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On unirationality of threefolds which contain

toric surfaces with ample normal bundles

By Madoka EBIHARA

Abstract. Let X be a nonsingular three-dimensional algebraic
variety containing a nonsingular toric surface S with the normal bundle
Ns,x ample. First, we study the formal neighbourhood (X, S)* of S
in terms of semi-groups which we shall call scopes. Next, we take a
nonsingular rational curve C on S and study the formal neighbourhood
(X, C)" of C. We shall prove that there exists a dominant morphism
from the formal completion (P2, line)” of P* along a line to (X, C)*
by estimating the scope of the neighbourhood (X, S)* of S. Then we
can prove that X is unirational by using the fact that a connected
closed subscheme of positive dimension of P™ is G3, which is proved
by H. Hironaka and H. Matsumura.
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§0. Introduction.

In this paper, we shall prove:

MAIN THEOREM. Let X be a nomsingular complete algebraic variety
of dimension three defined over an algebraically closed field k. Assume
that X contains a mnonsingular projective toric surface S and that the
normal bundle Ng,x of S in X is ample. Then X 1s unirational.

This theorem is considered to be a partial answer to the following
question.

QUESTION. Assume that a nonsingular complete algebraic variety X
of dimension three contains a monsingular rational surface S with Ngx
ample. Then i1s X unirational ?

An algebraic variety X is called unirational if there exists a dominant
rational map ¢: P" — X. As easily follows by definition, any unirational
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variety contains many unirational subvarieties. Then it is natural to ask
conversely whether varieties which contain many unirational subvarieties
are unirational or not. In fact, we have the following fact due to M.
Noether in the two-dimensional case.

FACT (M. Noether). Assume that a monsingular projective surface S
contains a nonsingular rational curve C with (CHs>0. Then S is a
rational surfoce.

In this context, the above question is considered to be a starting point
of an attempt to generalize M. Noether’s theorem to higher-dimensional
cases. But it is not suitable to ask whether threefolds we consider above
are rational or not, which is an essentially different point from the two-
dimensional case. For example, let X be a nonsingular cubic hypersurface
in P* and S=XN\H, where H denotes a general hyperplane. Then X and
S satisfy the assumption of the above question. As is well-known, X is
unirational, but not rational (Cf. [CG] Theorem 13.12). This fact suggests
that the notion of unirationality is more essential than that of rationality
so far as we stand in the framework of our question.

Up to now, there are various kinds of results classifying varieties
which contain a given variety as an ample divisor. L. Badescu ([Bal],
[Ba2]) classified all the normal projective varieties of dimension three that
contain P? or a P!-bundle over P' as an ample divisor. According to his
classification, such threefolds turn out to be rational and consequently
unirational. This result also gives a partial answer to our question by the
following fact.

FACT (Cf. [Ha] Th. 4.2). Let X be a complete algebraic variety and
let Y an effective Cartier divisor on X. Then the following are equivalent.

(1) Nyx ©s ample.

(2) There exists a birational morphism f: X—X' such that f is an
isomorphism in a neighbourhood of Y and that f(Y) is an ample effective
divisor on X'.

By using this fact, we can write our main result in the following
alternative form.

MAIN THEOREM (Alternative Version). Let X be a normal projective
algebraic variety of dimension three. Assume that X contains a non-
singular projective toric surface S as an ample divisor and that X is
nonsingular along S. Then X 1s unirational.
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Far from the method of L. Badescu, we do not aim at precise and
concrete classification of threefolds which contain toric surfaces as ample
divisors. Practically speaking, it would be difficult to classify such three-
folds for an arbitrarily given toric surface. Then how do we show the
unirationality of such threefolds? One often constructs a dominant rational
map from P™ to an explicitly given variety in order to show that it is
unirational. But such a naive way based directly on the definition would
be helpless for our question because the varieties whose unirationality we
want to show would not be explicitly given.

In this paper, we use a method inspired by F. Campana [C] and Ma.
Kato [K]. In a word, we observe the formal neighbourhood of a rational
curve in a threefold. It is Theorem 2.1 due to H. Hironaka and H.
Matsumura that plays an essential role in our theory (Cf. [HM]). This is a
kind of continuation theorem which claims that any formal rational function
defined along a closed connected subscheme of positive dimension of P"
extends to a rational function on P". One can show immediately from
this theorem that a variety X which contains a rational curve C with the
formal completion (X, C)" of X along C rationally dominated is unirational,
where a neighbourhood (X, C)" of a rational curve C is said to be rationally
dominated if there exists a dominant morphism ¢: (P*, line) —(X, C)"
(Cf. Def. 2.4 and Prop. 2.5). It is easy to see that the normal bundle
N¢x is a positive vector bundle if a neighbourhood (X, C) of a nonsingular
rational curve C in X is rationally dominated. Thus we observe the formal
neighbourhood of a suitable rational curve C in a given variety X with
N¢,x positive in order to show that X is unirational.

In this paper, we shall actually prove:

THEOREM 0. Let S be any nonsingular projective toric surface. Then
there exists a nonsingular rational curve C on S such that, for any regular
Sormal neighbourhood (X, S) of S with Ngs,x being an ample line bundle,
the neighbourhood (X, C)" of C in X is rationally dominated.

Our main theorem that we mentioned in the beginning immediately
follows from Theorem 0. The proof of this theorem is divided into the
following three steps in principle.

Step 1. For a given toric surface S and an ample line bundle N on
S, we describe all the formal neighbourhoods (X, S) of S with Ng,x iso-
morphic to N.

Step 2. We take a suitable nonsingular rational curve C on S with
(C*s>0, which we shall call a reference curve.

Step 3. We prove that the formal neighbourhood (X, C)" of the ref-
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erence curve C in X is rationally dominated.

Let us explain our practical plan of the proof. In order to describe a
regular formal neighbourhood of a given smooth variety, we cover it by
affine open subsets and patch them together by giving the transition rela-
tions among their coordinates. Let us begin with neighbourhoods of P!.
It can be covered by two sheets of affine open subsets. In order to describe
it, we have only to give a transition relation between the coordinates of
the two open sets. In §2, we ask a preliminary question when a neigh-
bourhood of P! described in such a way is rationally dominated. After
quite naive and elementary consideration, we prepare a lemma which
provides a sufficient condition for a neighbourhood of P' to be rationally
dominated (Cf. Lemma 2.6). It is one of the most essential assertion in
this paper, though it is quite easy to prove. Suppose a description of a
neighbourhood of P! by the transition relation is given. Then we plot the
lattice points corresponding to the monomial terms which appear in the
formal power series which determine the transition relation. These points
form a subset of a Kuclidean space, which contain infinitely many points
in general. Lemma 2.6 claims that a neighbourhood of P' is rationally
dominated if the set of lattice points constructed in the above way satisfies
a kind of boundedness condition. As Lemma 2.6 suggests, the rational
dominatedness of a neighbourhood of P' might essentially follow from
some finiteness or boundedness conditions in general.

Now let S be a nonsingular toric surface, C a rational curve on S,
and (X, S) a formal neighbourhood of the surface S. It is easy to write
a description of the neighbourhood (X,C)" of C in X explicitly by the
transition relations if such a description of (X, S) and the defining equa-
tion of the curve C in S with respect to the coordinates on S are given.
So the problem is reduced to the question how to describe neighbourhoods
of toric surfaces.

In §1. A, we recall a general theory in [SGA1] to construct regular
neighbourhoods of a given smooth variety. Roughly speaking, its basic
idea due to K. Kodaira and A. Grothendieck is a kind of methods of un-
determined coefficients; one successively determine the w-th infinitesimal
neighbourhoods containing a given (n—1)-th infinitesimal neighbourhood.
Let n=2, for simplicity. Suppose some (n—1)-th infinitesimal neighbour-
hood (S,-;, S) of a smooth variety S is given. Then the set of the isomor-
phism classes of the n-th infinitesimal neighbourhoods containing (S,-;, S)
is either empty or a HYS, &F,)-torsor, where F,=0;,_ Q0s®
S™(Nsss,-,), with Og,_, denoting the tangent bundle of S,_;. The obstruc-
tion lies in HX*(S, &F,).
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We can interpret this general theory in terms of transition relations
among the coordinates of open subsets. Suppose that a description of some
(n—1)-th infinitesimal neighbourhood of S is given, that is, the transition
functions are determined up to degree n—1 with respect to the coordinates
which are transversal to the variety S. In order to construct one of the
n-th infinitesimal neighbourhoods that are extensions of the given (n—1)-th
neighbourhood, we have to add some terms of degree n to the transition

functions. Giving such data is equivalent to giving a certain Cech 1-cochain
of the sheaf <F,. A technical difficulty in this construction lies in the fact
that this cochain does not satisfy the cocycle condition in general. If we
give transition functions up to degree m—1 to describe some (n—1)-th
neighbourhood, they are patched together up to degree »—1, but they are
not patched in degree n. We need to adjust such discrepancies by adding
some terms of degree n of the transition functions. This is why the
cochain of &, that we mentioned above is not a cocycle in general. In
many cases, such discrepancies actually appear successively. Thus we
essentially need infinitely many terms in order to write down the transi-
tion functions, even if the cohomology group H!(S, &F,) vanishes for a
sufficiently large n. It is a fatal problem of the method of undetermined
coefficients which tries to analyze nonlinear phenomena into successive linear
equations.

Now let S be again a nonsingular toric surface and N a line bundle
on S. In §3, we introduce the notion of the scope of a description of a
neighbourhood (X, S) of S with Ngx=N in order to avoid such difficulty
that one must handle infinitely many terms. It is a semigroup contained
in the group MXZ,,, where M denotes the group of the characters of the
toric surface S. Roughly speaking, it indicates what kinds of monomial
terms possibly appear in the transition relations among the coordinates.
It is generated as a semi-group by the monomial terms appearing in the
transition functions divided by their top terms, and not generated by the
monomial terms in the transition functions as they are. This is a key point
of the definition of the scope.

By defining scopes in such a way, we can easily prove Theorem 3.8,
which we shall call the fundamental theorem on scopes. It claims that

we have only to consider Cech l-cocycles of the sheaves Os@N-" and
N'"" (ne N) in order to calculate the scope of a description of a neigh-
bourhood (X, S) of S with Ng,y=N. It is the following two points that
are essential in this statement.

(1) The sheaves OsQN ™" and N'" ™ depend only on the surface S and
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the line bundle N on S, while the sheaves &, depend on the first infini-
tesimal neighbourhoods of S.

(2) We don’t have to consider Cech cochains in general, but we

have only to consider Cech cocycles. That is, we are released from the
problem of successive discrepancies to write down the transition functions
that we mentioned above. For example, we can prove as the corollary of
Theorem 3.8 that a neighbourhood of a toric surface with the normal bundle
N admits a description with a finitely generated scope, if H(S, & ,)=0 for
a sufficiently large m, especially if the line bundle N is ample.

The scope does not indicate precise transition relations, but it is enough
to prove Theorem 0. Practically, we prove Theorem 0 by the induction
on the Picard number o(S) of S. So we need to estimate scopes in the
following situation. Let f: S—S be an equivariant blowing-up along a
point. Let N and N be line bundles on S and S respectively such that
N=f*N®O(—cE), where E denotes the exceptional divisor of f and ¢ a
positive integer. In §4, we compare the scopes of neighbourhoods of S
with the normal bundle N with those of neighbourhoods of S with the
normal bundle N. It is possible in principle because they are contained
in the common lattice M X Z.,, where the group M of the characters is
common to both surfaces S and S. Theorem 4.2 estimates the difference
between the above two semi-groups, which enables us the induction. To

prove Theorem 4.2, we use the Leray spectral sequence in terms of Cech
cochains. In §1. B, we prepare general discussions what kinds of cor-

respondence between Cech cochains induce the edge sequence of the Leray
spectral sequence.

In §6, we finally prove Theorem 0. (Cf. Th. 6.1 and Cor. 6.2). For
some technical reason, we classify nonsingular projective toric surfaces
which are not isomorphic to P? into three types in §5. (Cf. Lemma 5.2).
We take three types of reference curves, that is, suitable nonsingular
rational curves with positive self-intersection numbers, on these three types
of toric surfaces, respectively. The proof of Theorem 0 is done by estimat-
ing scopes of descriptions of neighbourhoods of toric surfaces of each kind
and by applying Lemma 2.6 to the induced descriptions of neighbourhoods
of the reference curves. These three arguments are reduced to the same
kind of numerical statements on scopes, which we discuss in §5.

When the surface S is not toric, the scope of a neighbourhood of S
is not defined. Thus we restrict ourselves to the case where the surface
S is toric. But the author believes that the question in the beginning
would be affirmatively solved in general for the following reason.
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The unirationality of threefolds follows from the rational dominatedness
of neighbourhoods of rational curves on them. The rational dominatedness
seems to follow from some finiteness conditions. In general, we need in-
finitely many parameters to describe neighbourhoods of curves with positive
normal bundles. But, as Gieseker [G] pointed out, we need essentially finite
parameters to describe neighbourhoods of surfaces with ample normal
bundles, which is easily shown by Serre duality and Serre vanishing
theorem. Thus the assumption of the question in the beginning would
imply that the neighbourhood of the reference curve is finite in some sense.
Such finiteness seems to be deeply related to the rational dominatedness of
neighbourhoods of the reference curves.
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§1. Preliminaries.

