +1).

3. The discrete Godbillon-Vey invariant of ¢§,.
The discrete Godbillion-Vey invariant GV is the 2-cocycle of PL,(S")

log ¢’'(») log(feg) (x) ,
A(log ¢')(x)  A(log(fog))(x)

where ¢'(x) is the right derivative at x and A(h)(x)=h(x+0)—h(x—0).

GV(f,9)=1 5

2 Jest

PROPOSITION 3.1. Let f,§ be lifts of f, g€ PL,(SY). We have

O L
2o5<t|Aflog §)(x)  A(log(fog))(x)
:l 5 log(M.ogo MY (z) log .(MaofogoMgl)/(x) )
2 o7<a | A(log (Maogo M;Y))(x)  A(log((Mao fogo M=) (x)

This proposition means that the discrete Godbillion-Vey invariant
does not depend on the choice of a length of S

PROPOSITION 3.2. If either f or g ts an element of SO(2), i.e., a

rotation of S', then GV(f, g)=0.

So GV is a cocycle of a pair of groups (PL.(SY, SO(2)). On the
other hand, we have the following commutative diagram between the
second integral homologies of pairs of groups.
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()
Hz(Z'ﬁ, az,:) (¢a(ﬁ.m/2s—l),ﬁ,n)*(7ra)* HZ(PL+(SI), SO(Z))

- -
Hy(3)) (D) H,(PL.(SY).

Here, n: 3'—2%,=2!/0%] is the natural quotient map and ¢«: (PL,(S"), &)—
(PL,(S"), SO(2)) is the natural inclusion. Since %, (resp. 3') is a K(m,(2,), 1)
(resp. K(m,(37), 1)) space, the second homology H,(3,) (resp. Hy(X’,03")) is
naturally isomorphic to H,(w,(2,)) (resp. Hy(m (2%),<0.»)). So we have
GV(@5) =G V(@504 2.0) =GV (ea(d) sm[ 27, 037])
= (28— 1)G V(s mze-11,58,8) x[ 21, 027])

=((2s—1)GV(Z,

a(ﬂ m)2s—1),8,n(0) ¢a(p m[2s—1),8, n(b))
Since

Z¢‘” MONIS (b)+Z¢"" (@852, ®

—Z¢‘1) w@ 80 0+ LDy 1,8, )

—([$0(@). B a()]. B a(D)BLnn(a)
—([BL5.0(D), B p,n(@)], Bis n(@)Bi)s, (D))

— (D(T—mize—v)s B5,n(0)BEs,4(@) — (D(Timizs—1)), Pia (@) B, (D)),

a,B,n
GV(5P)=—GV(pd,) by virtue of Lemma 2.1.
cons1der ‘GV(¢L,), ie., the case where m>0.
In the rest of this section, we suppose that S'=R/l,,Z. By Lemma
2.1 we have

Hence, it is sufficient to

GT( ,(Bl)n): (2s— 1)§—( R71 o0a,potha, ™ fa ,9)

=(28—1)GV(Zr22 ia posa,pt ((hes)”s fap) = (farp (Map)”))
=(2s—1){G V(R 1°0ap: fap) =GV (fa, Ba199a,p)
+0GV((ha,, fap) = (faps hap))},
where R._ i, fus, gas and ha,p are the homeomorphisms of St
lifts are Tu_1, fap G and h., respectively.
LEMMA 3.3.

(1) W(Ra 19Ga.s, fas) =2(log a)*+2 log « log a,
(2) (faﬂ 1i0gas) = —2(log @)’ —2 log « log a,

(8) GV((hawp, fas) = (Fas ha )= (log a)’ — (log a)’.
Here a,= “+§ L

=R/l sZ whose
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Proor. If we make the list of bending points, right derivatives
and left derivatives at the bending points of the homeomorphisms
T oFap Fupr -+, ete., it is easy to calculate the value (1)~(3) of the
discrete Godbillon-Vey cocycle. First we can show easily that

T;—ll°.(7a,,9(1):1,

T i00aps(—a)=—a,

fes(0)=0

Jaslat+p)=a+p.

By these facts, we see that the bending points of the homeomorphisms
Ta-10§a.pltoia p.r farliotap =+ » €te. are all contained in {0, 1, a+8, lop—al.
So we make the following table of such data (Table 3.1).

and

Table 3.1

x

the right derivative of F at x

the left derivative of F at

0 1 a+p lapg—a
f a a;t agt a
a,p
a a oyt a;!
- a? aay’t a~lag!t 1
Tc?—ll"gu»ﬁ“fa‘ﬁ
1 ag aayt a~logt
a a a~t a~t
T;—11°§a,ﬁ
a~l a a a~t
- o a? aay’? a~lapt 1
fd.ﬁoTa—llcga»ﬁ
1 o? acyt a~lagt
p «a ay?t 1 1
a,p
1 a % 1
ey ey 1 1 ay't a
Japohap=hygoSap
a 1 1 ap!
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Now it is easy to see (1) and (2) by Table 3.1. Moreover it is well
known that the 2-cycle (ha,p fa,p)—(fup Fas) is homologous to the 2-cycle
(Pa,p, Bz 50 far8) — (Ba,5° fa 5, Bras) @S an integral 2-chain of PL,(SY). So it is
easy to check (3). Hence, this lemma is proved. [§

COMPLETION OF THE PROOF OF THEOREM 1.1. By Lemma 3.3, we have

GV(¢hn)=(2s—1){(n+4)(log a)’+4 log a log @y —n(log @)},

2s—1
are fixed, « and a, are positive continuous functions of >>0. They have
the following limits.

where aza(/o’, m ) and aO:%H. When the integers m and s

lim a= 2+2+V22+82, lim ay=co,
-0 2(1—24) B0
. . 1
limag=oco0, limay=—-—.
oo = B0 %o 1—-2

If n is sufficiently large (for example n>>5s), then GV (¢5") is a strictly
monotone increasing funection with respect to 8. So, changing a para-
meter, we obtain a continuous family {@,: =,(%,)—>PL,(S)}cr satisfying
that eu(¢,)=m and GV(¢,)=t.
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