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Types of blocks with dihedral or quaternion defect groups
By Marc CABANES and Claudine PICARONNY

The main purpose of this paper is to prove the following

THEOREM 1. If two 2-blocks B, B’ of finite groups G and G’ have
the same Brauwer category with the same defect group D containing o
cyclic subgroup of index 2, then they have the same type.

The terminology used above is taken from [Br2]. The main step to-
ward this theorem consists in defining a perfect isometry between B and
B’. A perfect isometry may be viewed as a correspondence with signs
between irreducible characters of B and B’ which essentially preserves
contribution matrices (see [B2]). The existence of such an isometry has
numerous consequences on the block algebras OGB, OG'B’ over a complete
valuation ring @ with residual field k=0/J(O) of characteristic 2. It may
also result from an equivalence of their derived categories over O (see
[Br2] 3 and 6)”. Brauer-Olsson theorems ([B3], [O]) on generalized decom-
position numbers of characters in blocks with dihedral and generalized
quaternion defect provide enough information to define perfect isometries;
this will be our main source and we won't need to use the methods of
[E]. Part of the present paper shows how to restate in a compact way
most of Brauer-Olsson results (see II and III below), mainly by use of the
Broué-Puig * construction [Br-P1].

The case where D is a generalized quaternion group and G'=Cg(Z(D))
deserves special attention: when B and B’ are the principal blocks, the
corresponding block algebras are equal (this is a consequence of Brauer-
Suzuki theorem on groups with generalized quaternion Sylow). We show
that in the general case the signs in the isotypie may be removed:

THEOREM 2. If B 1s a 2-block of the finite group G with a gener-
alized quaternion defect group D, 1f H=Cgx(Z(D)) and b is the block of H
inducing up to B, then there is an isotypie I: CF(G, B; O)—»CF(H, b ©)
which sends Irr (B) onto Irr (b).

1) Using Erdmann’s classification of the corresponding modular block algebras
([E]), M. Linckelmann shows that two blocks satisfying the hypothesis of theorem 1
are derived equivalent over k¥ when D is dihedral [Li].
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The paper is organized as follows. Part I is devoted to background
results and notations on local block theory, mainly via the approach of
[A-Br], in order to set the main definitions of [Br2]. In part II we recall
the results on fusion of subpairs for this kind of defect group. In partic-
ular we show how the theory of essential groups leads to a quick deter-
mination of Brauer-Olsson cases of fusion.

In part III we show how Brauer-Olsson results on generalized decom-
position numbers may be stated in terms of the * construction. This pro-
vides a precise parametrization of non-rational characters in Irr (B) by non-
rational characters in Irr (D). This is then used in IV to properly define
perfect isometries and check Theorem 1.

Part V is devoted to the proof of Theorem 2. It consists mainly in
imitating what has already been done for principal blocks (Brauer-Suzuki
theorem [B1] VII, see also [D] 14): one studies restrictions to H=C4(Z(D))
of integral combinations of characters in B which are zero on G,. Inour
case a truncated restriction provides an isometry on those central functions
(Step 1), this is due to the strong condition of control satisfied by H in
G. Moreover, we have coherence (Step 2): this isometry extends to all
integral combinations of characters into a perfect isometry. The equality
of all signs involved is checked by ad hoc computations mainly using sums
of involutions in the group algebra.

Both authors thank Michel Broué for having provided explanations and
encouragement. The results of part III were presented in the framework
of a DFG program at Essen in May of 86.

I. Notations and background.

Let | be a prime, G and G’ two finite groups, O a complete valuation
ring of characteristic zero containing primitive |G| and |G'|-th roots of
unity and having residual field k& of characteristic . Let K be the frac-
tion field of O, irreducible characters of G are considered as characters of
the group algebra KG, so they are elements of CF(G; ©O) the set of central
functions on G with values in @. We denote similarly CF(G: K)=
KQCF(G: ©); we recall its standard inner product defined by (fi, fo)e=
IGI_lzqerl(g)f;(g—l)-

It is well known that the elements of Irr(G)\UIrr(G’) take values in
a finite extension K'DQ. We denote by I' the Galois group of K’ over
its subfield generated by roots of unity of order prime to I. If ¢<T,
y€Irr(G) and geG, the formula a(y)(g)=0(x(g)) defines an action of I'.
The characters of G fixed by I" are called “I-rational”.
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1. Conjugation. If g=G, we denote by int(g) the interior auto-
morphism defined by int(g)(g')=g¢gg'g™*. If H is a subgroup of G and if
9,9 are elements of G, we write g=»zg' wWhen g=int (h)(g’) for some heH.

2. Blocks and characters. Any Il-block B of G may be considered
as a primitive idempotent in Z(OG), the center of the group algebra over
O this induces an orthogonal projection f—B. f in CF(G; O) by B. f(g)=
f(Bg) (where f has been extended to OG by linearity), the image is de-
noted by CF(G,B:; ©). The projection sends CF.(G; O)={feCF(G; O);
F(G\G,)=0} into itself, so we denote by CF,.(G, B; O) the set of elements
of CF(G,B; ©) which are zero outside l-regular elements. We use anal-
ogous notations CF(G, B; K), CF,(G; K), CF,.(G, B; K) for corresponding
vector spaces over K. Irreducible characters in B are supposed to be
characters of KG-modules, their set is denoted by Irr(B):=Irr(G)n
CF(G, B; O), with the same notation for Brauer characters IBr(B)=
IBr(G)NCF,.(G, B; K). One has CF.(G, B; ©)=0[IBr(B)] and CF(G, B; K)
=K[Irr(B)].

3. Decomposition map. If x=G,, one has the decomposition map
di: CF(G; O)—=CF,.(Cs(x); ©O) defined by d&f(g9)=rf(xg); it is onto. If b is
an I-block of Cy(x), one writes d§f=b.déf. We shall often abbreviate
by omitting the subscript G when there is no ambiguity.

4. Subpairs. We freely use the setting of subpairs, “Brauer ele-
ments”, fusion of subpairs, conjugation families, as taken from [A-Br]. If
a maximal subpair (D, bp) is given in G, subpairs included in it are just
indexed by the corresponding subgroups of D : one writes them (X, by). If
S is a system of representatives of Brauer elements in (D, bp) mod. G-
conjugation, the family of maps (d*°).s,es Provides an isometry

L
(@) ppes : CF(G, by; O)—> & CF.(Cel@), ba; O).