In this section, we discuss general theories which are well-known and
which we need to use later. We divide this section into two parts. In
the first part, we discuss how to construct regular neighbourhoods of a
given smooth variety with a given vector bundle as the normal bundle.
In the second one, we discuss the Leray spectral sequence. Both theories

are well-known, but we need to interpret them in terms of the Cech
cohomology for later use. We briefly survey these theories and prepare
some notation which we use later.

A. Construction of neighbourhoods.

Let S be a smooth variety and N a vector bundle on S. We discuss
how to construct a regular neighbourhood (X, S) of S with Ng,y=N. There
is a general theory in [SGA1]. (Cf. Exposé 8, Theorem 6.3). Though its
statement is slightly different from ours, we can use the same argument.

First, we make some definitions.

DEFINITION 1.1. Let S and N be as above. In this paper, =n-th in-
finitesimal neighbourhoods mean regular n-th infinitesimal neighbourhoods.
That is, a pair (X, S) is said to be the n-th infinitesimal neighbourhood of
S with the normal bundle N if the following are satisfied :
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(1) X is a regular scheme and X contains S as the reduced subscheme ;
(2) Ng;x=N,;
(8) I™*'=0, where I denotes the ideal defining S in X.

DEFINITION 1.2. (1) Let (X,S) and (X', S) be two first infinitesimal
neighbourhoods of S with the normal bundle N. These neighbourhoods are
said to be equivalent to each other if there exists an isomorphism ¢: X—
X'’ such that ¢ot=14’, where 4 and i’ denotes the inclusions 7: S—X and
1. S—=X’, respectively.

(2) Let m=2. Let (X,.,, S) be one of the (n—1)-th infinitesimal
neighbourhoods of S with the normal bundle N. Let (X,,S) and (X, S)
be two n-th infinitesimal neighbourhoods of S containing (X,.,, S). These
two neighbourhoods are said to be equivalent to each other if there exists
an isomorphism ¢: X,—X, such that ¢oi,=1,, where ¢, and 1, denote
the inclusions ¢,: X,.,—»X, and 4,: X,_,— X, respectively.

The following is one of the most fundamental proposition, which we
essentially use throughout this paper.

PROPOSITION 1.3. Let S and N be as above.

(1) The set of the equivalence classes of the first infinitesimal netgh-
bourhoods of S with the normal bundle N is an H(S, G,)-torsor, where
G ,=0sQN" with Og denoting the tangent bundle of S and N~ the dual
of N.

(2) Let n=2, and let (X,_, S) be one of the (n—1)-th infinitesimal
netghbourhoods of S with the mormal bundle N. Then the set of the
equivalence classes of the n-th infinitesimal neighbourhoods which contain
(X,-1, S) s either empty or an H' (S, &F ,)-torsor, where F ,=0x, _ |sQS"(N")
with Ox,_,|s denoting the tangent bundle of X, . restricted to S and
S™(N7) the n-th symmetric power of the dual of N. Moreover, the ob-
struction lies 1n HA(S, &F,).

The proof is done by the same arguments as in [SGA1l]. In order to
fix the notation, we give here a rough sketch of the proof in the case
where S is a nonsingular rational surface and where N is a line bundle,
which is necessary to state the definition of scopes in §3.

Since any nonsingular projective rational surface is covered by affine
open subsets which are isomorphic to the affine plane A; and since any
regular formal neighbourhood of a smooth affine variety is trivial, we may
start from the following situation. Let U =(U,);c; be an affine open cover,
(X, S) a regular formal neighbourhood of S with Ng;x=N, and U,=Xly,.
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We assume that U,=Spec k[t;, u.] and U, =Spf k[t,, u,)[[X:]], where ¢, u;
and X, denote the coordinates. On U,NU, (3, j€I), the coordinates are
related to each other by the following transition relation :

(s, us, X)=0(t;, u;, X;),

where @,; is a vector-valued formal power series in X; with the coefficients
in '(U:N\U;, Os). We put @:;=(fis, guj» hiy), that is, t,=fi;(t;, w5 X,), ui=
9:5(ts, u;, X;), and X, =h,(t;, u;, X;). We expand fij, gi5, and h;; in the fol-
lowing way :

Jii=Finoly w)+fisns, wsy Xo)+ oo+ Fiialty, us X))+ -,
9i5=Gisotn )+ gty ws X))+ - +gu50ats, uy X))+ -,
and
hiy=hisialts, uy, Xy)+ oo +haja(ts, us, X))+ -,

Whel‘e fij]n) gij|n, hijlnEF(UimUj, @s)X"; Note that hileZO- We put
Disin=fijins Gijin, hij12). We also use the following notation :

fitM=Figotfint o +fijin,
gij[n]:gij10+gijll+ > +Gijin,

hiff™=hijii+ - +hijin,
and
@ij[n]:@ij|o+‘pij|1+ +d)ijln .

The collection {(f:,i0, gij10)} of the terms of degree zero is nothing but the
transition functions that determine the surface S, which is already given.
The collection {h;;,} is nothing but the transition functions that determine
the line bundle N, which is also given.

To construct (X, S), we have to give a collection {®@,,} satisfying the
following :

(1) {(fisi0 91510)} determines S;
(2) {h:;} determines N;
(3) @m‘(Q;‘k(tm Uy X2)) =0 (ts, ur, Xp) for <, kel

To do this, we successively construct the n-th infinitesimal neighbour-
hoods. We introduce another notation. For f,gel(U.nU; O)IX;]], we
write f=, g if f1=¢'"". For D=(f, fo, fo), ¥=(91, 92, ) €' (U: N Uj,, O)®
[X,]], we write 0=,7 if fi=,g, for +=1,2,3. To construct the first
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infinitesimal neighbourhood, we have to give a collection {(fi;i1, 9:511)} and
determine {05} satisfying the following condition (), :

() @E;‘](@%](tm Uy Xi)) =1 Q)Eé](tk; Uiy X3) for 4,5, k<l.

To the pair (fijii, gis11), we attach an element 2,;,,€I'(U;NU,, &) in the
following way : :

0 \° .
Xin:(W) ®fijll(fjil0; Jijitos hjm) mod X3

3 \°
+< Ey > Qi1 (Fri0 Gsir0s hjain) mod X7

9\ -
:< at, > QF st udX; mod X7}

+<aiui>0®§71jll(ti, u) X, mod X3,
where (9/0w;)® and (0/ou;)" denote the local basis of the sheaf @5 on U, and
X, mod X? is the local basis of the sheaf N~ on U,. Since f,;: and §i,,
belong to I'(U;NU,, Og), we can consider A1,;, to be an element of
I'(U;,nU,;, @,). Thus we often identify a collection {(fiji1, gis11)}i.ser With
A=ij1)i1e1 €ECHU, G)).

CLAIM 1.4. A collection {(fi;1, g:sin)} determines {@%} satisfying the
condition (%), if and only if the corresponding Cech cochain A, satisfies the
cocycle condition, i.e., 1, =ZY(U, G,).

PROOF. If we put

0fii0 09 jio0 0
J= dfiso 990 L
ou; ou;
0 0 0
we have

0 0

ot; ot;

o |=Ju| o

ou; o,

0 0
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Since
D —D5(D )

=100+ Pinii —Dij10(Dno+ D) —Pijin (D)
=, (firr Ginn, Piwid) — (Firny Gimns 0) ‘Jg;‘((bjmo)
—(fi711(Djr10), i (@), Binid)

we have @,,=,0,,(9,,) if and only if

_0_
(f o
ikl O :
ey Girnn P
aui
0
i at]
:(fij\l(@jklo): gfju(q);kio)) : P +(fjk!1; gjkll)' 5 s
0Us ou;

which proves the claim.

CLAIM 1.5. Let 2,2€ZYU,&,). The first infinitesimal neighbour-
hoods determined by 2 and A’ are equivalent to each other if and only if
A —2€BY(U, 4,).

PROOF. Assume that there exists an element ¢=(¢,):c; of C(U, &)
0/at,
0/ou,
Let {@,;} be a collection of transition functions determined by 1. If we
replace the coordinates (¢, u:, X;) on each U, by (¢}, u}, X:)=(t:+p:, u:+qs,
X,), then the transition function @,; on U,NU, changes to a certain func-
tion @;,. After easy calculation, we have

such that 2’ —2=d¢. We put ¢.=(p,, qi)< ) where p;, ¢.€1'(U,, O5)X..

d);jm(t;'; u;; Xj):@ijlo(t;‘; u;; Xj)
and
@;jll(t;') ’I/L;, XJ):@ijll(t;) ?/L;, XJ)"I‘ (pi; i, 0)— (pj; qj, O)JSJ .

Then Claim 1.5 immediately follows.

Suppose that a description of the (n—1)-th infinitesimal neighbourhood
is given (n=2), that is, a collection {@{7 '} of the transition functions is
determined up to degree m—1 with respect to the coordinates X,’s. We
have @f "2(@5r-)=,_, 0% We put
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wijkln:(¢E;~l](¢§:_u)_¢1[')?_1])[n]:(pijklm Qiseins Tisein) s
where ¥,; denotes the terms of degree n in the coordinate X, for ¥e

r'u.nunU, O)I[X.]]. To the function ¥, ., we attach an element
tim LU NU;N\U,, F,) in the following way :

0
/Jijkln:%®pijkln(fkiloy Griro, Peirr) mod X?H
_6 n+1
+ P QGisein(Lriros Griros Prirs) mod X7
Ui
+—a Q7 k1 n(frir0s Griroy hrer) mod X7+
aX,; tjkIn\J kil10s ki10s kill i
0 - n n+l1
= ot QDijein(ts, w) X7 mod X7
____a Y n n+1
+ ) &Gijrinlts, u:)X7 mod X7
Ui

+ a‘aX ®i‘ijkln(t,j, ul)X? mod X:;"'l,

where 0/0t;, /ou;, and 0/0X,; denotes in this time the local basis of the
sheaf @y|s on U; and X7 mod X}*' is the local basis of the sheaf N°" on
U;. Thus we often identify a collection {¥ijiin}i.jeer With pgo=(gtisnn.)E
CYU, &F,).

CLAIM 1.6. p,€Z%U, Z.,).
PROOF. If we put

0fise 0gijio 0

at,  ot,
_ 0fisi0 08110
Jij— a?,l/j auj 0 ’

afijll 09511 Ohiji
X, 90X, X,

we have
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0 0
at; 0t;
0 . 0
ou; =Ju ou;
0 0
0X; 0X;
Since
Vi=000;)— 0y,
=a ¢ij((bjk((pkl)_wjkl)_(pil
=aq ¢ij(¢jk($kl))_ wjkl ‘Jij(¢jz)—d)u
and

V=0 0:u(D:)— Py,
n @ij(@jk((pkz))_wijk((pu)_(pjz for ’i, j, k, lEI,

Il

we have ¥,;,;— ¥ =¥ s D) ¥ 1 J:;(D;,), which is nothing but the
cocycle condition.

To construct the n-th infinitesimal neighbourhood, we have to add a
collection {®;;,} of the terms of degree m to {@} '} which is already
determined and determine {@:}’} satisfying the following condition (x), :

(*)n OIFUDT (bey Un, X)) =5 D (b, un, Xo)  for 4,4, kel

To the function @.;,= (fijin, Gisin, Risin), We attach an element 2,;,<
'(u;,nU,;, ¥ ,) in the following way :

0
Zijln:W®fij|n(fji|o; Gities hjiir)

i}
+ ou; ®g”'"(fii|0: Giiros Rjirn)

0
=+ X, Qlusin(Lii10s 51105 hji1) mod (X;)"*!.

Thus we often identify a collection {@;.}ije;r With 2,=(A:ij12)i e €
CH U, &F,). In this time, 1, does not satisfy the cocycle condition in general.

CLAIM 1.7. In order to satisfy (#),, 2, must satisfy di,=—p,. In
particular, if p,&BXU, &F,), there does not exist such a cochain 2,.

PROOF. Since 9:P=0%-740,,,, we have
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O OF) 0

J

il

n @E?_IJ((DE:-1]+¢M|n)_l'@ijln(®§z])—@5;¢l_ﬂ_@ikln
=, wijkln+d)ij|n(®_';:'l?_1])—q)ikln+¢jbln"]if((pglg_u .

CLAIM 1.8. Assume that 1, and 2, determine two n-th infinitesimal
neighbourhoods. Then these neighbourhoods are equivalent to each other
if and only if A,—2,€BYU, < .,).

PROOF. We can easily prove it by similar arguments to Claim 1.5.
That is, we take an element ¢=(¢,)ic; of C(U, &F,) such that 2,—2,=
d¢, put ¢.=(0/0t,)Qp:+(0/0y:)Qq:+(0/0X,) Q7. mod(X;)"*!, and replace the
coordinates (t;, u;, X:) on U; by (t;, uj, X)=+p: witq:, Xi+7).

Thus Proposition 1.3 is proved in the special case. These arguments
also provide a method how to write down the transition relations.

B. The Leray spectral sequence.

Let f: X—Y be a morphism of algebraic varieties and < a sheaf on
X. As is well-known, there exists the Leray spectral sequence with K¢
=H”(Y, R F)=HP"(X, F). The beginning of this spectral sequence
leads to the exact sequence

a B e
(L) 0—HYY, fi¥)— H'(X, &) — HAY, R'f SF)-— HNY, fiF).

We shall state an interpretation of this sequence (L) in terms of Cech
cocycles without proof. Let U =(U,).c; be an affine open cover of Y and
CV=(V,);es an affine open cover of X. Assume that, for each j=J, there
exists an element (j)=I such that f(V;)CU,y,. The Leray spectral
sequence is induced by the double complex K with
pryqch(cl]’ f*CQ(CV, g)): H II [’(7:0; ) ip; jo; ) jq),
10<<ip jo<ljiq

where
Lo, s Gp5 Joy oy D=L U NU )NV NV, F).

