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On real James numbers
By Hideaki OSHIMA

Abstract. We determine James numbers of real Stiefel manifolds
and real stunted projective spaces. As an application, we decide
when the composite of the double covering map and the quotient map
generates a free direct summand of the homotopy group of the stunted
projective space.
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1. Introduction

The purpose of this note is to determine the real James numbers.
Throughout the note =, I, &k denote integers with n=Il=k=1 and n=>2. Let
P, denote the real projective space of dimension k—1, P, ,=P,/P,., the
stunted projective space, and V,,=0()/O(l—k) the Stiefel manifold of
orthonormal k-frames in R'. Note that P, , is the union of P, and a
disjoint base point. Write ¢q: V, ,—V,,,=S""! for the projection on to the
last component, and ¢q: P, ,— P, ,=S"" for the quotient map. There is a
commutative square [6]:

q
Vn.k - Vn.l

.

Pn.k_>Pn.l

q

The unstable real James numbers V{n, k} and P{n, k} are non-negative in-
tegers which generate respectively the images of

Gx: Tnai(Vao) —> 1, (S* =2,
Qx - 7z'n—l(-Pn,)z) I n,n_l(sn-l):Z.

In the same way, replacing homotopy group =n,-,(—) by stable homotopy
group ‘m,-.(—) we have the stable real James numbers V*{n, k} and P*{n, k}.
Let us denote the exponent of 2 in a positive integer k by v.(k); define
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¢(k) to be the number of integers s such that 0<s<k and $=0,1,2,4
(mod 8). Our results are

THEOREM (1.1). We have P*{m, k}=V*{n, k}=V{n, k} which is equal to
0,1, or 2 according as n=1 (mod 2) and k=2, vy(n)=¢(k), or 1< vy(n) <¢(k).

THEOREM (1.2). We have Vin, k}=P{n, k} except for the following
cases: (1) if (n, k)=(4, 3), (8, 5), (8, 6), (8,7), (16, 9), then Vin, k}=1 and P{n, k}
=2: (2) if n=k=2m with m=1,2,4, then Vi{n,k}=1 and P{n, k}=0; (3)
of n=k=2m with m#1,2,4, then Vi{n, k}=2 and P{n, k}=0.

Let p,: S*!'—P, be the canonical double covering map and p, ,: S*!
—P, . (n>k) the composition of p, with the quotient map.

COROLLARY (1.8). The rank of m,-1(P,.;), for n>k, is 0, 2, or 1 ac-
cording as n=1(mod 2) and 25k<n—2, n=2k and k=0 (mod 2), or other-
wise. The map p.., generates a free direct summand of w,-(Pn.:) of and
only 1f n=k+1=238, P{n, k}=2 or (n, k)=(4,2), (8, 4), (16, 8).

Note that a part of (1.1) is not new. Indeed Vi, k} was already
known [1,4,5]. We shall calculate it again by using codegree [3,8,9]. We
shall prove (1.1) in §2, and (1.2), (1.3) in §3.

2. Vin, k}
The symbol a|b means that b=ma for some integer m.

LEMMA (2.1). (1) Vi{n,n}=Vi{n,n—1}; P{n,1} = Vin,1} = Vin, 1}=
P{n,1}=1; P{n,n}=0.

(2) V¥m, B} Vin, B} P{n, k}; Vin, kY Vin, } and P{n, kY| P{n, 1} if n=1
=k=1.

(3) V{2,2}=V{4,4}=V{8,8}=1V{16,9}=1.

4) ([7; 4.2) P¥{n, k}=V:{n, k}.

(5) If n=2k, then P%{m, k}=V*n, k}=V{n, k}=P{n, k}.

(6) ([10; 28.4, 25.6],[5; 2.8])) If m is even or k=1, then Vin, k}=1
or 2. If m is odd and k=2, then V{n, k}=0.