(r.b e

5. Isotypies. As in [Br2], the fact that two l-blocks B and B’ in G
and G’ have the same Brauer category means the following: they have a
common defect group D, there are maximal subpairs (D, by)D(1, B) and
(D, bp)D(1, B’) in G and G’ such that for all pair X, ¥ of subgroups of D
one has {s€Hom (X, Y); dg=G such that g¢g(X,by)g'C(Y,by) and o=
int (g)ix}={c€Hom (X, Y); 3g’€G" such that g'(X, by)g' 'C(Y, by) and o=
int (¢')ix}. In particular the fusion of subpairs and Brauer elements in-
cluded in (D, bp) (see [A-Br]) are the same in G and G'.
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If B,B’ are I-blocks of G,G’ with same Brauer category, let’s con-
sider a linear bijection I: CF(G, B; K)—CF(G’, B'; K) such that

(i) Vy=Irr(B), I(y) or —I(y) is in Irr(B’)

(ii) VueD\{1} and Vy, £=Irr(B), one has (d"‘”’;»’(I(x)), d‘""’;t’(I(S)))chu)
:(d(u.bu)x, d(u'b“)g)ca(u)-

Such a map is an isometry and defines a family of isometries I/
from CF,.(Cs(u), b, ; K) onto CF,(Ce.(w), b; K) by d®*woel=I*od™", so
I is fusion compatible in the sense of [Br2] 4.3.

If, for all w in D\{1}, there exists an isometry I‘*’> from CF(Cs;(u), b, ; K)
onto CF(C;.(u), b,,; K) such that

(i)y Vy€Irr(b,),I(y) or —I(y) is in Irr(b,)

() £ 0dbees = doyio I,
then I is a perfect isometry (in the sense of [Br2] 1.4). Moreover, if each
I is a perfect isometry, then I is an isotypie from B to B’.

Proofs of the above are easy to derive from [Br2] 4.5 and 4.6.

6. Basic sets and contribution matrices. If (u,b,) is a B-Brauer
element, a basic set for b, is any Z-basis @, of Z[IBr(b,)]CCF,.(Cs(w), by ; O).
The Cartan matrix C(9,) for this basic set is such that C(@,) '=
(@) @ )cgwr)g.grcou-

According to [B2] 5, if y,&é=Irr(B), one defines the “contribution of
(u, by) to (yx, &)¢” as (d(u’b")X: d(u'b")f)c(;(u)- Let Au:(n1¢)xelrr(8).¢e(bu be the
generalized decomposition matrix with respect to @,: d““*wy=Zjco, Ny 9.
Then A‘A,=C(®,) and the contributions are given by the matrix
A,C(@,) AL

7. Broué-Puig * construction. If (D,b,) is a maximal subpair for
G, a “(G, bp)-stable” generalized character of D is any generalized character
n of D such that n(u)=n(v) each time there is g&G such that (u,b,)=
g(v, b,)g™* with both u,v in D. Then, if y=Irr(b,), one defines the central
function yxp<CF(G,b,; O) by d™“’?(yxn)=nu)d™’’y. The main result
in [Br-P1] is that y*y is a generalized character.

If g=I’, then o(y*n)=0a(x)*a(n).

II. Fusion.
Let us recall the notion of “essential” subpair:

DEFINITION. A subpair (U, b) in G is said to be essential if, and only
if, b is of defect Z(U) in Cg(U) and N= N, (U, b)]UC;(U) contains a proper
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subgroup M such that I divides |M| and Yg=N\M, |M~DM#| is prime to 1.

The main application to the fusion of subpairs is the following de-
scription of conjugation families (see [Brl] 2.9): if B is an l-block of G, a
set of B-subpairs contained in a maximal one (D, bp) is a conjugation family
if, and only if, it contains (D, b,) and a conjugate of each essential B-
subpair (for a complete study, see [L]).

From now on we assume [=2, B is a 2-block of G, (D, bp) is a maxi-
mal B-subpair and D contains a cyclic subgroup C of index 2. The inspec-
tion of essential subpairs is made easy by the following elementary fact
applied to subgroups of D: if U has a cyclic subgroup of index <2, then
Aut(U) is a 2-group except when U is kleinian (then Aut is S;) or quater-
nion of order 8 (then Aut is S,).

Let us denote by = a generator of C, |x| its order and let ¥ be an
element of minimal order in D\C. One denotes z==x'*"% it is central.
Then, either D is cyclic, generalized quaternion (then y is of order 4), or
a semidirect product Cx<y> with yxy '=ux (abelian), yxy '=2"' (dihedral),
yoy '=zx with |x|=4 (semidihedral) or yxy '=zx ' with |z|=8 (quasi-
dihedral). Note that the Klein group is considered both as abelian and
dihedral. One checks easily the following: D has kleinian subgroups U
with Cp(U)=U if, and only if, D is dihedral or quasidihedral, then they
are D-conjugate to <(z,¥> or <z,xy>; D has quaternion subgroups of order
8 if, and only if, D is generalized quaternion or quasidihedral, then they
are D-conjugate to <x'®' xy> or <{x'*' y>.

One then finds a saturated system of the essential subpairs in (D, bp)
mod. G-conjugation as follows: '

—1if D is dihedral of order =8: one takes the pairs (U, by) such that U=
Lz, zy> or <z,y> (both kleinian) and Ng(U, by)[Cs(U)=S,,

—if D 1is quaternion of order =16: one takes the pairs (U, by) such that
U=<x'"", zy)> or <x'*'"*, 4> (both quaternion of order 8) and N (U, b;)] UCs(U)
;Sfi)

— if D is quasidihedral of order =16: one takes the pairs (U, by) such that
U=<z,y> (kleinian) or <z'®*'", xy> (quaternion of order 8) and N;(U, by)/ UCs(U)
=85,

— otherwise there is none.

The cases are labeled (aa) when the two subpairs listed above are
essential or when |Ng(D)/Cy(D)|=8 (which implies that D is kleinian or
quaternion of order 8).

