J. Fac. Sci. Univ. TokyoSect. IA, Math.39 (1992), 379-383.

On maximal versions of the Large Sieve, II

By P. D. T. A. ELLIOTT

In the present paper I obtain a doubly infinite maximal version of the Large Sieve inequality which, for the first time, approaches in strength the standard model.

THEOREM. Let $\varepsilon > 0$. Then

$$\sum_{\substack{q \neq \leq Q \\ (q+1) \leq 1}} \frac{q}{\phi(q \gamma)} \sum_{\chi \pmod{q}}^* \max_{0 \leq v-u \leq y} \left| \sum_{u < n \leq v} a_n \chi(n) c_r(n) \right|^2 \ll (y + Q^2 (\log y)^{2+\epsilon}) \sum_{n = -\infty}^{\infty} |a_n|^2$$

where * denotes that χ runs through the primitive Dirichlet characters $(mod \ q)$, and $c_r(n)$ is the Ramanujan sum

$$\sum_{\substack{b=1 \ (b,r)=1}}^{r} \exp(2\pi i b n/r).$$

The inequality is uniform in $Q \ge 1$, $y \ge 2$ and square summable sequences of complex numbers a_n .

COROLLARY.

$$\sum_{q \leq Q} \sum_{\chi \pmod{q}}^* \max_{0 \leq v - u \leq y} \Big| \sum_{u$$

where p denotes a prime number.

The theorem generalises Theorem 1 of [1], but I apply the earlier result during the proof of the present result. Apart from decreasing the value of the implied constant and removing the factor $(\log y)^{2+\epsilon}$, the leading factor in the upper bound is best possible. In the earlier treatment I decomposed a certain Mellin integral into three pieces. Here I decompose its analogue into four.

It follows from Theorem 1 of [1] that the present theorem is certainly valid if u in the maximum is confined to the interval (1, y]. It will therefore suffice to establish the theorem under the assumption that $a_n=0$ for $n \le y$. I denote by $\widehat{\sum}$ the multiple summation operator

$$\sum_{\substack{qr \leq Q \\ (q,r)=1}} \frac{q}{\phi(qr)} \sum_{\chi \pmod{q}}^*.$$

I note from Lemma 1 of [1] that $\widehat{\sum} |\chi(n)c_r(n)|^2 \ll Q^2$ uniformly in $Q \ge 1$ and integers n. I shall also apply the following inequality derived from the standard Large Sieve, and appearing as Lemma 2 in [1]:

LEMMA 1. If $T \ge 1$

$$\left. \widehat{\sum} \right|_{-T}^T \left| \sum_{n \leq x} a_n \chi(n) c_r(n) n^{i\tau} \right|^2 d\tau \ll \sum_{n \leq x} |a_n|^2 (n + Q^2 T).$$

The bulk of the remainder of the proof of the present theorem is contained in the next result.

LEMMA 2. The inequality

$$\sum_{\substack{0 \le v - u \le v \\ w \le v \le 2w}} \max_{u < n \le v} \left| \sum_{u < n \le v} a_n \chi(n) c_r(n) \right|^2 \ll (y + Q^2 (\log y)^2) \sum_{w < n \le 3w} |a_n|^2$$

holds uniformly for $w \ge y \ge 2$.

PROOF OF LEMMA 2. I temporarily denote the sum $\sum |a_n|^2$, $w < n \le 3w$, by $|a|^2$. This is a notation slightly at odds with the notation of [1]. Let $\sigma = (\log w)^{-1}$. For real positive α not an integer

$$\frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{\alpha^s}{s} ds = \begin{cases} 1 & \text{if } \alpha > 1, \\ 0 & \text{if } \alpha < 1. \end{cases}$$

the integration being taken over the vertical line $\mathrm{Re}(s) = \sigma$ in the complex s-plane. In terms of the kernel $K(s) = K(u, v, s) = s^{-1}(v^s - u^s)$ there is a representation

$$\sum\limits_{u < n \leq v} a_n \chi(n) c_r(n) = rac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \sum\limits_{w < n \leq 3w} a_n \chi(n) c_r(n) n^{-s} K(s) ds.$$

Note that since u belongs to the interval (w, 2w], $v \le 3w$. By assuming that u, v are half odd integers, as we clearly may, we ensure that u/n, v/n are not 1 for any positive integer n. I break the integral into four pieces I_j , j=1,2,3,4, corresponding to the ranges $|\tau| \le 2wy^{-1}$, $2wy^{-1} < |\tau| \le 2wy^{-1} \log y$, $wy^{-1} \log y < |\tau| \le w$, $|\tau| > w$ of the variable $\tau = -i \text{Im}(s)$. I shall treat these integrals differently.

