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On multiplicators of hermitian forms of type D,
By Nguyen Quoc THANG

Introduction.

Let k be a field, D be an associative division algebra of finite dimen-
sion over k, V be a finite dimensional right D-vector space, @ be a non-
degenerate (skew-)hermitian form over V with values in D. In [T2] we
have determined the group M(®) of multiplicators of similitudes of the
form @ over a local or global fields for all forms of type 4 and C and for
many forms of type D. The aim of this note is to give another, more
exact determination of the group M(®) in the case, where @ is a form of
type D, and also a correction to [T2]. As application, we give here a
new proof of the weak approximation property in adjoint almost simple
algebraic groups of type D, over global fields and also application to
Scharlau Norm Principle.

Throughout this paper, unless otherwise stated, we will denote by
k— a global field of char. #2,

k, — the completion of % at a valuation » of k,

D —a quaternion division algebra with centre k and standard involution J,

Dy,=D®k.,

S — the finite set of all valuations v of k& such that D, is nontrivial,

s=Card(S),

® — a non-degenerate skew-hermitian form with respect to J with values
in D and of rank m,

q)v:¢®ku:
d=(—1)"d’, where d’ is the discriminant of the form @,
K=k(vd),

U(®) (resp. SU(®), GU(P)) denotes the unitary (resp. special unitary, simili-
tude) algebraic k-group of the form @ i.e. for any field K containing k,
UP)K)=UO@RK, DRK), etc.
If f is a quadratic form over %k, then we denote by O(f) (resp. SO(f),
GO(f)) the orthogonal (resp. special orthogonal, similitude) algebraic k-
group of the form f.

Denote by M=M(®) the group of all multiplicators of similitudes of
the form @. It is well-known and easy to prove that we have GU(®)=
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U@):Gn, where U(D)NG,=(x1). For a similitude g= GU(P), let m(g) be
the multiplicator of g and denote by m the corresponding map G U(®)—G,.
Then M is the image of GU(®)(k) via m. We define the special simili-
tude k-group

GU*(@)=SU(©)-G,

which is the almost direct product since SU(@)NG,=(%1), and the group
of special multiplicators of the form

M*=M*(D)=m(GU*(D)(k)) .
For any valuation v of k let M,=M(®,), Mi=M*"(D,) and let
M'=M (D)= N (M,nk*).
For v&¢S, D, is a matrix algebra and as it is well-known (cf. e. g. [Sa]),
there is a quadratic form f, of rank2n, determined up to isomorphism
over k, by @, such that M(D,)=M(f,).
In the case v is a real valuation, v#S, denote by j(f,) the inertia

index of the form f, in the sense of Silvester (cf. e.g. [D3]). In this
paper all forms are supposed to be nondegenerate.

1. The special group of multiplicators.
In this section we determine the groups M* and M;. We have
PROPOSITION 1. M*=N"\(M{Nk").

PROOF. We consider the following commutative diagram with exact
rows

GU @V K) — ™ Gk — > H(k, SUD))

l l J

m’ o’

HGU (D) (k) — 11 Gul(ky) — I1 H'(k,, SU(D))

Now let xe N(MiNnk*). Then 0=48(x)=a(d(x)), hence d(x)=0, since a is
injective (cf. [K]). Hence x=Im (m). Q. E.D.

PROPOSITION 2. If @ is a nondegenerate quadratic form of even rank

2m over k or a skew-hermitian form over a split quaternion algebra D
then M(®)=M™*(D).
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PROOF. Assume that @ is a quadratic form. We have GO*(®)=
{geGO(D) : det (g)=m(g)™}, GO*(P)(k)-O(D)(k)=GO(D)(k), hence

M*=GO*(D)(k)- O(D)(k)/O(D)(k)
=GO(D)(k)[O(D)(k)
=M.
The case of skew-hermitian form is considered in a similar way. Q.E.D.
The following proposition has been proved in [T2] and [Schl].

PROPOSITION 3. If vES, then M,=ky. Moreover, if veSand a1s a
skew-quaternion in D,, the equation x’ax=2Aia has a solution in D, with
Nrd (z)=21 (resp. —2) if and only +f we have (1, a?),=1 (resp. —1), where
(,), denotes the Hilbert symbol in k..