We label (ab) (resp. (ba)) the cases when only the first (resp. the
second) is essential. Note that they are different only when D is quasi-
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dihedral: otherwise, one may replace y by xy.

The remaining cases for fusion are labeled (bb) (this includes D
abelian non kleinian and D semidihedral).

Note that if (U,by) is essential then N;(U, by) is transitive on the
elements of U of given order®. One then obtains easily in each case a
system of representatives & of the Brauer elements (u,b,) mod. G-conjuga-
tion. For instance, if D is dihedral, a system of representatives is
{(u, b,)}ues. Where S’ is a system of representatives of C mod. inversion,
plus {(y, b,)} in case (ab), nothing in case (aa).

The following is straightforward :

PROPOSITION 0. (i) B 1is nilpotent 1f and only 1f the fusion falls into
case (bb),

(ii) of ueD\{1} and (u, b,) is mot conjugate to (2,b,), then b, s mil-
potent,

(iii) of D 1s dihedral of order =8, generalized quatermion or quasi-
dihedral, b, has a reduction mod. z denoted b, with dihedral defect D/<{z>
in Cg(2)/[<z>. When D 1is quasidihedral and case (aa) (resp. (ab)) occurs
for B, then case (ab) (resp. (bb)) occurs for b,. When D is dihedral, case
(bb) occurs for b,. Otherwise (D generalized quaternion or D quasi-
dihedral with case (ba) or (bb)) Cq(2) 48 a B-control subgroup (see [A-Br]
4.20), so the fusiom case for b, is the ome labeled the same for B.

III. Brauer-Olsson’s theorems and the * construction.

We now return to our particular 2-blocks. We have seen above that
except in the cases (aa), (ab) and (ba), B is nilpotent. Then the problem
of perfect isometries and types is solved (see [Br2] 5B, in fact the blocks
have the same source algebra thus are Morita equivalent by [P]). So we
concentrate on the cases already studied by Brauer-Olsson where D is
dihedral, generalized quaternion or quasidihedral. Then D/[D, D] is kleinian.
One denotes the four linear characters of D as follows: {1, 5, A5, 4} With
A, the trivial character, Ind31=2,+4,, As(xy)=1 in the dihedral case, —1
in the others. For technical reasons we denote 7,=—24;+4 2,4+ 234+ 4, when
D is kleinian or quaternion of order 8, 7,=—2,+4;+ 2, otherwise; then it
is easy to check that %, is (G, bp)-stable in all cases for fusion.

If peIrr (D)\{2i, 25, 4, A4}, it is of the form p;=1Indé 2 where 2€Irr(C)
and |A|=4. Moreover p;=y; if, and only if, 2=21" or A'%.

2) This would prove at once that the saturated system of essential subpairs given
above is minimal, hence a system of representatives mod. G-conjugation.
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We gather next all the information we need on Irr(D). We denote
by & the character of C of order 2.

Characters of a dihedral group of order=8

Aok kA Indiz o Tnded
1 1 1 1 1 2 2
z 1 1 1 1 2 —2
Y 1 -1 -1 1 0 0
Y 1 —1 1 -1 0 0
Res¢ 1 1 ¢ € A+ AY A+ Y

Characters of a generalized quaternion or quasidihedral group

A A2 A3 24 Indé 2 Indg 2 Ind? 2
1s1a<izi/2 1A= 1x1/2 121=1z|
1 1 1 1 1 2 2 2
z 1 1 1 1 2 2 —2
x'e 1 1 1 1 2 —2 0
if 1D1216
y 1 -1 1 =1 0 0 0
Ty 1 -1 -1 1 0 0 0
Res¢ 1 1 € e A+ Y A+ Y A+2Y

To describe irreducible characters in B and their generalized decom-
position numbers, we shall keep the same notations as in [B3] for the
dihedral case and [O] 4.6 for the others. By [B3] (6C, 6H) and [O] 4.6,
Irr (B) contains four characters y;, s, ¥s ys of height zero; they satisfy
d*y;=0,¢, with J, a sign and IBr(b,)={¢.}; if IBr(b,2) has just one ele-
ment ¢,. (that is |D|=8), then d"”z'”xz’xi:;',-qszz where 7, is a sign. The
numbering satisfies: 7,0,=720,=— 7303= —7.40,.

II1.1. Dihedral defect.
Assume D is dihedral and case (aa) or (ab).

LEMMA 1. Let y be any irreducible character of height zero in B and
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7,9 any (G, bp)-stable generalized characters of D. Then we have

1 1 ,

5(77, 77')c+§77(1)77’(1), in case (aa)
(e*n, xxn')e= .

5(% 7)o+ ”2—(% 7)1 case (ab)

where (1, 7')y denotes the inner product of restrictions to YCD.

PROOF. By the isometry in I.4 and the definition of the * construc-
tion (L7), (xxn, x*7)e 18 Bawspesn@y’ @ A %y, d“ %y)cw;.  When
u#1 b, is nilpotent (II.0.(i)) and the generalized decomposition number of
x is a sign, so (™", d“"¥y) ¢ w =|Dw)|* where D(u) is a defect group
of b,. In case (aa) one may take u=C, so D(z)=D and D(u)=C for others.
In case (ab) one has in addition D(y)=<z,y>. This determines all
(@ 2wy, AP WY) e par’s for u#1, then (d'y, d'y)e=1— Zuri(d ™%y, "%y ¢ geus
making |D|"'4+1/2 in case (aa), resp. |D|™'+1/4 in case (ab). This implies
the formulas of Lemma 1.

Let’s consider the following (G, by)-stable generalized characters of D :
if p=1Indg 2 with 4< (2| z], let

t—2e, if 4<(2) <],
Np=1 p+i:—2.2, if |A]=]x| in case (aa),
p—2s+2A4,— 2, if |A]=|z| in case (ab).
PROPOSITION 1. There s a parametrization pu—y, of the elements of
Irr (B) of height #0 by Irr (D)\{2i, A5, A3, A} such that
O1Y1*70= — Oa)2— 03— Oss,
O XNy =Y p— 022 -

In case (ab), one may assume moreover §,0;=0.0,=—1 and y,*As=7s.