First, we interpret the morphism «: HY(Y, fiSF)— HYX, &F) in the se-
quence (L) in terms of Cech cocycles. Let goz((,oioil)ezl(q}, f+F) with
@iy, EL (T (Usyey), F). Then we have ¢ i, — @i, +¢i0,=0 for i1, i, L.
If we put xioil;]-:gofoillf—xwioilmyj, we have (2., )EK", d'(i,,,)=0,
and d”(xioi )=0. If we put iy jg = Ticipiy joer(i(jo)'io} Jo) =1t ; J0),

1 9o
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then we have (z,;,)E K" and d'(x:;; ;)= (iyi,; 5)), that is, @ 35— 5=
Bigiy ig- LOEHING Yi; 505, =By 5y~ @iy 5, €L (G5 Jodi), We have d'(ys, 7i) =0
and d”(y,; j,i,)=0. In particular, a collection (¥ j,)i,er 18 patched to an
element z; ;€' (V,;, F). It is easy to see that z=(z,,;)EZ'(<V, F).

PROPOSITION 1.9. The above correspondence from o= (p,q) to z=
(25,5, "nduces the injection a: HY(Y, fiF)—HY X, &F) in the sequence (L).

Next, we construct a correspondence between Cech cocycles with induces
the second morphism § in the sequence (L). Let ¢=(¢; ;) €2V, &F) with
G305, €T (V5 F). 1f we put jojlzgbjojllf_lwimyjojl, we have &= (v, ;,;,)
eK", d'z=0, and d’x=0. For a fixed element i,=I, a collection
(®:y; 53155 5,0 determine an element y, € I'(U;, E'f:&F). A collection
(Y:,)i,er is patched to an element 2€HYY, RfF).

PROPOSITION 1.10. The above correspondence from ¢ to z induces the
morphism B: HY(X, F)-H Y, R'fySF) in the sequence (L).

The third map 7: HYY, R'f,.F)—-HXY, f.F) is interpreted in the
following way. An element of HY(Y, R'f+SF) is represented by an element
z= K*' such that d”2=0 and that there exists an element y= K which
satisfies d’x=d”y. Then d’y= K?*° represents an element weHXY, fiSF).

PROPOSITION 1.11. The above correspondence from x to w induces the
morphism 1 : H(Y, R'fF)-HXY, fiSF) in the sequence (L).

Finally, assume that an element x= K"! satisfying d”x=0 represents
an element [x] of Ker(y). Then there exist y,2€ K*° such that d’y=
d’'z, d’'y=d’z and d"2=0. Then we can construct an element p=Z' (<, &F)
such that B([¢])=[z], where [p]eH (X, &) is represented by ¢. It is done
in the following way. If we put U=Y—2= Uy, jo)eK“’, then we have
d'u=0 and d"u=d'x. We get an element v=(v,;,;)EK"® with d’v=u by
putting v, ; ;,=%isp1p; 5o Moreover, if we put w=x+d"v=_(w,; ;; )= K",
then we have d’w=0 and d”w=0. In particular, a collection (w; ; ;,)i,ez
is patched to an element ¢,; €I'(V,;, F). The element ¢=(¢p;;)<€
CYCV, &F) satisfies the required property.

§2. Rationally dominated neighbourhoods of P:.

Let us begin this section with discussing a principle how to show the
unirationality of a given algebraic variety. It is the following theorem
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due to H. Hironaka and H. Matsumura that plays the most essential role
in this paper.

THEOREM 2.1 (Hironaka-Matsumura. Cf. Th. (3.3) in [HM]). Let Y
be any conmected closed subscheme of positive dimension of P, n=2.
Then Y 1s G3 wn P™.

For the definition of the term G3, we refer to Def. (2.9) in [HM]. We
have the following corollary, which suffices for later arguments.

COROLLARY 2.2. Let Y be a smooth irreducible subvariety of positive
dimension of the projective space P=P". Let P be the completion of P
along Y, and let ¢: P—P the natural morphism inducing the identity of
Y. Let X be any algebraic variety. Then every morphism ¢: P-X is
of the form foc with a rational map f: P—X which tnduces a morphism
within a netghbourhood of Y. Moreover f is uniquely determined by ¢.

PROOF. We refer to Theorem V in [Hi]. Its statement is slightly
weaker than this corollary, but the same arguments lead to the proof,
because it is the fact that Y is G3 in P that is essentially used in the
proof.

We now make some definitions.

DEFINITION 2.3. (1) Let Y be a smooth variety. In this paper, a
formal neighbourhood of Y is always assumed to be regular. That is, we
call a pair (X, Y) a formal neighbourhood of Y if X is a regular formal
scheme with the reduced subscheme Y.

(2) Let (X, Y1) and (X,, Y,) be formal neighbourhoods of smooth
variety Y, and Y, respectively. A morphism ¢: (X;, Y,)—(X; Y,) of
ringed spaces is said to be dominant if the induced morphism of the first
infinitesimal neighbourhoods is dominant.

DEFINITION 2.4. Let (X, C) be a formal neighbourhood of a nonsingular
rational curve C. The neighbourhood (X, C) is said to be rationally domi-
nated if there exists a dominant morphism ¢: (P", 1)"—(X, C), where {
denotes a line in P and (P", I)" the formal completion of P along I.

As a corollary to Corollary 2.2, we have the following proposition,
which gives an approach to the problem how to show the unirationality of
a given variety.
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PROPOSITION 2.5. Let X be a monsingular complete algebraic variety.
Assume that there exists a nonsingular rational curve C such that (X, C)”
1s rationally dominated. Then X 1is unirational.

PROOF. It immediately follows from Corollary 2.2.

Let C=P!'. It is easy to see that, if a formal neighbourhood (X, C)
of C is rationally dominated, then the normal bundle Ng/;xy of C in X is a
positive vector bundle. We now consider the question when a formal
neighbourhood (X, C) with Ng,x positive is rationally dominated. From
now on, we work on neighbourhoods of dimension three for simplicity.
The following lemma gives a partial answer to the question. It is a key
lemma in this paper, which we shall call the RD Lemma.

LEMMA 2.6 (RD LEMMA). Let (X, C)= Spf(k[t.][[X,, Yol)\VSpf (k[t]
[X,, Y1) be a formal neighbourhood of a nonsingular rational curve C
with the following transition relation of the coordinates :

Xo= 3 aaijtl_aX’iY{:
1,j20
i+jzl
Y0: > baijt;aXiy';y
i,720
i+jal
to=ti'+ = Caijt;aX:Y{-
1,720
itjzl
Assume that there exists a positive integer v satisfying the following
condition : If ani;#0, bai;#0 07 €ai;#0, then a=(1/r)(T+j).
Then the neighbourhood (X, C) is rationally dominated.

PROOF. Let [ be a line in P®. Then we have
(P2, 1)" =Spf(k[ull[Z,, W,ID\YSpf(k[w,ll[Z,, W,]])

with ue=ui!, Zo=u7'Z, and W,y=u;'W,. We can explicitly construct a
dominant morphism ¢: (P? [)"—(X, C) by the following two homomor-
phisms ¢, and ¢, of rings:

do: E[tl[Xo, Yoll — Elwoll[Z,, Woll,
Xy > Saaius* FIZIWE,
Yo —> Sbasus* tIZIWE,

to —> U+ D us*IZEWE,
and
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¢ut kGIIX,, Yi)— Kl ]2, WD,
X, —Z,,
Y, — Wi,
t,—> u; .

Lemma 2.6 provides a sufficient condition for a neighbourhood (X, C)
to be rationally dominated, but not a necessary one. Note that the assump-
tion of Lemma 2.6 depends not only on the isomorphism classes but also
on their description by the transition functions.

We now consider a supplementary question how many rationally do-
minated neighbourhoods lie in the set of all the formal neighbourhoods of
P! with positive normal bundle, though it is not necessary for the proof
of Main Theorem.

PROPOSITION 2.7. Let (X, C) be a formal meighbourhood of C=P!
with Nox=Op)®O(q). Then (X, C) admits the following description by
the transition functions:

(X, C)=Spf(k[t,][[Xo, Yo]))\VSpt(k[t,)[[X;:, Y,]])
with
ontl_le‘i't P aaijtl_aX;:Y{:
i'+jj=zoz
Yoztl_qyl+ 2 baijtl_aX;; {)
i,j20
i+jz2
to:t;l'i' 2 caijtl_aX§Y{
1,j20
i+jzl
such that aq:;#0 implies p<a<pi+qj, bai;#0 implies g<a<pi+qj, and
that c.:;7#0 1mplies 2<a<pr+qj.

PROOF. Let U =(U,);—o.; be an affine open cover with U,=Spec k[t;]
(=0, 1), and let N=0O(a)DO(b). We calculate the elements of Z(U, OQN")
modulo BY (U, O,N") and determine the first infinitesimal neighbour-
hoods. Let (X;, C) be one of such neighbourhoods. Since C*U, F)=0
for any sheaf & on C, we have only to calculate the elements of
ZMU, O,|cQS™"(N")) modulo B(U, O4,|:QS™(N")) for n=2. Wecan easily
calculate the elements of Z'(@.®S™(N ")) modulo B! and those of Z'(NQS*(N 7))
modulo B'. We consider the exact sequences

0—>0cQS"(N") — Ox,[cQS"(N') — NQS™"(N") — 0.
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Elementary diagram chasing on the Cech complexes corresponding to the
above exact sequence leads to the proof.

COROLLARY 2.8. Let (X,, C) be any n-th infinitesimal neighbourhood
of C=P!' with positive normal bundle. Then there exists a rationally
dominated formal meighbourhood (X, C) of C which is an extension of
(Xa, C).

PROOF. It immediately follows from Lemma 2.6 and Proposition 2.7.
In fact, if we put @n:ij=0,:;=Cq:;=0 for 1+j=n+1, then the assumption
of Lemma 2.6 is satisfied for a sufficiently large 7.

§3. Fundamental theorem on scopes.

In the first part of §1, we state the way how to construct formal
neighbourhoods of a given smooth variety. To do this, we need infinitely

many times successive arguments on Cech cochains. Note that it is not

sufficient to consider only Cech cocycles (cf. §1). In this section, we restrict
ourselves to considering formal neighbourhoods of nonsingular projective
toric surfaces. We introduce certain semi-groups, which we shall call
scopes, in order to describe these neighbourhoods in terms of Cech cocycles.
Roughly speaking, the scope indicates how much twisted a description of
a neighbourhood of a toric surface is.

We use the same notation as in §1. Let S be a nonsingular projective
toric surface, and let N a line bundle on S. To construct a formal neigh-
bourhood (X, S) of S with Ngy=N, we give collections {(f:;i1, ¢:;11)} and
{(fisins Gijin, Rijin)} (m=2), or equivalently Cech cochains LEZNU, &)
and 1,€CHU, ¥F,) n=2) (cf. §1). We also use the following notation
throughout this paper. Since the surface S is toric, we may assume that
the top terms {(fiji0, g:ji0)} and {(k;;)} of the transition functions are mo-
nomials. We put

At ), b(E, )
Liso(ts, 2&;)—t?( ”'u,,-‘ o
Ginolty, u;)=t5Pu4»

hisin(ty, w)=t4Puf @ X,
We also put
a(z, 7) b@, j) 0

TG, j)=| c@, ) dG, J) 0 |=M@B, 3; Z).
e(t, j) ft, 5) 1
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Then it is easy to see the following.

CLAIM 3.1.
(1) TG, )GLB, Z)  for any 1, j=1.
(2) T@, 5)-T(G, k)=T@, k) for any 14,7, kel
() fs ot Oh =t ubP X,
where (a(7), B(7), n)=(a(?), B(t), n)T(, 7).

Finally, we put &F,=04sQN"*, C,=0;dN-", and H,=NRQN "
Then we have the exact sequences

tn Th
0—G,— ¥, —H,—0.

We now define the scope of a description {@,;}={(f:;, g:j, hi,)} of a neigh-
bourhood (X, S) of a toric surface S.

DEFINITION 3.2. Let 0=I. The scope of a description @={®,;}; jc; of
a neighbourhood (X, S) with respect to the coordinates (t,, ., X,) is the
semi-group contained in ZXZX Z,, generated by the following elements :

(@) (a—alz, 5), B—0b@, 7), n)T(j, 0) with t5ufX? appearing in the func-
tion fij,

(b) (a—cle, 5), B—d(, 7), n)T(F, 0) with t5ufX7? appearing in g,;, and

(¢) (a—e(t, 5), B—f@, j), n—1)T(j, 0) with t5ufX" appearing in h,;,
where 4 and 7 run all over the index set I. We denote it by Scope(? ; 0).

Intrinsically, the scope is a semi-group in M X Z,,, where M denotes
the group of the characters of the toric surface S. Let k, [eI. Then we
clearly see

Scope(? ; 1)=Scope(®@ ; k)-T'(k, 1)
={(a, B, n)T(k, 1| (a, B, n)EScope(?; k)}.

We also define the scopes of elements or subsets of C?(U, & ,), C*(U, &,)
and C*(U, 4,).
Let 2:(110.,.ip)ECp(CI_], gn) Wlth Zio'“ipep( Uio"'ip’ gn). We erte

0 n
ng"'iszio"'ip(tio’ u’io)_a—t__-®XiO
to
0 Y
+Gipeiy(tin Uio) Gy @Ky

0 n n+
+Hio'“ip(ti0’ uio)aT%®Xfo mOd Xi(: ' ’



On unirationality of threefolds 107

where(d/0t; )@ X7, mod X7,"*, (9/0u:,)@X{ mod X7+ and (6/0X,,)Q X} mod X2 *
denote the local basis of &F, on U,,.