From [T2] we obtain the following description of the set M’

PROPOSITION 4. M’'={xck*:x 18 a norm from k, for all v&S s.t.
x>0 according to all real valuations vES with 7,(P)+#n}.

We have a description of the set M as follows.
PROPOSITION 5. Let vES and i€ky=M, Then A€M iff (1,d),=1.

PROOF. From the realization of the group GU*(®) as a matrix group
over an algebraic closure &k of k& we see that

GU*(P)(k)={z=GU®)(k) : Nrd (z)=(m(x))"},

where Nrd denotes the reduced norm map from M,(D) to k. (Note that
for every x=GU(®)(k) we have Nrd (x)= +m(x)".) Now let veS and let
O0=X/a,X,+ --- +Xla,X, be a diagonalization of @, where «, are skew-
quaternions in D. From Prop. 3 it follows that there are x,, -+, %, in D,
s.t. the following system holds

x{alxlzlal
I, X =A0n

Denote X=diag (%, -+, x,). It is clear that X=GU(®P)(k,) and m(X)=2.
Since ve S, U@)(k,) =SU@)(k,) (cf. [D1] or [K]) hence



36 Nguyen Quoc THANG
AEM! &= XesGU(D)(k,)
& Nrd (X)=m(X)"
& II (4,ai),=1

1sis=n
= (,2,1<1'_[S a?),=1
& (4,d),=1. Q.E.D.
. Finally we can describe the groups M* and M as follows.

PROPOSITION 6. M*={xs Ny (k') : >0 according to real valuations
véES such that 7,(P)#n}.

PROOF. It follows immediately from Propositions 1, 2, 4, 5 and the
Hasse Norm Theorem. Q.E.D.

PROPOSITION 7. M 1s either equal to M* or contains the latter as a
subgroup of index 2.

PROOF. It follows from the fact that GU*(®) is either equal to the
group GU(®) or is of index 2 in the latter. Q.E.D.

As consequences we have
COROLLARY 1. If d€kX® for all v S then M'=M=M".
COROLLARY 2. If the index [M’: M*]>4, then M’'=M.

The following is just another formulation of a result proved in [T1].

PROPOSITION 8. If [M: M*]=2, then the group GU(®D) satisfies the
(cohomological) Hasse principle and [M’': M]=2°"2.

2. Examples and applications.

2.1. We give here some examples illustrating the connection between
the groups M’, M and M*. '

Example 1. Let m=1. Then it is easy to see that in this case
[M: M*]=2, hence by Prop. 8, [M’': M]=2'"2  Moreover, we can choose
here explicitly a complete set of representatives of M’ modulo M (cf. [T1],
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Example 1).

Example 2. Let n=2 and let ®=X"aX+ Y’BY. Using similar argu-
ments as in the proof of Prop. 3, we can choose the skew-hermitian form
@ such that M=M* or M+M*, as we wish. In fact we can choose «, B
such that the following system

2l ax=2a
¥/ By=28

has a solution in D for some 2€k*, such that Nrd (x)=—Nrd (y)=2. Then
M=M*. Moreover, for any even number n and for the form

T=X{aX\+ - +XI_1aX,_,+XI8X,

we _have M(¥)#M*(¥'), where « and B are chosen as above.

Example 3. Let @ be arbitrary skew-hermitian form and »n be a
natural number. Denote by n® the orthogonal sum of % copies of @.
Then we have

M (n®)=M*(nd), if n is even,

M(n®)=
M(D), if n is odd and M(®)=M*(D).

The first case is clear by Corollary 1 and the second follows from the
facts that M'(n@)=M'(®) (cf. Prop. 8), M*(n®)=M*(@) (cf. Prop. 6),
M(n®)2M(P) as it is easy to see and [M'(n®): M(n®)]=[M'(nd) : M(P)]
=2-% (by Prop. 8).

By the way, if s>2, then for any given skew-hermitian form we
have the following equivalence

M'(@)=MQ)— M'(D)=M*(D).

Indeed, if M'=M"* then of course M'=M. Conversely, if M’'=M, then
M=M"*, since otherwise we might have [M': M]=2°"%>1, which is impos-
sible. Note that the above equivalence enables us to see (by using the
condition M'=M*) whether a given form @ satisfies the Hasse principle
for similarity in case s>2, which is the case if s<2.