PROOF. By definition, (1) and (2) are obvious. As is well-known, if
n=2, 4, 8, then Vi{n,n}=1 (cf., [11; p. 200]). By [6; p. 4], we have
V{16,9}=1. This proves (38). Since P, , is (n—k—1)-connected, it follows
from suspension theorem that P%{n, k}=P{n, k} if n=2k. Hence (5) follows
from (2) and (4).
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PROPOSITION (2.2). The number Vi{n,k} is 0, 1, or 2 according as
n=1 (mod 2) and k=2, vy(n)=e¢(k), or 1=v,(n) <e(k).

PROOF. Let L,— P, be the canonical line bundle. Then L, is of order
29%® in the J-group of P, [2]. If a positive integer m satisfies m+n=0
(mod 29®), then P*{n, k}="°cdg(P7*, m) by stable duality [6; (7.9)], where
‘cedg(—) is the stable codegree [3,8,9] which was denoted by cd(mL,) in
[8], and P is the Thom space of mL,. Then the assertion follows from
(2.1) (4) and [8; 8.5] (cf., [3]).

PROPOSITION (2.3). V¥n, k}=V{n, k}.
To prove (2.3), we need

LEMMA (2.4). (1) If k=10, then 2°®>2k. If 1<Ek<9, then 2°%® <2k.

(2) Conditions 2k>n=k=2 and n=0 (mod 2?®) are satisfied if and
only if (n, k) is (2, 2), (4.8), (4, 4), (8, 5), (8, 6), (8,7), (8, 8) or (16,9).

8) Vim, k}=1 for every (n, k) in (2).

PROOF. Write k—1=8x+y with 0=y <7. Then ¢(k)=4x+z such that
z is 0 (if y=0), 1 (if y=1), 2 (if y=2,3), and 3 (if 4<y<T7). If z=2,
that is, if k=17, then 29 =2!">16(x+1)=2k. Hence the following table
completes the proof of (1).

E (1123|4567 [8]|9(10(11|12|13| 14|15 16

2k |2 |4(6]8|10(12|14|16[18[20|22|24| 26 | 28 | 30 | 32

2000 11121414188 ]8|8(16|32|64|64{128128(128|128

If 2k>n=k=2 and n=0 (mod 2¢®), then k<9 by (1), hence (2) follows
from the table. We have (3) by (2.1) (2) (8).

PROOF OF PROPOSITION (2.3). By (2.1) (5) (6) and (2.2), it suffices to
consider the case: 2k>n=0 (mod2). If 1=y,(n)<e(k) and n<2k, then
V¥n, k}=V{n, k}=2 by (2.1) (2) (6) and (2.2). If 2k>n=0 (mod 2¢?), then
Vin, k}=Vin, k}=1 by (2.2) and (2.4) (3).

PROOF OF THEOREM (1.1). This follows from (2.1) (4), (2.2) and (2.3).

Let us write n=(2a+1)2°**°, where a, b, ¢ are integers and 0<bh<3;
let us define p(n)=2"+8c. As is easily shown, v,(n)=¢(k) if and only if
p(n)=k. Hence we have the following by Theorem (1.1).
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THEOREM (2.5) (Eckmann, Adams). The fibration q: V,.,— V.. has
a cross section vf and only if p(n)=k.

3. Pin, k}

Let ¢,=m(S*) be the class of the identity map of S*. Then the fol-
lowing is well-known.

LEMMA (8.1). The homotopy class of p,.1 18 2¢,_; or 0 according as
n 18 even 01 odd ; w,-(P,)=Z{e-p,}, where ¢ 1s 1 or 1/2 according as n=
3 or n=2,

LEMMA (38.2). If m 1s even, then P{n,n—1}=2 for n=4 and P{n,k}
=1 o0r 2 for n>k. If n is odd and k=2, then P{n, k}=0.

PROOF. If » is even, then P{n,n—1} is 1 or 2 according as n=2 or
n=4 by (2.1) (1) and (3.1), hence P{n, k}|2 provided n>k by (2.1) (2). The
second assertion follows from (2.1) (2) (6).