PROOF. We compute (y:*79, x1*7')e using Lemma 1 for the described

(D, bp)-generalized characters 7, 7’.
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L1*A1 X1%Mo X1¥0 Y1*As
only in case (ab)
X1*¥ A1 1 0 0 0
X1% 0o 0 3 1 1
Xl*np' 0 1 1+5#,#r 0
%23 0 1 0 1
only in case (ab)

So d;x:*7, is a linear combination with signs of three distinet irreducible
characters all different from y,. If they are not all of height zero, only
one is and, since d,y,*7, is 2-rational, the other two must be the elements
of F,, the only class of cardinality 2 under the action of the Galois group
I’ on Irr(B) (this forces |D|=16); in particular, the rational part of their
generalized decomposition numbers on (x, b,) is zero and, as 7,(x)=—3, this
contradicts the fact that decomposition numbers of characters of height
zero on (x, b,) are signs (see [B3] 4C, 4E). So these three are y,, s, 3. and
the study of decomposition numbers at (x, b,) shows that o,y *9,=— 2i-20.%:-
Assume now |D|=8. The d,7:*»,’s, being of square norm 2, are each a
linear combination with signs of two distinct characters. Moreover the
inner products with — 3{_,0:x: is 1, 80 01yi*n,=euy,— 0:.2:, TOr 5,E{2, 3, 4}
and ¢, ={x1}. The mutual inner products are 1 and (51;(1*1],1—%510;(,-0)(1):
51X1(1)+5i0Xi0(1) has a constant sign, so one may write d.x:*9,=ex,—0d: %,
with distinct y,.’s in Irr (B)\{xi, x= s x. This provides a bijection p—y,
between Irr (D)\{2, As, 45, 4y and the characters of height =#0 by [B3]
Theorem 1. When p=Indé2 with |i]=4, then y, must be the only 2-
rational character which is not of height zero and the results on the gener-
alized decomposition numbers ([B3] 6C) at (x? b,2) readily imply e=1 and
To=2.

In case (ab), 0,0;=0,0,=—1 and d'y;, d'y. are independent with d'y;=
d'y, and d'y,=d'y, by [B3] 6H. On the other hand y,*4; is orthogonal to
x1, of norm 1, height zero and same d' as ys, so it is ya.

II1.2. Quaternion defect.

Assume D is generalized quaternion and case (ab) or (aa). We keep
the notations of [O]. In particular, we take a numbering of the charac-
ters of height zero yi, xs xs . satisfying [O] 4.6. We write F,_,={xs},
F,.,={ys (characters of height n—2 where |#|=2""") when they exist.
Also we shall use the signs ¢, #, p defined in [O] 4.6.
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LEMMA 2. Let y be any 1rreducible character of height zere in B and
7, 7 any (G, bp)-stable generalized characters of D. Then we have

1 1 )
[5(77, n')c+§(7z, )¢y, tm case (aa)
(exn, xxn')e= )
l;(m 7)o+ 3(7), 7' )y, A case (ab)

where (9, 7')y denotes the immer product of restrictions to YCD.

PROOF. The idea of the proof is the same as for Lemma 1. To deter-
mine (x*n, x*n’')s, one must moreover compute the contribution
(d*y, d“*?y)cpey. It can be determined from [O] 4.6 by the formula
recalled in I.6: (d“°?y, d“*#y)c,> equals |D|"'+1/4 in case (aa), resp.
|[D|"'4+1/8 in case (ab).

Let’s consider the following (G, bp)-stable generalized characters of D:
If p=Indg 2 with 4<|2|< x|, let

p—2s, if 4<|2]<|x]/2,
[p+12—221, if |2|=|x|/2 in case (aa),
T pt =2y, if 12]=|2]/2 in case (ab),
o if |2]=]z|.
TVT} set F={p; p=Indg A with 4<|2|<|z|} and F'={g; p=1IndZ 2 with
|2l =]xl}.

PROPOSITION 2. There is o parametrization pu—y, of characters of
hetght 1 by Irr (D)\{4,, A3, 45, A} such that (notations of [O] 4.6):

517(1*7]0:_‘52)(2—53)(3_54)(4;
51X1*’7/42X;1—52x2; /Lf ‘[169",
Xuteikysteoxs in case (aa)
O 1*n,= ) if p=g’.
Xp— E1E)s wm case (ab)
In case (ab), one may assume 8,6,=0,0,=—1 and y,*A,=7y..

PROOF. As in Proposition 1, we compute (8,x,*%, 313" )¢ by use of
Lemma 2. The results are in {0, 1,2, 3} and are precisely the inner prod-
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ucts of the expressions given in the statement.

The proof of the equalities of the proposition then goes as in Proposi-
tion 1, making use of [O] 4.6 to recognize classes of characters under the
action of the Galois group I and to check the decomposition numbers at
x, x? and z; it should be noted here that in the table of [O] 4.6 for the
decomposition numbers at z, when [(b,)=3, the rows corresponding to the
characters of height zero should be multiplied by —1 (otherwise the first
column would not be orthogonal to afi*~?).

II1.3. Quasidihedral defect.

Assume D is quasidihedral and case (aa), (ab) or (ba). Keeping as in
II1.2 the numbering of characters of height zero and the notations of [O]
4.6, we write F,_,={ys} (character of height n—2 where |x|=2"").

As in the dihedral and quaternion cases, one proves the following :

LEMMA 3. Let y be any irreducible character of height zero in B
and 5,7 any (G, bp)-stable generalized characters of D. Then we have

%(1), 7}')c+%7](1)77'(1)+—;—7)(z)7]'(z), i case (aa)

1 1 1 .
(x*9, 1*0 )6 = 3(7], 7 )e+ Z?](l)ﬂ'(l)-i- Zv(xy)v’(xy), wn case (ab)

1 , 1 , )
E(ﬂ, 7 )e+ 5(7}, 7 )z us in case (ba)

where (3, ')y denotes the tnner product of restrictions to YCD.

Consider the following (G, bp)-stable generalized characters of D: If p=
Ind22 with 4< (2| < 2|, let

2= A, if 4<(2]<|z]/2 or if |A|=|z|/2 in case (ab),
p+As—A4,— 24, if |2|=|xz|/2 in cases (aa) and (ba),

Ne=\ p+A—2A—2;, if |2|=]x| in case (ab),

p+A:— 24— 4, if [A]=]|z| in case (aa),

7 if |A]=]|z| in case (ba).