2.2. Now we give an application to the problem of weak approxi-
mation in algebraic groups over global fields. The following (in fact more
general) result is due to Harder and has been proved by various techniques
(cf. [H1], [S], [KS]). We give here a proof using the above considerations.
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PROPOSITION 9. Let G be an adjoint almost simple k-group of type
D, over a global field k. Then G satisfies the weak approximation over
k, i.e. for any finite set T of nonequivalent valuations of k, G(k) is dense
wn the product TI G(k,) via the diagonal embedding.

vET

PROOF. Let G be the special unitary k-group covering G. We may
assume that char. k+2, since otherwise, by virtue of the Cayley trans-
formation in any characteristic (cf. [D2]), G and thus also G satisfy the
weak approximation over k. Now let GU*=G-G, be the almost direct
product. By a theorem of Rosenlicht (cf. [R]), GU* is birationally equi-
valent to the direct product GXG,. Hence we have only to show that
the group GU* has the weak approximation. First we need the following

LEMMA 1. Let 1-G,—G 5 G, — 1 be an exact sequence of reductive
connected k-groups and m be a separable morphism. If G, has the weak
approximation w.r. to a finite set T of nomequivalent valuations of k and
7(G(k)) 1s dense in the product TIE'IT 7(G(k,)), then G has the weak approxi-

mation property w.r. to T.

PROOF. Let xeng((kv)). Since = is separable, it induces an open
map with respect to the product topology =r :vg G(kv)—:g Gy(k,) by the
Implicit Function Theorem (cf. e.g. [H2]). We claim that the closure
G(k) of G(k) in the product topology is open in 7}E‘[TG(k,,). We give here

two arguments to prove this fact. First, since the underlying variety of
a reductive algebraic group is unirational (by a theorem of Chevalley-
Rosenlicht-Grothendieck, [Bo]), there is a surjective k-morphism of varieties
f: A—G, where A is an affine space over k. Again by the Implicit Fune-
tion Theorem, f induces an open map fT:ng A(kv)ﬁvle'IFG(kv) with respect

to the product topology. In particular the image of f; contains an open
set in gG(kv). But the weak approximation property holds in affine

spaces, hence A(k) is dense in IT A(k,) thus G(k), containing the image of
=¥4

A(k), also contains an open subset of 7~IeITG(k”) as required. (This argu-
ment is due to Platonov, cf. [P].)

Second, the similar statement for semisimple algebraic groups and for
tori is well-known (cf. [H2] and [V] respectively). Now let G=H-S,
where H (resp. S) is semisimple k-group (resp. k-torus) and the product
is almost direct. We have then a central k-isogeny f: HXS—H-S. Let
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F=HxS. It is clear that one has only to show that f(II F'(k,) is open.
vET

If f is purely inseparable then the map f, induced by f on F(k,) is bijec-
tive for any w», hence we are done. If f is separable, then the Implicit
Function Theorem gives us the desired result.

From the above we see that n,(G(k)) is open, hence also a closed sub-

group of q Go(k,). Therefore n(G(k)) is contained in z;(G(k)). From the

separability of = it follows that erc(G(kv)) is open, hence also closed in
€T

11 Go(k,), and we conclude that =n;(G(k))S l'gn(G(k,,)). Now from the as-
reT vE

sumption finally we have n(G(k))= ‘1'[ (G(k,)). Therefore nr(2)=n(G(k)),

i.e. xeGk) - 1EITG1(lcv):G(k) <G (k)=G(k). Q.E.D.

By this lemma we have only to prove the following

LEMMA 2. With motation as above, let G=SU@). Then M*(®) is
dense in the product ETM+(G)v).

PROOF. This follows immediately from the explicit description of the
sets M*(®,), M* (D), given above, by making use of the weak approxima-
tion in the group Gn. Q. E.D.

The proof of the Prop. 9 is therefore complete.

2.3. For a nondegenerate quadratic form f over a field F' of char. #2
the Scharlau Norm Principle holds for the group M(f), hence by Prop. 2
also for the group M*(f), i.e. for any finite extension K of F we have

Neip(MH(fQK)SM*(f).

We show now that this is also true for skew-hermitian forms of type D
over local and global fields.