LEMMA (3.3). If m=2,4,8, then msn_1(Psy. ns))=Z{D2n, ns1}DTor.

PROOF. Let n=2,4,8. The assertion is obvious by (3.1) when n=2.
Let w,: S*®"*>S™ be the Hopf map. We denote by Tor the torsion sub-
group of any group. Then 7, (S*)=Z{w,}PTor. Let TOR be the class
of torsion groups. By mod SOR Hurewicz theorem, we have

(3.4) Tx(Pan-1..) and mx(Ps,_1. »-2) are torsion groups for n=4, 8.

It follows from the homotopy exact sequence of the pair (Psn.n+1, Pan-1.n)
that the rank of my,_;(Psn.n+r) 18 1 and Py, a4 is of infinite order for n=
4,8. To complete the proof, it suffices to prove

(35) ﬂZn—I(PZn.n):Z{pZn.n}GBZ@Tor fOI' %:2; 4)8

We shall prove (3.5). Since the manifold P, is parallelizable and the
Whitney sum of the tangent bundle of P, with a trivial line bundle is
nL,, we have P,, ,=Prl=S"V(S*AP,)=8S"V Pyp_1..-2VS?"" ! up to homo-
topy. Hence mpn-1(Pan.n) =Ton-1(S™) Do -1(Pon-1.n-2) Dman-1(S*"7Y) by [11;
(1.5) in p. 492, (7.12) in p. 368], where the isomorphism is induced by
inclusion maps, and the rank of 7m5,-1(Psr.,) is 2 by (3.4). We can write
Don. 0 =t15(@r0 5+ ) +754(b) +- V3 (205, -1) by (8.1), Wherea, = Z, t =Tor(r,,-,(S")),
bEmsn-1(Pan-1.2-2), and 1, is a respective inclusion map. As is well-known,
@, =fopsn,, for some map f: P,, ,—S*. Write f=2:,VyV (zw,+1t’) with
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x,2€Z,t' cTor(ry,-1(S™) and y: Py,_; ,-2—S", Where equality means that
foii=at,, foi,=y, and foiyz=zw,+t'. Then w,=foPs,. .= (a,2*+22)w, (mod
Tor), hence @, is odd, therefore (3.5) follows. This completes the proof
of (3.3).

PROOF OF THEOREM (1.2). As is easily shown, v,(n)=¢(n) if and only
if m=2,4,8. Then the assertion for n=Fk follows from (1.1) and (2.1) (1).
If Vin,k} is 0 or 2, then P{n, k}=V{n, k} by (1.1), (2.1) (2) and (3.2). Sup-
pose that Vi{n, k}=1 and n>k. Then n=0 (mod2¢®) by (1.1). If k=10
or k<9 and n=2k, then V{n, k}=P{n, k} by (2.1) (5) and (2.4) (1). If k<9
and n<2k, then (n, k) is (4,3), (8,5),(8,6), (8,7), or (16,9) by (2.4) (2), and
P{n, k}=2 except for (n, k)=(8,6) by (3.1), (3.2) and (3.3). We then have

{8,6}=2 by (2.1) (2).

PROOF OF COROLLARY (1.3). The assertions are obvious when k=1 or
k=n—1, by (3.1). Suppose 2<k=n—2. If n is odd, then 74(P, . )EIOR
for k even by mod SOR Hurewicz theorem, and 74 : 7x(S™ *)—mx(P,. ;) is
a FOR-isomorphism for &k odd by mod SOR Whitehead theorem. Let
j: P,_i 41— P, , be the inclusion map and f: S*" '—=P, , a map with g«(f)
=P{n, k}¢,-;. If n is even, then, by mod SOR Whitehead theorem, gy :
Tx(Pr ) =7(S™7Y) and (fV s 7x(S* 'V Pyor ) > mx(Pai) are TOR-iso-
morphisms when k is odd and even respectively. Then the assertions can
be proved easily by using (1.1), (1.2) and (3.5).
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