DEFINITION 3.8. (1) Let 0=I. The scope of the above element 1€
C?(U, &F,) with respect to the coordinates (t,, uo,, X,) is the semigroup
contained in ZXZX Z,, generated by the following elements :

(@) (a—1, B, n)T(i, 0) with tiu appearing in Fio‘,_ip,

() (a, B—1, n)T(1,, 0) with t:‘ou’fo appearing in G, .;,, and

(€ (a, B, n—1)T(i,, 0) with t{uf, appearing in Hi, ..,
where 4, -+, 4, run all over the set I. We denote it by Scope(4; 0).

(2) Let VcCP(U, &F,). The scope Scope(V; 0) of the subset V of
C?(U, & ,) with respect to the coordinates (t,, uo,, X,) is defined in the
following way : Scope(V; 0)=2,cr Scope(a; 0).

Let yZ(‘uio,..ip)EC”(CU, &g,) with g, €(U;

10---1‘1,)

G.,). We write

oty =Py iyl 1) 50 atw) ®XI,

+Gio'--ip(ti0; Wi, <

i

n+1
T > ®XI  mod X
where (9/dt,,)° and (9/0u;,)" denote the local basis of the sheaf @5 on U,
with ¢,((6/0t:,)’®@X7, mod X7H')=(9/0t,)Q@X 7, mod X7,t' and ¢,((6/0u:,)’®X7,
mod X77')=(8/0u:,)QX7 mod X7

DEFINITION 8.4. (1) The scope of the above element p=C?(U, &,)
with respect to the coordinates (Z,, u,, X,) is the semi-group contained in
ZxZxZ,, generated by the following elements :

(a) (a—1, B, n)T(i,, 0) with tZu? appearing in F,

(b) (a, B—1, n)T(i, 0) with ¢ uﬁ appearing in G,,.. ipo
where 1g,:+, 1, run all over the set I. We denote it by Scope(x; 0).

(2) Let wcC?(U, &G,). The scope Scope(W; 0) of W with respect
to the coordinates (¢,, o, X,) is defined in the following way : Scope(¥¥ ; 0)
=2 pew Scope(z; 0).

igip and

Now let v=(vi..,) € C(U, H,) with v, ..., € (U I,). We

io"'ip’
write

0 n n
pio"'tp 10 ,p(t , uio)[W:I®Xio mod X¢0+1,
‘o

where [0/0X; J®X7, mod X7 denotes the local basis of 4, on U, with
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0

_9_ _9_
Lox,,

I @X1, mod XI*).

J@xz, moa Xtp=e,(

DEFINITION 3.5. (1) The scope of the above element veC?(U, 4 ,)
with respect to the coordinates (¢,, u,, X,) is the semi-group contained in
ZXZxZ,, generated by the elements (e, 8, n—1)T(3,, 0) with t&uf ap-
pearing in Hio...ip, where 4,, -+, 1, run all over the set I. We denote it
by Scope(v; 0).

(2) Let ZcCP(U, 4,). The scope Scope(Z; 0) of Z with respect to
the coordinates (t,, o, X,) is defined in the following way: Scope(Z; 0)
=,z Scope(v ; 0).

REMARK 3.6. (1) Since the surface S is toric, the algebraic torus
T=G? acts on S. The torus 7T also acts on the sheaf @5. As is well-
known, a pair {¢,0/0t;)°, u;(0/ou;)’} (:€1I) is a basis of the Lie algebra
Lie(T) of the torus 7. Suppose we are given certain action of 7 on the
line bundle N, that is, N is an equivariant line bundle. Then the torus
T acts on the sheaves &, and K ,. The vector space C?(U, &,) and C?
(U, 4,) (n=1, p=0) are decomposed into the direct summands in the
following way :

CP(‘{], gn): @ (Cp(qJ; gn))m

meM

and
C»(U, I(,)= m@}{ C" (U, H)m,

where M denotes the group of the characters and (C?(U, &,)). (resp.
(CP(U, 4,))n) the eigenspace of C?(U, &,) (resp. CP(U, K ,)) with respect
to the character me M. Moreover, the Cech complexes C' (U, &,) and
C (U, 4, are decomposed as complexes, that is, the coboundary maps
are compatible to the above decompositions.

These decompositions are closely related to the scope. Let 0=I, 1€
C(U, G,) and let ¢,: ZXZ—M be an isomorphism of Z-modules defined
by ¢@ola, B)=alt,]+ Blu,], where [¢,] and [u,] denote the characters corre-
sponding to the coordinates ¢, and u,, respectively. By changing the action
of T on N, if necessary, we may assume that the local basis X7 mod X!
of the sheaf N-" on U, is invariant. Then it is easy to see that a bijection

Scope(d; ONZXZX{n}) — (me M| 2, +0}

is defined by (a, B, n)—@oa, B), where 1=32,, with 2,=(C*(U, Z.))n.
Let p=C?(U, H,). Then a bijection
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Scope(p; O)N(ZXZX{n—1}) —> {mE M| pn+0}

is defined by (a, B, n—1)— @ila, B).

(2) In particular, we see that the coboundary maps of the Cech com-
plexes C' (U, &,) and C (U, Y(,) preserve the scope, which we can directly
prove by the following transition relations of local bases of @5 and N:

0 . 0 . 0 \°

() =0t (g )+t (52
J 3 p

ON (AN 8

w3 =0 (5 ) s ()

0 7 [0
Xf[ﬁfj‘X’[ an :

But, in general, the coboundary maps of the complex CP(U, &,) are not
scope-preserving, because there exists no such decomposition of C (U, &F,)
corresponding to the definition of the scope as in (1), though we can es-
timate the behavior of the scope of cochains of &, up to certain ambiguity.
(Cf. Sublemma 3.16).

(8) To construct formal neighbourhoods, it is not sufficient to discuss
C(U, &, for a fixed integer n. The scope plays an essential role to link
discussions on C (U, &F,) for some integer n with those on C (U, F.)
for another integer n’.

We make a definition before we state Theorem 3.8, which we shall
call the fundamental theorem on scopes.

DEFINITION 3.7. Let & be any sheaf on S.

(1) A finite-dimensional vector subspace V of Z?(U, <) is said to be
an HP?-slice of the sheaf &F if V satisfies =(V)=H?(S, &), where =:
7Z2(U, F)—H?(S, &F) denotes the canonical projection.

(2) Let V be an HP-slice of . We call a basis {v,, -, v} of V an
HP?-basis of the sheaf &F.

THEOREM 3.8 (Fundamental theorem on scopes). Let S and N be as
before. Let V, be an H'-slice of the sheaf G, (n=1), and let W, an H'-
slice of H, (n=2). For 0, we put

Q2= ZIScope(V,,; 0)+ EZScope(Wn : 0).
na nz

Then any formal neighbourhood (X, S) of the toric surface S with Ngy
isomorphic to N admits a description O={D,;}; ;e; by the transition func-
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tions such that Scope(®; 0)C Q.

COROLLARY 3.9. Under the same situation as in Theorem 3.8, we
Surther assume that the line bundle N is ample. Then any formal neigh-
bourhood (X, S) of S with Ngx=N admits a description @ such that
Scope(® ; 0) 15 finitely generated and that

Scope(@ ; 0)C EISCOpe( Va; 0).
nz

PROOF OF COROLLARY 3.9. It immediately follows from Serre duality,
Serre vanishing theorem and Kodaira vanishing theorem. In fact, we can
take V,=0 for #>0 and W,=0 for n=2.

To prove Theorem 3.8, we prove the following four lemmas.

LEMMA 3.10. Any first infinitesimal neighbourhood (X,, S) of S
with Ng;x=N has a description O"={0}, ;c, such that Scope(d™; 0)C
Scope(Vy; 0) for any V.

The definition of the scope of C'($f,) depends on the description @
of the first infinitesimal neighbourhood. From now on, we always assume
that Scope(@™?; 0)c Scope(V;; 0).

LEMMA 3.11. Let n=2. Suppose that some (n—1)-th infinitesimal
neighbourhood (X,.;, S) of S is described by @' V={PL7-'}, ;o,. Let p,=
{tisinti.see1 €28 (U, F,) corresponds to ¥,={T .t with V.=
(@7 @R ) — @ . (Cf. §1). Then Scope(y,; 0)CScope(@t*~1; 0).

LEMMA 3.12. Let n=2. For an element o=B U, F,), there exists
oeC (U, F,) such that dp=¢ and that

Scope(¢; 0)CScope(p; 0)+Scope(W,; 0)+Scope(V,; 0).
LEMMA 3.18. Let n=2. There exists an H'-slice Y of &F, such that
Scope(Y; 0)CScope(V,; 0)+Scope(W,; 0)+Scope(V;; 0).

PROOF OF LEMMA 3.10. It immediately follows from the definition
of the scope, Claim 1.4 and Claim 1.5.

We make a preliminary definition before we prove Lemma 3.11.

DEFINITION 3.14. Let £ be a semi-group contained in ZX ZX Z,, such
that, for any neZ,, 2N(ZXZx{n}) is a finite set. We define subsets
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UP(2; t, u; X) and P(2; t, w; X) of Kk[¢t, u, t7*, « '][[X]] in the follow-
ing way:
UP(2; b us 0)={14 9 austu’ X acpreh)

(aBr

P25 t, w; X)Z[(a ﬂZnegaap,.t"uﬁXfl aaﬂfek},

It is easy to see the following.

CLAIM 8.15. (1) P(2: t, w; X) isa subring of k¢, w, t7!, v 'J[[X]],
(2) UP(Q; t, u; X) is a group with respect to the natural multi-
plication.

PROOF OF LEMMA 3.11. We put £2,=Scope(@"~*; ¢) for 1l. Note
that 2,=02,T@, j) for ¢, jI. Then @ V=(fI7"1, g7~ Rhi}-") is writ-
ten in the following form:

£33 7185, uy, Xj):t?(i'j)ulf)(i'j)<1+ 'fij;aﬁrtfufxﬁ’

(a.B.1VER;

g5y, wy, X)) =t Pui ’)<1+ 2 gtj;aﬁrt}‘ng§>,

(a,B.1ER;

hE;t 1]( ], uj, Xj)_te(t J)uf(t 25'¢ <1+ > co hu; aﬂﬁ?%?X?)
j

(a.B.N€E

With fisi apry Gis; apr his aprSk. We calculate Q-1 If we put

}:g 1] ta(] k)ub(; k)F gjn 1] — tc(; k)ud(J k)G and h[n lj_te(; k)uf(,z k)Xkij,

then F,, G, Hpe UP(Qk, ey Ur; Xe). We put fl)‘" @R =(Fism Gise
hin). Noting that T, j)T(j, k)=T(, k) (cf. Claim 3.1), we see that

@ik, bR T ) (0L )
S ijp =Tk e F jk ij

{14 2 S antiPuCXIFRGAHL)

(a,B.ER;

d(i.k (i, d(i,
tc(i k)u (¢} )F;kl ])ijt 3

X{l-i_(a_ﬁg g” aﬁrt:(k) ﬁ(k)Xr(k)F G Hj,,},

and that
hijk:ti(i,k)ul{(i.k)XkF;l:i.j)G}fk(i.j)ij
X{l-i— ) hu aﬁrta(k)uﬁ(k)XT(k)F G ij}

(a,B.€Rj

where (a(k), B(k), r(k)=(a, B, 7)-T(j, kK)ER,. Thus G*"Pur*@Pfiy,
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e @By g o and 5 Puy” 4P X h e belongs to UP(24; t, ws; Xi), from
which Lemma 3.11 follows.

Before we prove Lemma 3.12 and Lemma 3.13, we make a remark on
the scopes. We consider exact sequences
[17. n
0— G, —Y%,— H,—>0.
We write (=¢, and r=r, for simplicity. We also denote the morphism
cU, @,)—C»U, &F,)(resp. CX(U, F,)—C?(U, Y,)) which is induced
by ¢: G,—F, (resp. t: F,—H,) by the same symbol ¢ (resp. 7). The
coboundary maps of the complexes C' (U, &,) and C (U, 4 ,) are scope-
preserving (Cf. Remark 3.6). The following sublemma enables us to estimate
the scopes of elements appearing in diagram chasing on the above exact
sequences.

SUBLEMMA 3.16. Let n=2, p=0 and 0<1.

(1) Scope(c(x); 0)CScope(x; 0) for x=C?(U, &G,).

(2) For an element ysCPU, H,), there exists an element z<
C*(U, &F.,) such that t(z)=y and that

Scope(z; 0)CScope(y; 0)+Scope(V;; 0).
(3) Scope(dw; 0)CScope(w; 0)+Scope(Vy; 0) for weC?(U, F,).