Let F={g; p is in one of the above first three cases} and F’' be the
remaining cases, that is F’'={p; p=1Ind? 2 with |2|=|z| in case (aa) or (ba)}
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PROPOSITION 3. There is a parametrization of characters of height 1
by Irr (D)\{4,, Az, 43, 44} such that (notations of [O] 4.6):

51){1*770: - 52X2_ 53X3_ 54}(4)
0¥, =xp— 052 f pEZF,

XuFOou—eikys im case (aa),
51)(1*77;1: ) if ‘ueff'.
Ap —E1EXs wn case (ba),

In case (ab) (resp. (ba)), ome may assume §,0,=0,0,=—1 and y,*As=y, (resp.
X1*24=X4)-

PROOFS. The inner products (d:x:*9:, ix:1%%,)¢ for 4, 5= {p}\V{0} can be
computed using Lemma 3. The outcomes are in {—1,0, 1,2, 3} and coincide
with the inner products of the expressions given in the statement.

The proof of the equalities then goes as in Proposition 1, making use
of [O] 4.6 to recognize classes of characters under the action of the Galois
group and to check the decomposition numbers at x, 2® and =z.

II1.4. The case when z is central (|D|=8).

The following proposition is used in IV.2 and V. We assume one of
the cases described in 1,2,3 occurs and we keep the same notation. We
consider b, and determine the characters with z in their kernel.

PROPOSITION 4. If z€Z(G) then {y|xysIrr(b,), x(@)=x(V)}={s 1.l 1=
1,2,8,4, p=Ind¢ 1, 4|2 2|/2} with notations of III. 1,2, 8.

PROOF. The block b, of C4z(2)/<z>, being of dihedral defect (II.0.(iii)),
has four characters of height zero. If one makes them into characters of
Cs(2) with 2z in their kernel, they are in b, with same degrees, so they
remain of height zero. Since there are four of them, they are all the
characters of height zero in b,.

Now let 6 the endomorphism of CF(G; ©) defined by 0(f)(h)=f(zh).
If y=Irr(b,) then d(x)={£y}. So O(f)=f if and only if (f,3)¢=0 for each
x such that 6(y)=—yx. This implies that the components of y,*7, satisfy
6(x)=y when p=Ind¢ A with 4<|2|<|«|/2 and 6(y)=—y when |1|=|z|. This
finishes the proof by Propositions 1, 2, 3 above.
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IV. Proof of Theorem 1.

We now prove Theorem 1. Let B, B’ be as in the hypotheses of the
theorem, with characters y, y' respectively. We keep the notations of the
preceding section except that we put a prime ’ on each character or sign
for B’. We choose for B, B’, b,, b, a parametrization of irreducible charac-
ters satisfying Propositions 1, 2, 3.

IV.1. Fusion compatible isometries.

Let
’ I:CF(G, B; K)— CF(G',B'; K)

defined by I(6,x:.)=0iyi for 1=1,2,38,4, I(e;xys) =e1x'xs, Leroxs) =¢10’xe When
they exist and I(y,)=yx,. for each pcIrr (D)\{a,, Az As, A4}

Let us show that I is a fusion compatible isometry. We must check
the equalities of the inner products (ii) given in I.5, or equivalently
that the matrix of mutual inner products of the d““*«’s of d.x1, 0232 Osxs
0udas (X petrronig.2p.25.200 €15X5 €10%s is the same in G and G'. Let A, be
the decomposition matrix of 0.x1, 0232, Osxe Oafas (Xu) petrrdrniag. 25.25.2507 E1ELss E10Xs
at (u,b,) with respect to a basic set. Then, the Cartan matrix of this
basic set is still equal to AL A, since changing the rows of A, by signs does
not affect ALA,. So, the matrix we seek is A,(ALA,)'AL. It is clear
from [B3] 6C, 6H and [O] 4.6, 4.8 that the generalized decomposition
matrices of 8131, 022, Osxs OusXe €16%5 €10xs ANA  O1x1, Ooxz, Osxs, Osx, €16 X5, €10" %
with respect to a suitable basic set are the same up to a sign (this sign
is enem When u<C is of order 2™, otherwise it is 1). It is also the case
at the row p by the formulas of Propositions 1, 2, 3. This gives
A (AL AL)TTAL = A, (ALPAL) ALY as required.

IV.2. Isotypies.

Let’s show how to extend those isometries into isotypies. As said in
1.5 we have to extend each IS : CF,.(Cs(u), by K)—CF,.(Cs (), by; K). If
b, is nilpotent, then CF,.(C¢(u), b, ; O)=C0¢, where {¢,}=1Br (b,) (see [Br-PJ).
One has d™*2y,=+¢, for i=1,2,8,4, so I;¥(g.)=cup With e, &{+1}.
Choose any y (resp. y’') of height zero in Irr(b,) (resp. Irr (b)), then ¢,=
d'y. Thus I defined by I (y*n)=e.x'*n extends I;* and it is a fusion
compatible perfect isometry (see [Br2] 5B) satisfying (i), and (ii), of I.5.

If b, is not nilpotent with w+1, then ==z and D is generalized quater-
nion with fusion (aa) or (ab), or quasidihedral with fusion (aa) or (ba), b,
has defect D and |D|=8 (Proposition 0). Let (7:)i=1,...0 (7.). be the ele-
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ments of Irr(b,) in a numbering satisfying Proposition 2 or 3, with
associated signs (8:)ic1.234, &1, % 6. When reducing mod. <z> one gets a
block b, of Cg(2)/<z> with dihedral defect D/<zy. The characters i, 7s, 7
7« have z in their kernel and one denotes by %, s, ¥s, 7: the corresponding
characters in b, (Proposition 4). Then Proposition 1 is satisfied since the
numbering of the characters of height zero is determined by the products
of generalized decomposition numbers at x and x*® and those are preserved.
Their associated signs are 6,=4,.
Now let’s take the following basic sets for b, in Cu(2)/<2) :

$1=d"(0,0:1+d:%2), $2=—d'(d:%2), When [IBr(b,)|=2,

¢1=d1(5121+527—62), 9’5 =—d (047(4); ¢3=—‘d (5171)’
when |IBr(b,)|=3 and |D|=

¢1:d1(5 X+ +0 Xz), ¢2— 5 Z) ¢3: —dl(glil),
when |IBr(b,)|=38 and |D|=16.