An integration by parts shows that for $\alpha > 0$, $\alpha \neq 1$,

$$rac{1}{2\pi i}\int_{| au|>w}rac{lpha^s}{s}ds\!\ll\!rac{lpha^\sigma}{w|\loglpha|}.$$

Hence

$$I_4 \ll w^{-1} \sum_{w < n \leq 3w} |a_n| |\chi(n) c_r(n)| \bigg(\min \bigg\{ \bigg| \log \frac{u}{n} \bigg| \, , \, \bigg| \log \frac{v}{n} \bigg| \bigg\} \bigg)^{-1} \, .$$

An application of the Cauchy-Schwarz inequality gives

$$\sum_{u,v} \max_{u,v} |I_4|^2 \ll w^{-2} \max_{w < u \le 2w} \sum_{m \le 3w} \left| \log \frac{u}{m} \right|^{-2} \sum_{w < n \le 3w} |a_n|^2 |\chi(n) c_r(n)|^2.$$

For a typical u in the interval (w, 2w], $|\log u/m|$ is bounded below away from zero for $m \le 2u/3$, m > 3u/2, and the corresponding terms in the sum over the integers $m \le 3w$ contribute $\le w$. For the integers m = u + k - 1/2, $1 \le k \le (u+1)/2$, where k is an integer, we have $|\log u/m| \gg k/u \gg k/w$, and a corresponding contribution of

$$\ll w^2 \sum_{k>1} k^{-2} \ll w^2$$
.

We may likewise treat the terms with m=u-k+1/2, $1 \le k \le (u/3)+1/2$. Bearing in mind our earlier remark concerning the average size of Ramanujan sums, we see that

$$\sum_{u,v} \max_{u} |I_4|^2 \ll Q^2 |\mathbf{a}|^2.$$

The integral I_1 is dealt with by applying the Cauchy-Schwarz inequality to the integral representation:

$$\widehat{\sum} \max_{u,v} |I_1|^2 \ll \max_{u,v} \int_{|\tau| \leq 2wy^{-1}} |K(s)|^2 d\tau \cdot \int_{|\tau| \leq 2wy^{-1}} \widehat{\sum} \left| \sum_{w < n \leq 3w} a_n \chi(n) c_{\tau}(n) \right|^2 d\tau.$$

Since

$$|K(s)| = \left| \int_u^v t^{s-1} dt \right| \le \int_u^v t^{\sigma-1} dt \ll y w^{-1}$$

uniformly for $w < u \le 2w$, $w < v \le 3w$, $\sigma = (\log w)^{-1}$, the integral involving the square of the kernel is $\ll yw^{-1}$. The second integral over τ is by Lemma 1 $\ll (w + Q^2wy^{-1})|\mathbf{a}|^2$. Hence

$$\widehat{\sum} \max_{y} |I_1|^2 \ll (y+Q^2)|\mathbf{a}|^2.$$

To estimate I_2 I apply the Cauchy-Schwarz inequality in a third way:

$$|I_2|^2 \le \int |K(s)|^2 |s|^{1/2} d\tau \cdot \int |s|^{-1/2} \left| \sum_{w < n < 8w} a_n \chi(n) c_r(n) \right|^2 d\tau,$$

where the integrals are taken over the range $J: 2wy^{-1} < |\tau| \le 2wy^{-1} \log y$. Since $K(s) \ll |s|^{-1}$ uniformly on $\text{Re}(s) = (\log w)^{-1}$, $w < u \le 3w$, $w < v \le 3w$, the first of these two integrals is $\ll (yw^{-1})^{-1/2}$. I cover the range J by pairs of intervals $z < |\tau| \le 2z$, where z runs through the powers of 2 in the interval $[wy^{-1}, 2wy^{-1} \log y]$. The second integral in the majorant for $|I_2|^2$ then breaks into $O(\log \log y)$ smaller integrals, typically

$$\ll z^{-1/2} \int_{z<|\tau|\leq 2z} \Big| \sum_{w< n\leq 3w} a_n \chi(n) c_r(n) \Big|^2 d\tau.$$

