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On maximal versions of the Large Sieve, 11

By P.D.T. A. ELLIOTT

In the present paper I obtain a doubly infinite maximal version of
the Large Sieve inequality which, for the first time, approaches in strength
the standard model.

THEOREM. Let ¢>0. Then
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where * denotes that y runs through the primaitive Dirichlet characters
(mod q), and c,(n) is the Ramanujan sum

,,il exp (2zibn/7).
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The tnequality is uniform in Q@>1, y>2 and square summable sequences
of complex numbers a,.

COROLLARY.
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where p denotes a prime number.

The theorem generalises Theorem 1 of [1], but I apply the earlier
result during the proof of the present result. Apart from decreasing
the value of the implied constant and removing the factor (log y)**®, the
leading factor in the upper bound is best possible. In the earlier treat-
ment I decomposed a certain Mellin integral into three pieces. Here 1
decompose its analogue into four.

It follows from Theorem 1 of [1] that the present theorem is cer-
tainly valid if % in the maximum is confined to the interval (1, y]. It
will therefore suffice to establish the theorem under the assumption that

A
a,=0 for n<y. I denote by Y, the multiple summation operator
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I note from Lemma 1 of [1] that ij\b((n)c,(n)]z((QZ uniformly in @>1
and integers n. I shall also apply the following inequality derived from
the standard Large Sieve, and appearing as Lemma 2 in [1]:

- LemMA 1. If T>1

-T

2
”Zsjz ax(n)e.(n)n dz-<<ZS: la.2(n+@T).

The bulk of the remainder of the proof of the present theorem is
contained in the next result.

LEMMA 2. The inequality

$ max | ¥ agmem)| <@y+@logy)) T lanl

0<v—u<Ly | u<<n<y w<n<3w
w<luL2w
holds uniformly for w>y>2.

ProoF oF LEMMA 2. I temporarily denote the sum 3 |a,|?, w<n<3w,
by |al®.. This is a notation slightly at odds with the notation of [1]. Let
o=(log w)™*. For real positive « not an integer

1 Sawoogidsz{l if a>1,
0 if «<1,

271 Jo—io 8
the integration being taken over the vertical line Re(s)=c¢ in the com-
plex s-plane. In terms of the kernel K{(s)=K(u,v,s)=s"'(v'—u’) there
is a representation

‘ 1 g+ico

% agmem=-1("" 5 axmemn-Keds.

u<ln<gy 27‘[’); g—i0 w<n<3w

Note that since u belongs to the interval (w, 2w], v<3w. By assuming
that u, v are half odd integers, as we clearly may, we ensure that u/n,
v/n are not 1 for any positive integer m. I break the integral into four
pieces I;, j=1,2,8,4, corresponding to the ranges |r|<2wy~', 2wy < ||
<2wy~tlogy, wy'log y<|t|<w, |t|>w of the variable r=—iIm(s). I
shall treat-these integrals differently.
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An integration by parts shows that for a>0, a#1,

_1_S 3 P
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Hence
Lw™ % (aulxmle,(m)|(min{ |log L |, |1og%|})“l.

<n<8w

An application of the Cauchy-Schwarz inequality gives

N\
> max|L*«w™ max Y,
u,v w<luLlw m<L3w

log 2|78 5 |aillxtme m)
m w<n<Sw

For a typical « in the interval (w,2w], |log u/m| is bounded below away
from zero for m<2u/3, m>3u/2, and the corresponding terms in the
sum over the integers m<3w contribute€w. For the integers m=u+
k—1/2,1<k<(u+1)/2, where k is an integer, we have |log u/m|>k/u>>
k/w, and a corresponding contribution of

LW Y kP w’
k>1

We may likewise treat the terms with m=u—k+1/2, 1<k<(u/3)+1/2.
Bearing in mind our earlier remark concerning the average size of Rama-
nujan sums, we see that

A
> max | LPK Q|al’.

The integral I, is dealt with by applying the Cauchy-Schwarz in-
equality to the integral representation:
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Since

| K(s)|=

S” t“ldtl ggv tr-'dt L yw
uniformly for w<u<2w, w<v<3w, c=(log w)~*, the integral involving
the square of the kernel is «yw™. The second integral over 7 is by

Lemma 1 < (w+Qwy~")|al®. Hence

S max | LI (y+@)lal"
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To estimate I, I apply the Cauchy-Schwarz inequality in a third
way:

2

> ayy(n)e.(n)| dr,

w<n<L3w
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where the integrals are taken over the range J : 2wy~'<|t| <2wy'log y.
Since K(s)< |s|™* uniformly on Re(s)=(log w)~!, w<u<3w, w<v<3w, the
first of these two integrals is «(yw™)"%. I cover the range J by pairs
of intervals z<|r| <22, where z runs through the powers of 2 in the
interval [wy ™", 2wy~ log y]. The second integral in the majorant for |I,|*
then breaks into O(log log y) smaller integrals, typically

2
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A
Summing by the operator Y, we see that after an application of Lemma
1
2\
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The integral I, is treated by yet another application of the Cauchy-
Schwarz inequality: .
v 2
LP<[IKE) slde(js1 | 2, ame,m)|dz,
w<n<3w
where the integrals are defined over the range wy~' log y<|r|<w. With
the bound K(s)<|s|™* the first integral is

<<Sw _1 i dr<Llog y.
wy
The range of the variable ¢ in the second integral is broken into O(log ¥)

pieces covered by subranges z<|r|<22, and there is a corresponding
estimate

ay
Cmax|L’<logy Xz ¥ |a.l'(n+@%)

<n<8w

L (y+@Q(log y)*)|al

This completes the proof of Lemma 2. Examination of the argument
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shows that for @<y"*(log y)~? the range wy '(log y)'<|r|<wy™* logy
of the integral is responsible for the leading factor y in the upper bound.

PROOF OF THE THEOREM. We apply Lemma 2 with w=2/y, 7=0,1,2, - .-
and add. Since

5 =Tl % 1<4T |

i=0 2dy<ngaedy) n| By <2i<nly n>y

the theorem is established.

PrROOF OF THE COROLLARY. Let 0<e<1. If a,=0 for p>y", then
the asserted bound follows directly from the theorem, using only r=1.

If a,=0 for p<y", then c.(p)=p(r) for r<y*. The inequality of
the theorem asserts that

2

q 122601 I U
ax
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(r,g)=1

> a(p)

u<pLy

< U+ @y (log ¥)*+) X a, .

Since

q E l:u(,’;l >10g x, le’

(ef. [2], Lemma (3.1), p.102), we obtain the asserted bound by consider-
ing the cases y<@Q', y>Q*' separately.
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