PROOF OF SUBLEMMA 3.16. We calculate the transition relation be-
tween the local bases of <F, on U; and U,. Let 2;=Scope(V,; 7). Then
O =(f, ¢i?, k%) is written in the following form:

E;JZt?(i'j)ug(i'j)(l_i_f),
gE}]:t;(i,j)u?(i,j)(l__l_g) ,
]’LE}] — t;(i.j)ui_’(i.j)Xj ,

where f, g€ P(2;; t;, u;; X,)Nklt;, u; t7', u;']1X;. Then we easily see
the following :

R N
tja—tj—a(% J)tfa—t: +c(t, j)uia—ui:
Uy =b(G, )t +dG, fhu—
Jauj‘— ;.7 iati ;Juiaui;

o . 8 9 9
Xigx, =Tty Towg, -+ g5
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Let 2 be a semi-group in ZXZXZ,, such that, for each n=0, 3N\ (ZX
Zx{n}) is a finite set, and let P, Q, ReP(Y; t;, w;; X;). Then we have
the following relation :

0
t,at QP+uj—— 6 - QQ+ X5 e QR

g @i, P+, JQ+IR)

+ui%®<c<z’, HP+dG, HQ+gR)

+ ‘aX

Note that a(i, j)P+0b(1, j)Q+fR and c(¢, j)P+d(z, j)Q+fR belong to the
ring P(Q;+2; t;, u;; X;). The assertion (1), (2) and (3) immediately
follow from the above relation. Thus Sublemma 3.16 is proved.

PROOF OF LEMMA 3.12. Let ¢&BXU, &,). We find an element ¢ <
CHU, &) such that d¢=¢ and that Scope(¢; 0)CScope(ep ; 0)+ Scope(W, : 0)
+Scope(V,; 0) in the following way.

Since z(p)=BXU, 4 ,), there exists an element a=CHU, 4(,) such
that da=7(¢) and that Scope(a; 0)CScope(z(p); 0) (Cf. Remark 3.6). We
can take an element b=C U, &F,) such that z(b)=a and that Scope(b; 0)
CScope(a; 0)+Scope(V,; 0) C Scope(e; 0)+ Scope(Vy; 0). Let ce W,C
ZHU, 4 ,). Then there exists an element e CH(U, &F,) such that z(e)=c and
that Scope(e; 0)CScope(W,; 0)+Scope(V,; 0). Then there exists an element
feC U, &,) such that «(f)=¢—db—de and that Scope(f; 0)CScope(p; 0) I
+Scope(W, ; 0)+Scope(V;; 0). By taking ¢ W, suitably, we may assume
feB U, &,). Then there exists an element geCY(U, &.) such that dg_
=—f and that Scope(g; 0)CScope(f; 0) (cf. Remark 3.6). If we put ¢=
(f)+b+e=C(U, Fn), then ¢ satisfies the required property. Thus
Lemma 3.12 is proved.

PROOF OF LEMMA 3.13. We construct an H'sslice Y of <. in the
following way. Let a= W,.. Then there exists an element b=C (¥ ,) such
that z(b)=a and that Scope(b; 0)CScope(W,; 0)+Scope(V,; 0). There exists
an element ceZ% &») such that ¢(¢)=db and that Scope(c; 0)CScope(W,: 0)
+Scope(V,; 0). Whether the element ¢ belongs to B%(U, &) or not de-
pends on the choice of a= Wr. We consider an element a< W, such that
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the element ¢ determined by « in the above way belongs to B*&,). Such
elements make a vector subspace of W,, which we denote by W,. Let
@y, -+, @, be a basis of W,. For a;eW, (1=1, ---, 1), we take elements
b, =CYF,) and ¢;=B*&,) in the above way. Then there exist e;=CYGn)
such that de;=e¢; and that Scope(e;; 0)CScope(WVr; 0)+Scope(V,; 0). If
we put b;=b,—c(e;), then b;€Z'(¥F,) and Scope(b;; 0)CScope(W.; 0)+
Scope(V,; 0). Let fi,--,fm be a basis of V,. Then ((f,)€ZY(¥F,) and
Scope(¢(f:); 0)CScope(Va; 0)+Scope(V,; 0). Let Y be the vector subspace
of Z'(<F,) generated by b1, -+, b; and ¢(f}), -+, ¢«(fn). Then Y satisfies the
required property. Thus Lemma 3.13 is proved.

PROOF OF THEOREM 3.8. We construct neighbourhoods in such a way
as in §1. Then Theorem 3.8 immediately follows from Lemma 3.10,
Lemma 3.11, Lemma 3.12 and Lemma 3.13.

§4. Further properties on scopes.

Let S be a nonsingular projective toric surface and N a line bundle
on S. Roughly speaking, Theorem 3.8 tells us that we can choose a semi-
group £ such that any formal neighbourhood (X,S) of S with Ngy=N
admits a description by the transition functions with its scope with respect
to certain coordinates contained in £. If the line bundle N is ample, we
have only to determine an H'-slice of the sheaf &,=O@;xQN " for each
n>0 in order to calculate such a semi-group £ (Cf. Corollary 3.9). This
section provides a preparation of §6, in which we shall estimate the scope
of an H'-slice of &, by the induction on the Picard number p(S) of S.
Let f: S—S be an equivariant blowing-up of S along a point, and we put
N=f*NQCO(—cE) with E denoting the exceptional curve of f and ¢>0.
In this section we aim at proving Theorem 4.2, which enables us to com-
pare an H'sslice of G,=0;QN-" with an H'-slice of &,. To prove it, we
need an interpretation of the Leray spectral sequence in terms of Cech
cochains which is stated in §1.B.

In order to fix notation which we shall use later, it is convenient to
recall the correspondence between nonsingular toric surfaces and weighted
circular graphs. (Cf. [O] for details).

Let S be a nonsingular projective toric surface on which an algebraic
torus T=G% acts. We denote the T-invariant prime divisors by D, -+, D,
and we put D=D,+ ---+D,. As is well-known, each D, is isomorphic to
P!, D is a cycle of rational curves, and S\D is the unique open T-orbit.
We denote by Gs the weighted dual graph of D. Then G turns out to
be a circular graph with s vertices with weights a,, .-+, a;, where a;,=(D;)*
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(1=1,---, ).

We may assume that the weights a,, -+, a; lie counter-clockwise such
as in Figure A. Conventionally, we put D,;,;=D; and a,,;=a; for [ Z.
We also put p;=D,N\D;,,.

Figure A.

Conversely, the weighted dual graph Gs uniquely determines S up to
isomorphism. Moreover, we can construct from G an affine open cover
S=\VUizy U; of S with U,=Spec k[t;, ], and determine the transition func-
tions between the coordinates (t;, ;) (¢=0,---,s—1) in such a way that
the following conditions are satisfied: ¢;=u} and w; =t uier™'. The equa-
tion ¢,=0 determines D; on U;, u;=0 determines D,,, on U,, and t;=u;=0
determines p;, on U,. From now on, we always take the coordinates (¢;, u,)
as above unless otherwise mentioned.

DEFINITION 4.1. We call the above affine open cover {U,} the canonical
open cover of S determined by the weighted dual graph. We also call the
coordinates (¢, u;) the canonical coordinates on U,.

Let B=X;_,b;D; be an invariant divisor on S. In this paper, we de-
scribe the pair (S, B) by the double-weighted circular graph in Figure B.

(b:)

(bisr)

(by)
Figure B.
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As is easily seen the divisor B is ample if and only if the following
inequalities are satisfied for ¢=1,:--,s: b;-1+a;b;+b;4,>0.

Let N=0O(B). From the double-weighted dual graph corresponding to
B, we can recover the coordinates (¢;,u:, X;) (i€{l,:--,s}) and the top
terms {(fiji0.0:510)} and {hy;,,} of the transition functions describing a formal
neighbourhood (X, S) of S with Ng,y=N. We can determine the matrices
T@,5)eGLB, Z) (1,7€{1,--+,s}) which are defined in §3 in such a way
that the following conditions are satisfied:

0 -1 0
(1) TG, i+1)=|1 —a;u 0],
0 —dt+1 1

where d; . =b;+ 0 biei+Diye;
(2) TG, )T, k)y=TG, k) for 4,7, k{1, -+, s};
(8) T(,1) is the identity matrix.

It is easy to see that the normal bundle Ng,» is isomorphic to N if we
construct a formal neighbourhood (X,S) of S starting from the above
matrices 7'(1,7). We shall call these T(¢, j) the transition matrices with
respect to the surface S and the line bundle N on S.

Next, we discuss what happens to weighted dual graphs when we blow
up surfaces. Suppose that a nonsingular projective toric surface S and a
line bundle N=0O(B) are determined by the following double-weighted dual
graph with (D;)?=a; and B=3b;D,:

(bH-l) (bl)

(by)
Figure C.

Let f:S—S be the equivariant blowing-up of S along p,=D,N\D,,,.
We puti N=f*NQO(—cE), where E denotes the exceptional divisor of f.
Then S and N are determined by the double-weighted dual graph in
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Figure D.

Figure D.

The surface S is covered by affine open subsets U,=Spec k[t;, 1] (1=
1,--+,s8). Let T(,j) (4,7€(1, -+, s}) be the transition matrices with respect
to S and N. To get an affine open cover of S, we replace U; by U, (1#1)
and U, by U,..VU,,. with U,_.=Speck[t,_., u;-.] and U,,.=Spec kltise, Uisels
using a symbol e. That is, S is covered by open subsets U, (i=1,---,l—¢,
l4+¢, +--,s). The transition matrices 7'(i, j) with respect to S and N are
calculated in the following way: T, §)=T(,5) if i#1 and j#I, T(,1+e)
=T@, )T, 1+¢; ¢) and T, 1—e)=T(,1)T(, l—e; ¢), where

1 0 0
T, l4+e;e)=[ 1 1 0

¢c 0 1
and
1 10

Tl,l—e;e)={ 0 1 0
0 ¢ 1

We put T(+el; ¢)=T(,1+e; ¢)t and T(l—el; e)=T(,1—e; ¢)"*. Note
that the matrices T(l,l+¢; ¢) and T(l,l—e; ¢) don’t depend on [. If we
put pre={tise=u.=0}€ U, and p,_.={t;-..=u,.. =0} U,_,, we easily see
pi-e=D;,N\E and py.=DyNE.

THEOREM 4.2. Let f: S—8 be an equivariant blowing-up of S along
€S as above, and let N (resp. N) a line bundle on S (resp. S) with
N=f*NQO(—cE), where E denotes the exceptional curve of f and ¢>0.
Let {U,}ic; be the canonical open cover of S determined by the weighted
dual graph. Let G,=OsQN™" and G,=0;QN-*. Let 0=I\{l}. Since f
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15 isomorphic on U, there canowically exists an element of I indicating
F Y (U,), which we denote by the same symbol 01, where I denotes the
index set of the canonical open cover of S. Let V, be any H'-slice of
G,. Then there exists an H'-slice V, of G, which satisfies the following
condition :

Scope (V5 0)CSeope (Va3 0+ 3 Zaola, f,m) T 0).
+

BS—
cnz—

R
+1IA

1

Let us explain the outline of the proof of Theorem 4.2 before we go
into details. We put P=Coker(@;—f*Os), P,=PRN" and Q,=
f*0sQN-". Then the exact sequence

0—)g~n—_>Qn—)-CPn__>0
induces the exact sequence
(4-1) H'(S, ,) — H!(S, G,) — HYS, Q,) — H(S, L,).

On the other hand, we consider the Leray spectral sequence on the sheaf
Q, and the morphism f:S—S. Since ¢>0, we easily see fxQ,.=G, and
R f:0,=8,QR'f+O(cnE). Thus we have the following exact sequence:

(4_2) O_>H1(S) gn)_)Hl(S': Qn)—>H0(sy gn®le*O(an))—_—>Hl(S) gn)

By diagram chasing on the exact sequences (4-1) and (4-2), we construct
an H'slice V, of the sheaf G, starting from an H'slice V, of &,.
Since each sheaf appearing in these sequences admits the action of the
torus 7, we can introduce the notion of the scope on its Cech complexes.

Suppose 1=1. If i+#1, then f*(3/0t;)Q@X? mod X7*! and f*(9/ou,)RX?
mod X7*! are considered to be the local basis of the sheaf O, on U,. On
the open set U,,. (resp. U,..), f*(8/0t)Q@X",. mod X3! and f*(0/0u)RX",.
mod X7 (resp. f*(0/0t,)QRX?.. mod X7+ and f*(9/ou,)@X?. mod X7 are
the local basis of Q,. Let U=(U,);c; be the canonical open cover of S
and let U=(U.)ic;=(T)icrvu» Ui-e, Uis.) the canonical open cover of S.
We can define the scopes of elements of C?(¢J, Q,) and C*(U, fCUU, Q.))
as follows.

DEFINITION 4.3. (1) Let 2€l..(S, Q,) be any rational section of Q,
and 0. We define the scope Scope(1; 0) of 2 with respect to 0l in
the following way.

(A) If 0#l—e, I+, we can write
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A=F(t,, uo)f* i

dto

0
Uy

®X: mod X;*!

+G(to, o) f*

®X; mod X§*!

with F and G being Laurant power series. Then we define Scope(2; 0) to
be the semi-group contained in ZXZX Z,, generated by the following ele-
ments:

(A-1): (a—1, B, n) with t§uf appearing in F (o, u,),
and

(A-2): (a, B—1,n) with t§ub appearing in G(t,, uo).

(B) If 0=1+¢, we write

A= F (tray wied f* 5 ®X Ty, mod X7
1

+G(t4e ul+s)f*aiul®X?+s mod X7,

We define Scope(4; 0)==Scope (1; l+¢) to be the semi-group generated by
the following elements:

(B-1): (a—1, B, n) with t&.uf,. appearing in F'(t,,., U;..),
and

(B-2): (a—1,8—1,n) with t&.uf.. appearing in G(t,,., u4.).