PROPOSITION 10. Let @ be a nondegenerate skew-hermitian form of
type D over a quaternion division algebra D over local or global field of
char. #+2. Then the Scharlauw Norm Principle holds for the group M*(D)

of spectal multiplicators of D, i.e. for any finite extension K of k we
have Ng(M*(QRQK))SM™* (D).

PROOF. This follows from the description of the sets M*(@) over local
and global fields, from above, and also from the Scharlau Norm Principle
for quadratic forms (cf. [L] or [Schl]). Q.E.D.
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We discuss here the validity of this principle in a more general situa-
tion. From now on we assume that k is a field of char. #2, D is an
associative division k-algebra of finite dimension over %k, @ is a non-
degenerate hermitian form with respect to a k-linear involution J of D.
Quite recently E. Bayer and H. W. Lenstra have proved a general theorem
of Springer type about the injectivity of the map between the Witt groups
of hermitian forms over D and over DK, induced by the inclusion of %k
into any finite extension K of odd degree (cf. [B], [B-L]). This theorem
allows us to obtain the following

PROPOSITION 11. The Scharlaw Norm Principle holds

a—for the group M(®) of any hermitian form @ and extension K as
above,

b—for the group M*(®) of any hermitian form @ of type D and for
finite extension K of k, which admits a normal closure L over k of
odd degree [L: K] such that L does mot split D.

PROOF. a. The proof (due to Scharlau) in the case of quadratic forms
can be carried over to our case (cf. [L], [Schl] for the proof). In fact, it
is due to the following two points:

1. One can form a left W(k)—module structure on W(D,J) (the Witt
group of hermitian forms with respect to J over D) (cf. [Sch2]).

2. The validity of the theorem of Springer type mentioned above (cf.
[B], [B-L]J.

For details we refer to [L] and [Schi].

b. First we assume that K is a normal extension of k. Denote by
G(K/k) the group of automorphisms of Kover k. Let xcM*'(PRK). For
any automorphism seG(K/k) it is clear that x*e M* (@R K) hence Ny, (x)
eM*(@RK). By part a., Ng,lx)eM(P). Let g (resp. k) be an element of
GU@D)(k) (resp. GU*(D)(K)) s.t.

Nip(x)=m(g)=m(h).

From this and from the fact that U(@)(K)=SU(@)(K) by assumption
(K=L does not split D), we conclude that geGU"(@)(k), i.e. Ng,u(x)E
M* (D).

Assume now that L is a normal closure of K over k, s.t. L does not
split D and [L: K]=2m+1, m is integer >0. Let e M*(PdRK). Hence
re MY (PRL) too and from above we have

NL/k(x):(NK/k(x))2m+l:(NK/k(x))zm'Nl{lk(x)eM+(q))
hence Ng,(x)= M*(®), since k**S M™* (D). Q.E.D.



Multiplicators of hermitian forms 41

2.4. Here we would like to make a correction to [T2]. Actually
Lemma 1, stated there, is proved only for the two dimensional case, and
we need only that case. Thus the Lemma should be stated as follows.

LEMMA 1. Let @ be a nondegenerate two dimensional hermitian form
with respect to the standard involution J of a quaternion division algebra
D over a field k of char. #2. Then @ and ‘@ are equivalent, where @ is
considered as a matriz in GLJD) in any fixed basis and ‘@ is the trans-
pose of O.

PROOF. Assume that in a given basis @ has the following matrix

M

where z,z€k. It follows from a simple calculation that if y+0, and
A :=diag (a,d), where d is any element from D with norm 1 and a=
ydy~’, we will have @=A'¢*’A’. Since the case y=0 is trivial, we are
done. Q.E.D.

We note also a mistake in the proof of Landherr’s Theorem (Lemma
4). The exact sequence stated on top of p. 797 should be as follows

1— SU@)— U@)—> T—1

where T is a twisted form of G,. We have the following commutative
diagram with exact rows

d
T(k)— HYE,SUQ)) — H'(k,UQ) —HYET)

! ! e !
I T(k,) — 11 H'(k,, SU(®)) — I1 H'(k,, U®)) —> 1 H'(k,, T) .
Since the Hasse principle and the weak approximation hold for T (cf. e.g.
[S] or [V]), we have Ker (a)SIm(d). The rest of the proof goes through
as stated in [T2], with 7 replacing G, everywhere.
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