' The relations of III.1 for C,(z)/<z> show that we have defined basic sets
and allow to compute the decomposition and Cartan matrices. One finds
|D|/8+1 —1 1
|D|/2+1 i) or [ —1 2 0| for [IBr (b,)|=2 or
1 0 2
3 respectively. So they are twice the above when (¢;); is considered as
basic set of b, in CF(C4(z),b,; ©). Thus we obtain the Cartan matrices
used in [O] p.227 and 229. Olsson proved that if the Cartan matrix is
as above, then the generalized decomposition matrix at z of i, ¥s X3 e
(%e)us % xs is one of the following :

<51€1 0 0 _5451 € *** & —€&; *** —E& K )t
6161 _5281 5351 _5451 0 M 0 O o 0 2/{' ’

the Cartan matrix <

0 0261 0 —08 € v & —& v —e £ O\

0 0 —0gs1 Oy 0 -+ 0 0 -« 0 —x pl,
—0:8; 06 0 0 0---0 0 -+ 0 E P

0 8y, 0 —08& € & —& v —e K 0!

5151 —5251 0 0 0 -+ 0 0 - 0 —K —pQ0],
0 0 5351 _5451 0 -+ 0 0 - 0 K —p

with ¢, written |D]/8—1 times and —e, written |D|/8 times.
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When |IBr (b,)| = |IBr(b;)| =2, this implies that d*(8,x:) =¢.(¢,+ ¢,), d*(3:x2)
=—¢&¢,. So, the isometry I described in 1 above thus satisfies I7(e::)
=¢¢; for 1=1,2. If the generalized decomposition matrix of Irr(B) and
Irr (B’) correspond to the same of the above last two cases, then similarly
LP(eid)=eigi for i=1,2,3. Otherwise IS”(e;,)=—cipl, IS (e1¢s)=¢165,
Iz('z>(51¢3):5{¢§-

When I57(c,0,)=ei¢1, define I”: CF(C4(2),b,; K)—CF(Cs.(2),0.; K) by
I®Gg0)=aadg:  for 1=1,2,8,4, I®G)=cejn IO k) =aaéik'is
I®(&,576) =¢ce1é19'7.. Then IV.1 above tells us that I“ extends I,” into
a fusion compatible isometry. Then, by I.5, I is perfect and so is I*.
Thus I is an isotypie and this completes the proof of Theorem 1.

When I5(e;6,)= —eig;, it suffices to compose the map I‘” defined
above with a perfect isometry o: CF(Cs(2),b,; ©)—CF(Cs(2),b.; O) such
that ¢?=1d, ¢(6,71)=26s7s and o(G.5.)=46sjs if |D|=8, resp. o(8,7,)=0s7; and
0(623.)=0d,4, if |D|=16. This clearly implies o(¢,)=¢s o(ds)=¢, and also
o(¢)=—¢, since ¢;=d'(6:71+027.)=—d'(ds7s+d:%;). The existence of such
an isometry is checked as in IV.1.

REMARK. In the generalized quaternion case (cf. Proposition 0 (iii),
this includes the above case when |IBr (b,)|=3) another proof is as follows.
We prove independently in V below that there is an isotypie between
CF(G,B; ©) and CF(Cg¢(2),b,; ©). So it remains to find an isotypie be-
tween CF(Cg4(z),b,; ©O) and CF(C;.(2), b;; ©). But in this case of a central
2, it is easily checked that the isometry I of IV.1 is an isotypie: the
Brauer elements (u, b,) with w+#1, 2 still give no trouble while on the
other hand I;°=1I;, which is extended by I.

V. The quaternion case.

From now on assume that B is a 2-block of G with generalized qua-
ternion defect group D and set (D,bp)D(Z(D),b,)D({1}, B). We write
H=Cgs(z).

Let us define a linear map:

R:CF(G,B; ©)— CF(H,b,:; ©O)

Jf—b,. Resi(f).

Let CF|(G) (resp. CF,(H)) denote the subspace of CF(G,B:; O) (resp.
CF(H,b,; O)) equal to kerd!. Then CF(G, B; O)=CF.,(G, B; O)®+CF,(G)
and CF(H,b,; O)=CF,(H,b,; O)P*CF,(H) (see I.4). Moreover, one has
R(CF,.(G, B; O)CCF,.(H,b,; O) and R(CF,(G))CCFy(H) (see 1.2).

We will prove the following additional properties.
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Step 1. If feCF(G, B; O) and f,&CFy(G), then (f, fo)e=(R(S), R(f0)x-
Thus R induces an isometry from CF,(G)NZ [Irr (B)] onto CF,(H)NZ[Irr(b,)]
whose inverse map coincides with B.Indg.

Step 2. (coherence) There exists an isotypie R:CF(G,B; Q) —
CF(H,b,; O) which coincides with R on CF/(G).

Step 3. R(Irr(B))=Irr(b,) or —Irr(b,).

It is obvious that Theorem 2 follows from 2 and 3 above.

The following shows that the hypothesis on D and fusion of subpairs
is a bit stronger than control by the subgroup H. We denote D*={uecD/z2
e<u>}=D\{1} and H*={heH | h,= D%.

LEMMA 4. If weD* feCF(G, B: ©O) and he HY, then
(i) the block b, 1s the same for G and H,

(ii) d“'Wf=d“*WRf over Cg(u)=Cylu),

(i) fh)=Rf(n).

PROOF. We first show that if b is a block of Cgz(u)=Cy(u) then the
inclusion (1, B)C ({u>, b) in G is equivalent to the inclusion (1, b,)C (<u), b)
in H. This proves (i) at once. Since <z)C<u), we only need to show this
for u=2z. So let b be a block of H such that (1, B)C({z),b), then there
exists g=G such that g(<z>, b)g ' (D, by). But z is the only involution in
D, so gH and b=b,. Clearly, (i) implies (ii) which implies (iii).