(C) If 0=l—¢, we write

A=F 60w f* 5 ®XT., mod X7
L

+Gtrmw, w5 ®X . mod X7
l

and define Scope(4; l—¢) to be the semi-group generated by the following
elements :

(C-1): (a—1,8—1,n) with t& uf . appearing in F(¢,_., u;-.),
and

(C-2): (a, B—1,m) with t# .uf . appearing in G(¢,_., u;-.).

(2) Let #Z(ﬂiomip)ecp(cfj; Qn) with #iomiper(ﬁiomip’ Qn) We define
Scope (g; 0) as follows:

Scope (¢; 0)= 3 Scope (p; 0).
0. ip

0"'ip;

(3) Let »eCXU, fillAU,Q.). We write v=(v.ip,.5) With
Viguigidgig L (T (Uigi ) NUjyp @n).  We define Scope (v; 0) as follows :
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Scope (v; 0)= 3 Scope (uio.,,ip;,o.,.jq; 0).
10"“"]]

do- v dg

REMARK 4.4. (1) It is easy to see that the above definition of the
scope is naturally induced by the decomposition of I"...(S,(Q,) into the
eigenspaces with respect to the action of the torus T.

(2) The natural map C?(4J, G,)—C?(qJ, Q,) is scope-preserving.

(8) The differential maps of the double complex C' (U, fxC (U, Q,))
are scope-preserving.

For an element 2€C?({J, P,), we define Scope(i;0) in such a way
that the natural map C?(9J,Q,)—C?(U, P,) is scope-preserving. Let
7.: (U @)~ (U, P,) and =_.: I'(U,_.,, Q,)—T'(U,.., L,) be the canon-
ical projections. If we put

0
ou,

ns(f* ®X?+s mOd X?:51>:El+€, n

and

ﬁ—s(f* aat ®X?—s mOdX?jsl>:$l-e,nl
!

\

we have the isomorphisms

F(UL+E) g)n);k[uws]'éus,n
and
F(Ul—e; g)n);k[tl—e]'él—s.n .

The morphism z. and n.. are determined by the following :

0 0
7rs<l(tl+sy ul+z) f* ®Xr+s+/l(tl+5) u’l+£) f* ®XZL+£ mOd ?:El)
at, auz

= {ﬂ(O; ul+s) —u1+51(0, ul+s)}$l+s, n

TR R @ T el ) - ®XT.. mod x)
l L

0
={A(t1-6 0) = treptti-e 0)}€1-cn -
Note that the following transition relation are satisfied :
Eiren=—H="E0oen -

DEFINITION 4.5. (1) For an rational section A€ ..(E, L,), we define
the scope Scope (1; 0) of A with respect to the coordinates (&, %,, X,) in the
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following two ways which are equivalent to each other:
(A) If we write 2A=F (1,4.)& 4., Scope (1; 0) is the semi-group gen-
erated by the elements (—1, 8—1, n)T(I+¢, 0) with uf,. appearing in F (u,..).
(B) If we write A=G(¢t,-.)&,_..,, Scope(4; 0) is the semi-group gen-
erated by the elements (a—1, —1,n)T(l—e¢, 0) with ¢Z. appearing in G(¢;-.).
(2) We naturally induce the scope of an element C*({J, P,) by (1).

Then it is easy to see that the following exact sequence of complexes
are scope-preserving :

0—C(U,G,)—C(U,Q,) —C (U, P,) —>0.

PROOF OF THEOREM 4.2. Let A, be a vector subspace of the space
CAU, fxCNT, Q,)) which represents H(S, G,®R!f+O(cnE)). By using the
exact sequence (4-2), we see that there exists an H'-slice B, of Q, such
that Scope (B, ; 0)CScope (V,; 0)+Scope (A, ; 0). Note that each process in

constructing the sequence (4-2) in terms of Cech cochains is scope-preserv-
ing. (Cf. §1, B and Remark 4.4). Let C, be an H’slice of £,. Then
there exists an H'sslice V, of G, such that Scope (V,; 0)cScope (B,; 0)+
Scope (C,; 0). Thus we have reduced the proof to the calculation of
Scope (4, ; 0) and Scope (C,; 0).

We first calculate Scope(A4,;0). We note that HYS, R'fxQ.)=
U, R f.0,)=HY(U,,,VU,_,,Q,. Let V be a vector subspace of
T'(U,...nU..,Q,) generated by the elements tfuff*(3/0t,)®X? mod X?*! and
fusf*(0/ou,)®X7 mod X7 with a<0, <0 and a+p+cn=0. Then we
have z(V)=H"(U;4+.Y U,-,Q,), wheren : I'(U,+.NU,-,Q,)~H'(U,, .V U,-,,Q,)
denotes the canonical projection. In fact, the above elements are considered
to be elements of I'(U,..N\U, .., Q.) by the following equations:

truff * - ®X mod Xi+ =t ul, f* - @X T, mod X!
1 L

=t P -2 @X ., mod X7,
l

trulf* ai QX7 mod X =teAreryf, f* az QX7 mod X3}
l L

9 X7 . mod Xi*.

:tla'—su[a'—tﬁ+cnf* aul

We construct 4, from V in the following way. We define a map I: [—
{l+e,1—e} of index sets as follows. If ¢#1+e¢, [—e, then the open subset
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U;,NU, of S is contained in either f(U,..) or f(U,..). We choose (i)
{l+¢,l—¢} in such a way that the following inclusion is satisfied: U, U,
Cf(U,u). We define I(l4+¢e)=1+¢c and l(l—e)=1—c¢.

From a given element ¢=¢ .- S (Uyse.1-e, O2), We construct z=x(¢)
:(mio:jojl)ECO(CU,f*C‘(CU, Q,)) with mio;jojler(f—l(Uio)mﬁjojli Q) in the
following way. If 4,#l, we define w, ;,;=0. We put Tii01, = Prespicsys
where we use the following convention: ¢, ve=¢;-c.1-e=0 and ¢,_. ;.=
—¢@i4e.1-.. Then x(¢) represents an element of H(S, R'f«(Q,). In fact, we
easily see @, j,—%:ys5, T Tigis5,=0 for each i, Jo,_Ji and js. Moreover,
we can find an element y=(y:;.;) ECHU, fulAU, Q.)) with y, ;€
P(fhl(Uioil)f\ﬁjO; Q.) such that Yigipio ™ Yigiyiiy = Pigiigs, — Pigsigs, for each 1,
15, Jo and 7; in the following way: We put y; =0 if 4,#! and ,#1,
Yiig; iy =Prapicips a0d Yiu s0=Prapicy-

Let (¢, -+, ¢n) be a basis of the vector space V. If we take as 4,
the vector space spanned by x(¢)), .-+, x(¢,), then A, satisfies the required
property. Since Scope(A,; 0)=Scope (V; 0), we obtain

0%1: Jo

Scope (4. 0= 3 Zo(a, B,m)T(, 0).

a+7§'+cn£—1
Next, we calculate Scope (C,; 0). Since g’nsf*@pl(l—nc), where ¢: E
—8 denotes the natural inclusion, we have HYS, L,)=0 unless n=c=1.
Suppose n=c¢=1. Then dimH%S, &,)=1 and we can take as C, the set
consisting of the elements aé,,..,=—a&,_., with a€k. Thus we obtain
Scope (Cy; 0)=Z.o(—1, —1,1)T(l+¢, 0)
=Z.(—1, —1,1)T(l—¢, 0)
=Z.(—1,—1,1)T(,0).

Thus Theorem 4.2 is proved.

§5. Reduction to scopes.

In this section, we aim at proving at Proposition 5.6, which enables us
to reduce the proof of Main Theorem to the estimation of scopes. In order
to state Proposition 5.6, we fix the following notation concerning the
Hirzebruch surface 3,=Ppi(OBO(—e)).

The surface Y, is described by the following weighted dual graph:
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Let D=D,+D,+ D;+ D, be the corresponding invariant Cartier divisor with
(D)?=e, (D,)*=0, (Dy)?*=—e and (D,)’=0, and let p,=D,N\D,, pi=D\N\D,,
p.=D,N\D; and p;=Dsn\D,. Then %, is covered by four sheets U, (:=0,
1, 2, 3) of affine open subsets with U,=Spec k[t;,u;]. Then the following
relations are satisfied: to=u;', uo=tur%, ty=uz', uy=ty, ta=us', us=*tus,
ts=uy" and us;=t,.

DEFINITION 5.1. Let f:S—S be a proper birational morphism of non-
singular projective surfaces. We define the set Fund(f) of the funda-
mental points of f as follows:

Fund (f)={x=S|f! is not defined at x}.
Using the above notation, we state the following lemma.

LEMMA 5.2. Let S be a nonsingular projective toric surface. Assume
that S 1s mot isomorphic to P*. Then S 1s ome of the following three
types:

(Type I): There exists a proper birational morphism f:S—23, which
18 a succession of equivariant blowing-ups such that e=2 and that Fund (f)
C{p2, D4},

(Type II): There exists a proper birational morphism f:S—3,=
P'x P' which 1s a succession of equivariant blowing-ups such that Fund (f)
C{pm p2}x

or

(Type III): There exists a proper birational wmorphism f:S—2,
which 1is a succession of equivariant blowing-ups such that Fund (f)C
{Do, D2 D3}

REMARK. The above three types of surfaces are not exclusive. For
example, there exists a surface S of type II and type III at once. Pre-
cisely speaking, we consider the pair (S, f) of the surface S and the above
morphism f when we say that S is of type A (A=I, II, III).
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First we prove the following claim.

CLAIM 5.3. For any nonsingular projective toric surface S that is not
isomorphic to P2, there exists a proper birational morphism f:S—23, (e=0)
which is a succession of equivariant blowing-ups such that Fund(f)C
{pm pZ}'

PROOF OF CLAIM 5.3. We prove it by the induction on the Picard
number p(S) of S. If p(S)=4, then it is obvious. Suppose p(S)=5. Then,
by the induction hypothesis, there exists a nonsingular toric surface S; and

a sequence Si Sl—f>2 . such that f is a succession of equivariant blowing-
ups with Fund (f)C{p,, p.} and that ¢ is an equivariant blowing-up along
a point q8S,. If f(q)={po, p:}, then the composition fog satisfies the re-
quired property. Suppose f(¢){p, ps}. Then there exists a nonsingular

r 7
toric surface S, and a sequence S — S, — 2, of morphisms such that ¢’ is
the equivariant blowing-up along f(g) and that f” is a succession of equiva-

v
riant Dblowing-ups with g¢'(Fund (f'))C{p,, p.}. Replacing S,— 2. by
S, — Y., or S;—2%,_, by an elementary transformation, we get a morphism
satisfying the required property.

PROOF OF LEMMA 5.2. We take such a morphism f:S—2%, as in
Claim 5.8. If e=0, then the pair (S, f) is of type II. If e=1, then (S, f)
is of type III. Suppose e=2. If Fund (f)?p, then (S, f) is of type I.
Suppose Fund (f)=p,. Then the morphism f is factorized into a succes-

sion S —g>Sli> 2, of morphisms, where % is a blowing-up along p,. Replac-
ing the morphism h: S;—2, by its elementary transformation, we get a
morphism f;: S—2,., which is a succession of equivariant blowing-ups
with Fund (f)C{pe, ps, ps}. If e—1=1, then (S, f}) is of type III. If e—1
=2 and Fund (f,)Pp,, then (S, f:) is of type I. If e—1=2 and Fund(f.)
Sp,, then f; factors via the blowing-up h,: S,—2,.., along p,. Replacing
h: by its elementary transformation, we get a morphism f,: S—2,_, which
is a succession of equivariant blowing-ups with Fund (f2)C{pe, Do, ps}. A
succession of these arguments leads to the proof.

On toric surfaces of each type, we take the following nonsingular ra-
tional curve called reference curves, which we shall use to prove Main
Theorem by applying RD Lemma (Lemma 2.6).

DEFINITION 5.4. (1) Let (S, f) be a toric surface of type I. Let D,
denote the invariant curve on X, with (D,)?=e as is stated before, that



On unirationality of threefolds 125

is, D, is determined by the equations u,=0 on the open subset U, and
t,=0 on U,. We call the strict transform C of D, with respect to f the
reference curve of type I.

(2) Let (S,f) be a toric surface of type II. Let I' be the diagonal
curve on P!X P! defined by the equations t,=u, on U, and t;=wus; on Us.
We call the strict transform C of I' with respect to f the reference curve
of type II.

(3) Let (S,f) be a toric surface of type III. Let D; be a displace-
ment of the curve D, on X, defined by the equations u,=1 on U, and
ti=u, on U,. We call the strict transform C of D; with respect to f the
reference curve of type III.

Moreover, we fix the following notation. Let (S, f) be a toric surface
of Type A (A=1I, II, III). Since Fund (f)®p,;, there exists an open subset
U of S such that f|y: U—U, is an isomorphism. This open set U admits
the natural coordinates which is induced by the coordinate (¢, u,) on U;.
We denote the open set U by U,. We also denote the coordinates induced
by (¢, ;) by the same symbols (¢, #;). Let (X, S) be a formal neighbour-
hood of S described by a collection @={®,,}, ;c; of the transition functions.
Since X|y =Spf(kl[t;, u,][[X,]]) for some coordinates X,, we can define the
scope Scope (@ : 1) of the description @ with respect to the coordinates
(1, U1, X1).

DEFINITION 5.5. We define a semi-group 2z, contained in ZX ZXx Z.,
in the following way :

Qrp={(a, B, N EZXZXZ | a4 B+n=0}.