Summing by the operator $\widehat{\Sigma}$ we see that after an application of Lemma 1

$$\begin{split} & \widehat{\sum} \, \max_{u,\,v} |I_2|^2 \! \ll \! (yw^{-1})^{1/2} \sum_z z^{-1/2} \! \sum_{w < n \leq 3w} |a_n|^2 (n + Q^2 z) \\ & \ll \! (yw^{-1})^{1/2} \! \sum_{w < n \leq 3w} |a_n|^2 (n(yw^{-1})^{1/2} \! + \! Q^2 (wy^{-1} \log y)^{1/2}) \\ & \ll \! (y \! + \! Q^2 (\log y)^{1/2}) |\mathbf{a}|^2. \end{split}$$

The integral I_3 is treated by yet another application of the Cauchy-Schwarz inequality:

$$|I_{r}|^{2} \le \int |K(s)|^{2} |s| d\tau \int |s|^{-1} \left| \sum_{w < n < 3w} a_{n} \chi(n) c_{r}(n) \right|^{2} d\tau,$$

where the integrals are defined over the range $wy^{-1} \log y < |\tau| \le w$. With the bound $K(s) \ll |s|^{-1}$ the first integral is

$$\ll \int_{wy^{-1}}^{w} \tau^{-1} d\tau \ll \log y.$$

The range of the variable τ in the second integral is broken into $O(\log y)$ pieces covered by subranges $z < |\tau| \le 2z$, and there is a corresponding estimate

$$\widehat{\sum} \max_{u,v} |I_3|^2 \ll \log y \sum_{z} z^{-1} \sum_{w < n \le 3w} |a_n|^2 (n + Q^2 z)$$

$$\ll (y + Q^2 (\log y)^2) |a|^2.$$

This completes the proof of Lemma 2. Examination of the argument

shows that for $Q \le y^{1/2} (\log y)^{-2}$, the range $wy^{-1} (\log y)^{-1} < |\tau| \le wy^{-1} \log y$ of the integral is responsible for the leading factor y in the upper bound.

PROOF OF THE THEOREM. We apply Lemma 2 with $w=2^{j}y$, $j=0,1,2,\cdots$ and add. Since

$$\sum_{j=0}^{\infty} \sum_{2^{j}y < n \leq 3(2^{j}y)} |a_{n}|^{2} = \sum_{n>y} |a_{n}|^{2} \sum_{n/(3y) \leq 2^{j} < n/y} 1 < 4 \sum_{n>y} |a_{n}|^{2},$$

the theorem is established.

PROOF OF THE COROLLARY. Let $0 < \varepsilon < 1$. If $a_p = 0$ for $p > y^{\varepsilon/10}$, then the asserted bound follows directly from the theorem, using only r = 1.

If $a_p=0$ for $p \le y^{\epsilon/10}$, then $c_r(p)=\mu(r)$ for $r \le y^{\epsilon/10}$. The inequality of the theorem asserts that

$$\begin{split} \sum_{q \leq Q} \frac{q}{\phi(q)} \sum_{\substack{r \leq y^{\epsilon/10} \\ (r,q) = 1}} \frac{|\mu(r)|}{\phi(r)} \sum_{\chi \pmod{q}}^* \max_{0 \leq v - u \leq y} \left| \sum_{u$$

Since

$$\frac{q}{\phi(q)} \sum_{\substack{r \leq x \\ (r,q)=1}} \frac{|\mu(r)|}{\phi(r)} > \log x, \quad x \geq 1,$$

(cf. [2], Lemma (3.1), p. 102), we obtain the asserted bound by considering the cases $y \le Q^4$, $y > Q^4$ separately.

References

- [1] Elliott, P.D.T.A., On maximal versions of the Large Sieve, J. Fac. Sci. Univ. Tokyo Sect. 1A, Math. 38 (1991), 141-164.
- [2] Halberstam, H. and H.-E. Richert, Sieve Methods, Academic Press, London, New York, San Francisco, 1974.

(Received February 24, 1992)

Department of Mathematics University of Colorado at Boulder Campus Box 426 Boulder, Colorado 80309-0426 U. S. A.