We now check Step 1.

By 1.4, one has (f, f)¢= Sw.opes(@™?2f, d“*f)coay for S a system
of representatives of Brauer elements (u,b,) in (D, by) mod. G-conjugacy.
One has d"®f;=0 and d“*?Rf,=0. Then (f,fo)e=2wspesd™’?f,
A ) o pary =(Rf, R fo)e since S is a system of representatives for sub-
pairs of H in (D, by) by Lemma 4 (i) and Proposition 0 (iii).

Then R induces an isometry from CF(G) into CF,(H).

The map J=B.Ind%: CF(H,b,; O)—CF(G, B; O) is adjoint to R. Then
JoR fixes each element of CF(G) since (JoR(fo), fle=(R(fo), R(f))u=
(fo, fle. On the other hand rkeCFi(G)= Ziu.opresus1lIBr(b,)|=rkoCF(H).
This implies that R(CF,(G))=CF,(H), J(CF,(H))=CFy(G), and R, J give
inverse isometries on those spaces. They also give rise to inverse iso-
metries on generalized characters in CF,’s since R and 4 clearly preserve
characters. This establishes Step 1.

We now turn to Step 2. We use the notations of III.2 for the ele-
ments of Irr(b,) and associated signs: (yi)i—1.2s456 (Lu)uctrrdonii, ipiq i, are
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the characters of b, (in IV.2, they were denoted by 7 to avoid confusion
with Irr(B)).

In case (aa), the following are generalized characters in CF(H): d;y,+
Baxat Osys+ 0uxay Yp— 0131~ 02Xz for p=sIrr (DY\{241, A2, 23, Ad}, €165~ Or)1— Ouas
&,0%6— 011 — Osys. Concerning the last two this comes from the decomposi-
tion at z (see [O] 4.6) and Proposition 4. The others come from Proposi-
tion 2. In case (ab), one checks similarly that the following are in CF,(H):
Six1+ 8axs, OaxatOsxs, Yu— 01— 0sxe for pEIrr (D)\{2y, 22, A5, A4}, €1k)s+01x1—
8.y Let us consider the images by J:

LEMMA 5. In case (aa) there are ¢y, s, s, iy Ps, Py (D) petrecdoniy 292529
in Irr (B)Y —1Irr (B) and corresponding to distinct characters, such that:

J(51){1+52Xz+5313+54X4):¢1+¢2+(/J3+¢4 ’
J(X,; ‘517{1_52)(2):9[’,.: —d1— ¢,
J(EIEXS—(SlXI _54X4):</’a_“9’)1_¢'4 ’

J(€1PX6_51X1—53X3):¢6—¢1‘9/13 .

LEMMA 6. In case (ab) there are ¢i, s, Ps, Pu, G5, (D) peteedrniy ag.25.2, U0
Irr (B)\U —Irr(B) and corresponding to distinct characters, such that:

IO+ 0 =1+,
J(0oxa+dsya) =¢po+ s,
IQu =001 0ox) =P — 1= 2,
I(erkys+ 01— 0ox2) =5+ Pr1— 2 .

PROOFS. The proofs are very similar to what was done in III: the
inner products of the results are known since J is an isometry. Let’s
take case (aa). Then J(d,x+ daxe+ Osys+dsxs) is a generalized character of
square norm 4. Its value at 1 is 0, so it cannot be + twice a character,
hence J(d,x1+ 0sx2+ dsys+dsxs) is of the form announced in the lemma. The
other images have square norm 3 and inner product —2 with ¢,+¢.+¢s
+¢,. So there exist ¢,, ¢s ¢sin £Irr(B) such that J(y,— i —daxe) — ¢y,
I(erkeys— 01x1— 0xs) — b5, I (erpys— 011 — Osys) —Ps are each a sum of two ele-
ments in {—¢,, — ¢, —¢s, —¢,} With mutual inner products 1 or 2. Num-
bering ¢, ¢, ¢s, ¢, such that the one common to J(ewwys—0:x:1— duxs) — s
and J(€1p16—5111—5sxa)—¢s is —dy, then _¢4 in J(51’CX5_51X1_54X4)“¢5 and
—¢5 in J(eypys— O1x1— ds)s) — Ps, We obtain the desired result.
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The case (ab) goes along the same line.

DEFINITION 7. Let ®:CF(G, B; K)-»CF(H,b,; K) defined by ¢;—d,y.
fOI' 1': 1; 2: 3) 4) ¢,u'_)x;! for ‘LLEII'I' (D)\{;{l; 12; 23, /24} S[’a'_’Ellf){sy ¢6HEJ[OX6-

Then we have
LEMMA 8. If feCF(G, B; K) and heH?* then R(f)(h)=R(f)(h).

PROOF. The generalized characters of CF,(G) considered in Lemma 5
(resp. Lemma 6) form a free system of cardinality |Irr (B)|—3=rkesCF(G)
(resp. |Irr (B)| —2=rkoCFy(G)). Moreover JoR is the identity map on them,
so R coincides with R on CF,(G). Then R(f)—R(f)eCF,(H)*=
CF.(H,b,; O0): if f,€CF(Q), ngo:-[Rfo and (g}f—-g{f, ngo)H:(.(R.f; j{fo)ﬂ
—(Rf, Rf)u=(f, f)a—(f, f)e=0 by Step 1 and the fact that R is an iso-
metry. So R(f)(h)=R(f)(h) if he H\H,,..

Let’s check Step 2. R is well defined and provides a correspondence
with signs which bijects Irr(B) and Irr(b,) since they have the same
cardinality. Now let us verify the inner products of I.5.(ii). If weD\{1}
=D* then Cs(u)CH. Thus we must check (d**wR(¢:), d“*wR(P,))e e
=(d“*%¢;, d“*¢;)c > This clearly follows from the above Lemma and
4 (iii). So R satisfies (i) and (ii) of I.5. For all weD! RS is the
identity map on CF,.(Cy(u), b, ; K) by Lemmas 4 (ii) and 8. This implies
that R is an isotypie: take R to be the identity map on CF(Cyw), b, ; K)
([Br2] 4.5, 4.6).