PROPOSITION 5.6. Let S be a toric surface of type A (A=1, II or III)
and let C the reference curve of type A on S. Let (X, S) be a formal
neighbourhood of S such that Ng;x@osOc ts ample on C. Assume that
(X, S) is described by a collection @ of the transition functions such that
Scope (D ; 1) Qzp. Then the induced formal meighbourhood (X, C)" of the
curve C in X 1s rationally dominated. More precisely, (X, C)" admits a
description by the tramsition functions satisfying the assumption of
Lemma 2.6 for r=1.

PROOF. First, we assume that (S, f) is a toric surface of type I.
Since Fund (f)#pe, v1, S H(U) and f~(U,) are isomorphic to A% which we
denote by U, and U,, respectively. Then we get
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0 —1 0
TO, )= 1 —e 0 |,
0 —a 1
where N¢x®o,Oc=Opi(a) (@>0). By the assumption, the transition rela-

tion between the coordinates (t,, %o, X,) on XIU0 and (¢, u;, X;) on Xl,,1 is
written in the following way :

tozul_l(l"l" Eaaﬁnt?u‘fo) s
o=t U (1 + Db pntiulXy),
Xo=ui "X (14 SecqpntfufX7),

where @apn, bagn OF Cop,#0 implies a+ B+n=<0. Since the reference curve
C is defined by the equations u#,=0 on U, and ¢t,=0 on U,, we can con-
sider the above equations to be a transition relation describing the neigh-
bourhood (X, C)” of C in X. We apply Lemma 2.6 to this description.

We now assume that (S, f) is a toric surface of type II. Since p;, ps
EFund (f), f'(U,;) and f'(U;) are isomorphic to 4% which we denote by
U, and Us, respectively. Then we get

—1 0 0
T3, 1)= 0 —1 0
—b —a 1

for some integer a and b. The transition relation between the coordinates
(ts, us, Xs) on X|y, and (¢, uy, Xi) on Xy is written in the following way :

t3:t1_1(1+2aaﬁnt?qu?);
Us=ui (14 Sbapatiuf XT),
Ag= tl—bu;aXl(l‘i_Ecaﬁnt{xung?) ’

where @apn, Dapn O Cap.#0 implies a+f+n=<0. To obtain a transition
relation of (X,C)", we change the coordinates near the curve C in the
following way: We put Ts=wus, X;=X; and Y;=us—1t; near CnU, and
T.=t;, X,=X, and Y,=u,—t; near CnU,. Then the curve C is defined
by the equation X;=Y,=0and X,=Y,=0. The transition relation between
the new coordinates (T, X;, Y3) and (T4, X,, Y;) is easily calculated as fol-
lows :
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To=T7 (14 T7'Y) {1+ Sba s Te P (1+ T YA XY},
Xo=Tr* 1+ T7' V) Xi{l+ SeapTeHP(1+ T Y)PX),
Yo=T7 (14 T7'Y) 14+ Sbap T P14+ T7 Y1) X1}

— T {14 Zaap. TE P14+ T Y1)P X}

Since Ng,x@0O. is ample, we see a+b>0. It is easy to see that, if a term
T{X?Y™ appears in the above transition functions, then —A=n+m. We
apply Lemma 2.6 to this description.

Finally, we assume that (S, f) is a toric surface of type III. As was
stated before, the surface 2, is covered by four affine open subsets U,
U, U, and U;. Corresponding to an equivariant blowing-up, we replace an
affine open subset by two sheets of affine open sets. By replacing open
covering in such a way as we stated before, we get an affine open cover
{Ureq of S. The curve D, in ¥, is defined by the equations ¢,=0 on U,
and ;=0 on U;. There exists an element d= A4 such that f(U;)C U, and
that U; intersects with the strict transform of D, with respect to f.
Then the transition matrix 7T(d,1) is written in the following way. (Cf.
§4). First, we formally put T'(6,1)=1T¢(5,0)T7(0,1). Then

0 -1 0
T0,1)=f{ 1 =1 0
0 —a 1
for some integer a, and 7(4,0) is a product of matrices of the form

1 1.0\' /1 =10

0 10 =0 1 0
0 ¢ 1 0 —c 1
Hence T(d,0) and T(d,1) is written in the following form:
1 =1 0\
T,00=0 1 0 ),
0 —p 1
-1 1-10
TG, D)= 1 -1 0
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for some l,peZ. The transition relation between the coordinates (t;, us, X;)
on U; and (¢, u,,X;) on U, is written in the following form:

téztl_lu{-l(l’l_ Zaaﬁn fuiBX;z) s
uﬁztlurl(l—f_zbaﬁntfuf){?);
Xo=t7"ul " X\(1+ SeqpatiufX7),

where @upn, Dapn O Coup,#0 implies @+ pB+n=<0. In order to describe the
formal neighbourhood (X, C)" of C in X, we change coordinates near the
curve C. We take coordinates (#;, X;, Y;) near Cn\U; as follows: ¥;=tsul,
X;=utX; and Y;=u;—1. Note that we can take such coordinates around
CNU;, since u;#0 near CNU;. We take coordinates (#,,X,,Y,) near
CNU, as follows: ¥,=u;, X,=X, and Y,=t,—u,. Then the reference
curve C is defined by the equations X;=Y,=0 and X,=Y,=0. The transi-
tion relation between the coordinates (¥;, X;, Y;) and (., X,,Y,) is calcu-
lated as follows:

=1 (142 pnPapn) 1+ Zbapaapa),
Xézi;aXl(]-+Zbaﬂngpaﬁn)p(l_*—anﬁnsoaﬁn) ’
Y'5:_1+(1+i;1 fl)(l—*_zbaﬂnsoaﬁn) ’

where ¢, 5,=E*F(1+%7'Y,)*X;. We apply Lemma 2.6 to this description,
noting that a>0.
Thus Proposition 5.6 is proved.

As for P2, we fix the covering P?=U,\J U,V U, with U, =Spec k[t;, u:]
(1=0,1,2) such that the following transition relations are satisfied : t,=u;*
and w,=tu;! on U,NU,, and t,=u;' and u,=tu;' on U,NU..

DEFINITION 5.7. We define a semi-group 2%p contained in ZxZx Z,
in the following way :

Qém={(a,/3,n)EZ><Z><Z=0] —,@Z%(a+n)} ,

PROPOSITION 5.8. Let S=P? and let C a nonsingular rational curve
on S defined by the equations u,=0 on U, and t,=0 on U,. Let (X,S) be
o formal meighbourhood of S with Ngx ample. Assume that (X,S) s
described by a collection @ of the tramsition functions such that Scope (D ;1)
CR%p. Then the induced formal neighbourhood (X,C)" of the curve C in
X admits a description by the transition functions satisfying the assump-
tion of Lemma 2.6 for r=2.
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PROOF. The transition relation between the coordinates (%, o, X,) and
(t,, 41, X:) is written in the following way :

to=ur (1+ Saqp.tfufX7),
'Lbo:t1u1_1(1+ Zbaﬁn ?ulng;l) )
‘X‘0:7/L1_a')(1(1 + Ecaﬁntfquil) s

with a>0, where @apn, bagn OF Capn#0 implies —B=(1/2)(a+n). We can
consider it to be a transition relation describing (X,C)" as it is. We apply
Lemma 2.6.

§6. The proof of Main Theorem.

In this section, we prove Main Theorem. We use the same notation
as in §5.

THEOREM 6.1. Let S be a monsingular projective toric surface and
N an ample line bundle on S.

(1) If S=P? then, for each m>0, there exists an H'-slice V, of G,
such that the following condition is satisfied :

Scope (V,; l)CQ}wzt(a,ﬁ,m)l — Z—;—(a—%-m)}.

(2) Assume that there exists a morphism f:S—2, such that the
patr (S, f) 1s of type A (A=I1, II or III). Then, for each n>0, there
exists an H'-slice V, of G, such that the following condition is satisfied :

Scope (V,; 1)CQrp={(a, B, m)| a+p+m=0}.

COROLLARY 6.2 (Theorem 0). Let S be any nonsingular projective toric
surface. Then there exists a monsingular rational curve C on S such
that, for any formal neighbourhood (X,S) of S with Ng,x being an ample
line bundle, the neighbourhood (X,C)" of C on X is rationally dominated.

COROLLARY 6.3 (Main Theorem). Let X be a mnomsingular complete
algebraic variety of dimension three. Assume that X contains a nonsin-
gular projective toric surface S and that the normal bundle Ng;x of S in
X 1s ample. Then X s unirational.

PROOF OF COROLLARY 6.2 AND 6.3. Corollary 6.2 immediately follows
from Theorem 6.1, Theorem 3.8, Proposition 5.6 and Proposition 5.8.
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Corollary 6.3 follows from Corollary 6.2 and Proposition 2.5.

First, we prove Theorem 6.1 in the case where S is the projective
space P2,

PROOF OF THEOREM 6.1. (1). As is easily seen, the cohomology group
HY(S, 0p:Q0p:( —a)) vanishes unless a=3. We also see

dim H'(S, 0 p:Q0p2(—3)) =

After elementary Cech cohomological calculation, we get the element ¢=
(¢:y:)EZH U, 0p2@0ps(—3)) with i, EL (Ui iy Ope@0pa(—3)) as an H'-
basis of the sheaf ©p:@0Op2(—3) as follows :

S[’ox: au ®7)0 »
0
Sboz:uo_l—‘ato @70,

0
‘/)12: ®770+uo at, ®

= —tl_l

where 7, denotes the local basis of the sheaf Op:(—38) on U,. Thus we
can take an H'-basis of &, in the following way.

We easily see HY(P?, G,)=0 for all >0, unless N=0O(1) or N=0O(3).
Suppose N=(O(1). Then we have the following element 2=(1;,:,)€Z(U, &)
with 2;:, €'(Uii,, 9s) as an H'-basis of &;:

10 1)

/201:—tal mOdXé,

202:11/0 ®X3 mod Xé »
ato

A= —1t" mod X1 .

The scope Scope (1; 1) is generated by (—1, —1, 3).
If N=0O(3), then we have H!P? &,)=0 unless n=1. We can take
the following element /,e:(/,e,-o,;l)eZ‘(CU,Q’l) as an H!'-basis of &, :
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0

0Uy

/«501:_t31 ®X, mod X3,

#02:7«‘51% ®Xo mod X% s
0

0
P12= —tfl—a;;@))ﬁ mod X7 .

The scope Scope (g; 1) is generated by (—1, —1,1). Thus Theorem 6.1.(1)
is proved.

REMARK 6.4. After more precise calculation of the transition func-
tions, we can show that any formal neighbourhood (X, P?) of P? with the
normal bundle N is isomorphic to the formal neighbourhood of the zero
section of the bundle N— P2 For example, the transition functions of the
third infinitesimal neighbourhood (X, P?) with Npe,;y=O(1) is written in the
following way : t,=u', wo=u;'t,+cui' X3, Xo=ur'X, on Xy, i=ug!, w=
tous ' +eus' X3, X, =u;'X, on Xlum, and t,=uy', U,=twy'+cus'X3:, X,=
uy' X, on X lv,, With ¢k, where the symbol = denotes the congruence
modulo Xj (¢=0,1,2). But no fourth infinitesimal neighbourhood is actually
an extension of the above third neighbourhood unless ¢=0. We don’t con-
sider such obstructions so far as we discuss scopes.

Next, we prove Theorem 6.1 in the case where S is the Hirzebruch
surface 2,. We make some preparations before we state the proof.

DEFINITION 6.5. Let S=2%,, n:S—C=P"' the natural projection, F' a
fiber of 7 and s, the section with s?=—e. For a,bsZ, we denote the
invertible sheaf O(aF'+bs,) by the symbol O(a,b).

LEMMA 6.6. The cohomology group H'(Z., O(p, q)) vanishes unless one
of the following two conditions is satisfied :
(a) p=e(g+1) and q< —2
(b) p=<eq—2 and ¢q=0.
In the case (a), we can take the following elements as an H'-basis of
O(p, q)
w‘a.ﬁ:(O’ (‘Da,ﬁ' (Pa.;‘:, SDa.,aY gDa'ﬂ, 0)

e'(Uy, @(p, Q))XP( Uss, @(pr (I))XF( Ugs, @(29, q))
X I'(Uys, O(p, q)) X I'(Uss, Op, q)) X I'(Uss, O(p, q))

with a=0, <0, p—a—ef=0 and q—p<0, where ¢*f=t§uly, and 7, de-
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notes the local basts of O(p, q) on U,.
In the case (b), we can take the following elements as an H'-basts of

Op, )
P =(pF, 0*f,0,0, —p*F, —p*P)

€Uy, O(p, ) X I'(Use, O(p, 0)) X I'(Uss, O(p, )
X I'(Uss, O(p, )X I'(Uss, O(p, q)) X I'(Uss, Olp, q))
with a<0, =0, p—a—eBf<0 and g—B=0.
The proof is done by elementary calculation and we omit it.

PROOF OF THEOREM 6.1 IN THE CASE WHERE S=J%,. We put L=
Ker (Og—n*0;). Then we have the exact sequence

0——>L_‘)@S_‘)7T*@c_—>0.

It is easy to see that L=(0(e 2) and n#*0.=0(2,0). In fact, d/du,, d/dt,,
0/ou, and 0/dt; are the local basis of L on U, U,, U, and U, respectively.
Moreover, the sheaf 7*@, admits [3/dt,], [0/ou,], [0/dt,] and [9/dus] as the
local bases on U,, U,, U, and U, respectively, where [d/dt;] and [d/ou.]
denotes the images of 0/dt; and 9/0u., respectively (1=0,1,2,3). We de-
note LN"" by L, and n*0,QN" by M,. Then we have the following
exact sequence

0—L,—>&G,—M,—0.

Since L, is a subsheaf of &,, we can naturally define the scope of an
element of C' (U, L,) such that the natural map C (U, L,)—C (U, &,) is
scope-preserving. We can also define the scope of an element of the group
C (U, M,) such that the natural map C (U, &,)—C (U, M,) is scope-
preserving. Thus we have only to calculate the scopes of H'-slices of L,
and M, in order to calculate the scope of an H'-slice of &,.

If we put N=0O(a,b), then we obtain the isomorphisms L,=O(e—na,
2—mnb) and M,=0O(2—na, —nb). Since N is ample, the following inequalities
are satisfied: a>eb, b>0. Since

0 —1 0
TO0,1)=| 1 —e 0
0 —a 1

in this case, a vector (a,8,n) belongs to £2zp,7(1,0) if and only if a+
(e—1)B+(a—1)n=0.
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First, we calculate the scope of an H'-slice of L, with respect to the
coordinates (t,, uo, Xo). We put p=e—na and ¢g=2—nb. Since a>eb, we
obtain the inequality p—e(q+1)<0. Thus the case (a) in Lemma 6.6 does
not occur. Hence we have nb<2 if HY(S,L,)#0. Suppose b=2. Then
HYS,L,)=0 if n=2. Noting that 0/0u&QX?% mod X;*' is the local basis of
L, on U, we can take an H'-slice V; of L, such that

Scope(V,; 0)= = Z.fa,—1,1).
e-a<la<0

It is easy to see that Scope(V,; 0)CR2zpT(1,0). Suppose b=1. Then
HYS,L,)=0 if n=3. We can take an H'slice V, of L; such that
Scope (V;; 0) is generated by the vectors (a, —1,1) with e—a<a<0 and
(,0,1) with —a<a<0. We can take an H'slice V, of L, such that
Scope (V,; 0) is generated by (a, —1,2) with e—2a<a <0. Both semi-groups
Scope (V;; 0) and Scope(V,; 0) are contained in £2z,7(1,0).

Next, we calculate the scope of an H'slice of M,. We now put p=
2—mna and gq=—nb. Since ¢<0, the case (b) in Lemma 6.6 does not occur.
We easily see that H(S, M,) vanishes unless a<eb+2—e and b=2. Since
a>eb, HY(S, M;)=0 unless e<1. Noting that [0/0t,]®X? mod Xi*! is the
local basis of M, on U, we can take an H'-slice W, of M, such that
Scope (W, ; 0) is contained in the semi-group generated by the vectors
(@—1,8,1) with a=0, B<0, 2—a—a—eBf=0 and —b—p<0. Since e<1
and a=eb+1=e+1, Scope (WW,; 0) is contained in 2z,7(1,0).

As for M,, we see that H'(S, M,)=0 unless 2a<2eb+2—e. Since a>eb,
HY(S, M,)=0 unless ¢e=0. We can take an H'-slice W, of M, such that
Scope (W,; 0) is contained in the semi-group generated by the vectors
(a—1,8,1) with =0, <0, 2—2a—a=0 and —2b—<0. Then it is easy
to see that Scope (W,; 0) is contained in 2,,7(1,0).

Suppose n=3. Then H(S, M,)=0 unless a<eb+(1/n)(2—e). Since a=
eb+1, HYS, M,)=0 for n=3.

Thus Theorem 6.1.(2) is partially proved in the case where S=2,.

Before we prove Theorem 6.1.(2), we make the following definition.

PROPOSITION-DEFINITION 6.7. Let g:S—S be a birational morphism
between monsingular projective surfaces and N a line bundle on S. Then
there uniquely exists a line bundle N on S such that N=f*NQO(D) where
D is a divisor on S with dim ¢g(Supp(D))=0. We denote such o line
bundle N by g, N. If N is ample, then g, N is also ample.

PROOF OF THEOREM 6.1.(2). Suppose p(S)=5. Then the morphism
Im Im-
f:S—-2%, is written as the composition S=S,— S.-: = Spog— o —
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SlgS(,:Z'e of equivariant blowing-ups. Let N,=(f;+1° - ofm) s N for 0
Jsm—1and N,=N. Let Fund (f;)=¢;ES;-, and E,=f7'(q,)CS; (1<j<m).
Then, for each j with 1<j<m, there exists a positive integer c¢; such
that N;=f¥N;_,®0(—c;E;). We construct an affine open cover U=
{U}ier¢s» of S; in the following way. We take the open cover U®=
{U}icrw of So=2, with 1(0)={0, 1, 2, 3} as before. Suppose the open cover
UP={U}ier-1» of S,.; with U,=Spec k[t;,u;] is determined. For i€
I(j—1), we denote by p; the point on S;., determined by the equation ¢,=
u;=0. Using this notation, we can write ¢;=p,, for some s(j)I(j—1).
Then we put

IG)=IG=D\sDNV{s(h) +e, () —¢},

with ¢ the symbol as is used in §4. For 1€I(7—1)\{s(j)}, we denote
f71(U;) the same symbol U, and we use the same coordinates (¢;,u;). We
have 7Y Usy) = UsiiyeeY Usesy-. With the coordinates satisfying the follow-
Ing : tipyae=1tscirs Usciy+e=tahtscids bsir-=tscpUsy aNA Useiy-:=Uspy. By the
induction on p(S) and Theorem 4.2, it is enough to show

{a,B,m)| a< —1,B< —1, a4+ B+can=—1}-T(s(m), 1)C Qpp .

Let I/V:{.?E{l.- 2; "',’I’)’L}| J:m or fj+1° Ofm(ps(m)):ps(j)}c{ly 2; ;m} We
put W={j,, 72, ***, 7s} with 5;<j,<--+<j,. Then, corresponding to W, we

. . . . Ik k-1
can construct a succession of equivariant blowing-ups Si;—> Si..—> Si-;

oo 8] 25 §,= 3, with Fund (g,)=ps;pES -1 for 1<A<k. There exists a
birational morphism h:S—S; such that g,o---og,oh=Ff. Since the matrix
T(s(m), 1) is determined by the data s(j) and ¢; with j= W and since h,N
is ample, we may assume W={1,2,---,m}. That is, we may assume that
f is a succession of equivariant blowing-ups along successive infinitely near
points.

Thus we have s(j+1)=s(j)+¢ or s(j+1)=s(j)—e for 1<j<m—1. We
put N,=0O(a,b). Then we have a>eb and b>0. We also put

a1:(7) axz(j) 0
T(s(7), D= au(d) a2l O
as:(f)  as(g) 1

We divide the proof into three cases.

Case 1: s(1)=0. In this case, (S, f) is of type II or type III. Thus
e<1l. We put 7(9)=—an(j)—aid), r:()) =au(g) +az()) and ry(j)=—asu(j)
—ag(f)—1 for 1<j5<m.
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CLAIM 6.8. 7,(5)=0 for ¢=1,2.

PROOF. We have
0 —1 0

T(s(1),)=T7(0,1)=[ 1 —e 0
0 —a 1
Thus r(1)=1, r,(1)=1—e=0. If s(j+1)=s(j)+e, we have
T(s(3+1), D="T(s(5) +e, s() ; ¢;)T(s(5), 1)
1 00
= —1 1 0 |T(s(y),1).
—c; 0 1

Thus we have 7,(j+1)=r,(j), 7.(j+1)=7r:(5)+7:(4) and ry(j+1)= —c,m(j)+
75(7).
If s(j4+1)=s(j)—e, then we have

T(s(7+1), )=T(s(5) —¢, 8(3) ; ¢,)T(s(4), 1)

1 -1 0
=0 1 0 |T(s(5),1).
0 —¢, 1

Thus we have 7,(j+1)=r.(5) +7:(5), 7:(j+1)=74(4) and rs(j+ 1) =c,7.(5) +75(7).
Thus Claim 6.8 is proved.

CLAIM 6.9. 73(j)—c;ri(5)=0 for 1<j<m.

PROOF. First, we assume that s(j+1)=s(j)+¢ for all 5. Since N is
ample, the following inequalities are satisfied :

a>c eyt oo +Cn,
en>0,

Cm—l>cm ’

01>021

b>C1 N
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a>eb.
Then we have
1 —(7—1) 0
T(s(5),)=| 0 1 0 |T(0,1)
0 —(ci+ - +eio) 1
—(-1) e(j—1)—1 0
= 1 —e 0

—(crt - +e;-1) eley+ o +e)—a 1
Thus

Ts(j)_cj7"1(j):@—cj_1+(1_3){01+ +Cj—1_(j—‘1)cj}20 .

Assume that ry(j)—c;7.(7)=0 for some j. Moreover, we assume that the
morphisms f;, fis1, o+, fse: (t=1) are chosen such that the following are
satisfied : s(7+1)=s(j)—e, s(j+A)=s(j+1—1)+¢ for 2<1<t¢. Note that ¢
may be equal to one. Since N is ample, the following inequalities are
satisfied :

€;>Ciert o +Chuey
cj+t>0;

Cirt-1>Cjte s

Cj+1>Cjita .
Then we have:
r(g+1) =75+ 73,
ro(J+1)=7s5(5),
r3(J+1)=c;m5(5) +74(9) ;
r(j+H)=r(j+1),
ro(J+)=0E—Dri(G+ D +r(G+1),

r(f+t)=—(Cjer+ = FCiue- )G+ +15(5+1) .
We obtain -
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ro(J+t)—cjperi(g+1)
=7ry(g)—cr(g)+(c;—Cjp1— - —cip)ri(g+1)
=0.
Thus Claim 6.9 is proved.

Let (a,B,n€ZXZXZ,, with a=—1, B<—1 and a+f+cn=—1.
Putting

(a, B, n)T(s(m),1)=(4, B, n),
we have:
— A—B—n=r(m)a—r(m)B+rim)n
= —(ry(m)+7ry(m))B+ri(m)(a+ B)+rim)n
= 75(m)+(ry(m) —cnri(m))n=0.

Case II: s(1)=2. In this case, we put 7,(j)=a.:(7)+a:.(7), 7.(5)=
— 31 (J) — as(§) and 74(5) = —as(j) —as(j)—1. We have

0 1 0
T(s(1),1)=T2,1)=f =1 0 0
-b 0 1

If s(j+1)=s(j)+e, we have r,(j+1)=7.(7), 7.(7+1)=7r:1(j) +7:(5) and 75(5+1)
=cm(f)+rs(s). If s(F+1)=s(j)—e, we have »,(j+1)=ri(j)+r:)), r:(+1)
=r,(5) and 7(j+1)=—cra(f)+7s(5). It is easy to see that #,(j)=0 for
1=1, 2.

CLAIM 6.10. 74(3)—c;rs(3)=0.

PROOF. First, we assume that s(j+1)=s(j)—e for all j. Since N is
ample, the following inequalities are satisfied : a >eb-+c¢,, ¢;>¢s, =**, Ce1>Cn,
x>0, and b>c¢,+c,+ - +cn. Then we have ryg)—cmra(j)=b—1—
(14 -+ +¢;)=0.

Assume that 7:(5)—c;r,(5)=0 for some j and that, for ¢t=1, the follow-
ing are satisfied: s(j+1)=s(j)+e, s(j+2)=s(j+Ai1—1)—e for 2<21=<¢. Since
N is ample, the following inequalities are satisfied: ¢;,1>¢Cjp0 =%, Cjur-1>
Cisey Cir >0, ¢;>¢501+ o+ +¢j4,. Then we have
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Ta(j‘l‘t)_cju”'z(j'f‘t)
=ry(g)—c,;ra(J) +(c;—cj1— -+ —Ci+)72(54+1)
=0.

Thus Claim 6.10 is proved.

Let (a,B,nEZXZXZ,, with a<—1, <—1 and a+p+c.n=—1.
Putting

(a, B,n)T(s(m),1)=(4, B,n),
we have:

—A—B—n=—ri(m)a+rym)B+ri(m)n
= —(ri(m)+ry(m))a+ry(m)(a+ ) +rim)n

27(m)+ (rs(m) —cnra(m))n=0.

Case III: s(1)=38. In this case, (S, f) is of type I or type III. Thus
exl. We now put 7.(j)=au(f)+a(s), 7:(5)=—au()) —an(j) and ryj)=
—as(9) —as(j)—1 as in Case II. We have

—1 e 0
T(s(1),)=T(3,1)=| 0 -1 0
—b eb—a 1

By the same argument as before, we see that r,(j)=0 for t=1,2. To
prove Theorem 6.1.(2) in this case, it is sufficient to show that 7(j)—
c;r2(3) =0.

First, we assume that s(j+1)=s(j)—e for all 5. Then the following
inequalities are satisfied: b>ec;, ¢;>¢s **,Cno1>Cm, € >0, a>eb+e+eo+
s+« 4+¢,. Then we have

r3(J) — ;12 (g) =1rs(1) — (e + -+ +cj-1)7ra(g) —e;72(3)
=7y(1)— (e, + -+ +c;)ra(1)
=a—(e—1)b—1—(c,+ -+ +¢,)20.

Assume that 75(5)—c;7,(j)=0 for some j and that, for ¢=1, the following
are satisfied: s(j+1)=s(j)+¢, s(j+2)=s(j+1—1)—e for 2<1<t. Then we
obtain r4(j+t)—c;,.7r2(7+1t)=0 by the same argument as in Case II.

Thus Theorem 6.1.(2) is proved.
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