There remains Step 3. Let 2 =(X2,ec929™1)*€Z(O[G]). The main tool
to prove Step 3 consists in computing f,(2) for adequate f,’s in CF,(G).

LEMMA 9. If yeIrr(B), then x(2)=|G|*(x(2)*x(1)). If f.CF\(G),
then fo(2)=0.

PROOF. The equality x(2)=I|G|*(x(2)%/x(1)) is a consequence of Schur’s
Lemma: X,eq029 '€Z(OG), so it acts by a scalar on the representation
space of y. This scalar equals (x(2)/x(1)|G|. So X acts by its square and
x(2)=|G|*(x(2)?/x(1)) as claimed.

It remains to check that fo(2)=0. Let T4(z, H)={9=G|gzg ' H} and
3 =(Sierge.myzg )’ €Z(O[H]). We first show that fi(2)=(G: H)Rf(2').
Let M CH? be a system of representatives of the G-conjugacy classes of
elements of G whose 2-parts are conjugate to some w in D? Note that
any h,h’ in H* which are G-conjugate are in fact H-conjugate as z is the
only involution of <A) and <h’>. So 4 isalso a system of representatives
of H*mod. H-conjugacy. As f,€CFy(G) and Rf,&CF,(H), we have
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Fo(2)=Zneafo(W){(g, ) EGXG | gzg™'g'29' ' =ch}| and
Rf(Z)=ZheaR fo(MW{(g, g)E Te(z, HYX Ts(2, H) | g2g~'g'29" "' =pnh}|.

For he I, fo(h)=Rf,(h) by Lemma 4 (iii); moreover G (respectively
H) acts by translation on the set {(9, 9')EGXG[gzg~'g'zg' " '=sh} respec-
tively {(g, 9)=Te(z, H) X To(z, H) [ g2g~'9’'29' "'=yxh}) so its cardinality is
(G: Ce(h){(g, 9)EGXG | gzg~'g'zg' ' = h}| (respectively (H: Cg(h))|{(g,9") <€
Te(z, HYX Ts(z, H) | gzg~'g'zg’*=h}|). But if h=(gzg ')(g'z¢g’"") with g, g
€@, these two involutions normalize <h) so they centralize z; thus g, g’
arein fact in Ty (z, H) and, recalling Cz(h)=Cy(h), |{(g, 9)EGXG | gzg™'g’'zg’ "
=sh}|=(G: H)l{(g, 9") € Ts(z, H)X T(2, H) | gzg~ 9’29’ '=xh}l. So fo(3)=
(G: HYRf(X') as claimed.

Now it remains to show that Rf,(2)=0. If yeIrr(b,), x(gzg™")=0
when g H since such a gzg™' cannot be H-conjugate to any u in D*. So

(2/):X(Eaerg(z,y)gzg_l)2 _ [H*(2)*
f 2(1) x(D
Rf)E)=HPR(f)(1)=

= |H|*%(z%) = |H|%(1). This implies

Before we give the proof of Step 3, we need the following elementary
argument :

LEMMA 10. If a,a’,a”,b,b,b” =K are such that bb'd” #0 and a+a’+a”
=b+b'+b"=a?*/b+a’?b’+a"%[b”" =0, then a/b=a'[b'=a"[b".

PROOF. (ab’—a’b)? = (b+b)(a®’ +a’?b)—(a+a’)2bb’ =(—b")(—a”2bb’[b")—
a”?bb’=0, so a/b=a’[b’. Then apply symmetry.

Assume now that a sum of three characters with signs ay;+a’y:+a”y:
is in CF(H) and that J(ay;+a'yi+ta’yu)=edi+e'¢i+e"¢; is one of the
equalities in Lemma 5 or 6. Then ay(1)+a'y:(1)+a”y:(1)=0 and e¢p,(1
i (1)+e"¢(1)=0. On the other hand, Lemma 9 tells us that (e¢;+¢’ gbl

+e" i) (2)=(egh:(2))?epi(1)+ (' (z))2/e¢ 1)+ ("ginlz 2/5”g!)1 (1)=0. Then, by
Lemma 8 and Proposition4 (s(,) (2))%eg.(1 ¢l (2)) e ¢ (1 +(s"d) 2/;”9/11 (1)
= (ex:(2))¥<¢ axl 2)2e'P (1) + (e"xl Ne" (1) = (ay.(1 2/sgu ) +
(a'y:(1)) 2/0 gbi, ( (1 N2le"¢.(1)=0. One then applies Lemma 10 to

ay:(1), a’y:.(1), a”xi”(l), and e¢;i(1), €¢.(1), e"¢i(1), it tells us that az¢,(1),
a’dP.(1), a’¢"¢;(1) have the same sign.

In case (aa), this provides the result we seek (Lemma 5).

In case (ab), the last two equations of Lemma 6 give the desired rela-
tion between 8,4, 0x¢2, ei£hs and (¢u)perroniy. 10.25.20- On the other hand
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J(X#_52124‘54)(4):5(){#_51){1_52X2)+J(51X1+54X4)=¢'#_¢2+¢4 adds 54¢4 to
the relation. The sum of the second and the third relations of Lemma 6
adds ds¢s. This completes the proof of Step 3.

REMARK. At this point, we can conclude that y(z)=yx(1) for any y in
Irr(B) of height zero, when B is the principal block, this essentially
proves the theorem of Brauer-Suzuki. In the general case, we obtain:

There exists g invertible in O (precisely p=(H: D)y (1)/(G: D)y(1)
where y<Irr(b,) is of height zero and y'Irr (B) satisfies ifﬁ(x’):x) such
that pBTrf(z) is an involution in Z(OGB). The following is an isomor-
phism (see [Br2] 1.5):

Z(OHb,) —> Z(OGB)

I [,ZB TI‘(‘C;G(;,)(/L) lf hZEIID;
b, Tl"é,,(h)(h) _ ‘
| (B Tri2) Trd a(he) if houD’.

REMARK. In the other case of control, that is when D is quasidihedral
and case (ba) occurs (see Proposition 0 (iii)), the same result can be ob-
tained when the additional hypothesis is satisfied: 2z and y are not G-con-
jugate. The proof is similar using Df={ucD [z <ud}.
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