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By Katsunori IWASAKI

Abstract. Moduli spaces of Fuchsian projective connections on a
closed Riemann surface are constructed and their geometric structures
as an analytic space or a complex manifold are studied. Moduli of
projective representations of the fundamental group of a Riemann
surface with punctures are also studied. The projective monodromy
map of the moduli space of connections into that of representations
is defined and its properties are studied in connection with the gauge
equivalence. The moduli space of connections is studied more deeply
by considering a Cousin problem associated with a family of holomor-
phic line bundles on the Riemann surface. After a suitable moduli
theory is obtained, the monodromy preserving deformation for projec-
tive connections is studied. It is shown that there exists a closed
2-form £ on the moduli space of connections such that an £-
Lagrangian foliation describes the monodromy preserving deformation.
Moreover, a Poisson structure of the moduli space is discussed and
the sheaf of monodromy changing Hamiltonians is introduced.
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§0. Introduction.
0.1. History and general introduction.

The theory of monodromy preserving deformation of linear differential
equations is not only classical but also modern. As Miwa-Jimbo-Ueno
[MJU] said, like in many other branches of modern mathematics, B.
Riemann was the first to introduce this fruitful idea. In 1857, he proposed
the problem of constructing a system of functions with regular singular
points admitting the prescribed monodromy property, and studying them
as functions of the regular singular points when the monodromy is kept
invariant. He foresaw that this problem would naturally lead to a gen-
eralization of the theory of Abelian functions and theta functions. Early
in the twentieth century, R. Fuchs [F'], L. Schlesinger [Sc] and R. Garnier
[Gar] tackled the problem of the monodromy preserving deformation in a
precise framework for the first time. They derived (systems of) nonlinear
differential equations which describe the monodromy preserving deforma-
tion of second order or first order systems of linear differential equations
on the Riemann sphere. The celebrated equations of P. Painlevé ([P],
[Gam]) are important special examples of such nonlinear equations.

Almost at the same time, there was another interesting problem which
seems completely independent of the monodromy preserving deformation:
Find new transcendental special functions defined as solutions of nonlinear
differential equations in a complex domain! What nonlinear equation are
“good” for this purpose? It is well-known that many of classical special
functions satisfy second order linear differential equations on the Riemann
sphere. The above problem is merely an attempt to generalize this fact
to the nonlinear case. However, the occurence of the so-called movable
branch points makes the study of nonlinear differential equations much
more complicated than that of linear ones. Painlevé considered that non-
linear equations without movable branch points are simple and hence “good’.
With this idea, Painlevé [P] and this student B. Gambier [Gam] tackled
the problem of classifying second order nonlinear ordinary differential
equations without movable branch points and discovered the six kinds of
the Painlevé equations (P;)—(Pyy).

The fact that the two kinds is of completely different ideas mentioned
above led to the same nonlinear differential equations should have implied
richness and good characters of such nonlinear equations. It was, however,
not the case. The importance of the monodromy preserving deformation
and the resulting nonlinear deformation equations was not recognized suf-
ficiently, and the works of Fuchs, Schlesinger and Garnier have been
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almost forgotten for a long period. Exceptionally K. Okamoto was aware
of its importance and has started to study the deformation theory on an
elliptic curve at the begining of 1970's ([Ok1-Ok7]).

In the latter half of 1970’s, the discovery of an unexpected connection
of the monodromy preserving deformation with mathematical physics pro-
vided mathematicians and mathematical physicists with a revival of
interest and a new insight into this theory ([(BMW][JMSM][JMMS][SMJ]
[WMTB]). It has been recognized that the nonlinear differential equations
obtained by the monodromy preserving deformation can be applied effec-
tively to the theory of particular solutions of various nonlinear partial
differential equations in mathematical physies such as the K-dV, nonlinear
Schrodinger and sine-Gordon equations, to the theory of correlation func-
tions of the Ising model and so on. This discovery has begun to establish
the position of solutions of those nonlinear equations as important special
functions. The holonomic quantum field theory due to Sato-Miwa-Jimbo
and Mori ([JMSM][SMJ]) also had an influence on the monodromy preserving
deformation. Moreover, in 1981, Miwa-Jimbo-Ueno [MJU][JM]1, 2] gener-
alized the work of Schlesinger, established a general theory of monodromy
preserving deformation for first order systems of ordinary differential
equations with rational coefficients on the Riemann sphere and developed
the theory of the so-called r-functions. As for the deformation theory for
second order single ordinary differential equations, Okamoto and H. Kimura
made an extensive study of the Painlevé equations and their generaliza-
tions to several variables, the Garnier systems, concerning transformation
groups of the solution spaces, Hamiltonian structures, foliations and the
construction of the space of initial values ([Ok4, 5][KH2]). The differential
Galois theory and the proof of the transcendency of the Painlevé equations
due to H. Umemura [Um1-3] and K. Nishioka [Ni] are also an important
subject.

So far the deformation theory has been developed chiefly for ordinary
differential equations on the Riemann sphere P' (genus 0). Although there
is a series of works due to Okamoto [Ok1-3,6] which are concerned with
the deformation theory on an elliptic curve (genus 1), no one has considered
it on a closed Riemann surface of an arbitrary genus from a general point
of view. The aim of the present paper is to develop such a deformation
theory on a Riemann surface of an arbitrary genus as a fairly abstract
generalization of Okamoto’s work.

To develop the deformation theory, Schlesinger [Sc] considered the
first order Fuchsian systems of the form
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ﬂ_ & Cf 1
(C) FER ey Y on P,
where C; (j=1,:--,n) are m-by-m constant matrices. He derived the con-

dition under which the monodromy of (C) is kept invariant when the
location of the singular points @; (j=1,---,n) is changed. His result is
summarised into the following completely integrable system of nonlinear
differential equations for the matrices C;:

aC; _[C, G, L
J da; a;—a; @#3),
(S)
0C: _ _ [G,Ci]
aa/i o k(#1) Qp— 0O ’

Exaggeratingly stated, the linear differential equations (C) are special
type of Fuchsian connections on the trivial vector bundle over the Riemann
sphere. To develop the deformation theory on a Riemann surface M of
an arbitrary genus, the first question to be considered is: For what class
of linear differential equations on M the deformation theory works out
satisfactorily? More precisely the question is: Should we consider what
class of connections on what fiber bundle over M ? Contrary to the fact
that the Riemann sphere has a positive curvature, a Riemann surface M
of genus g=2 has a negative curvature, whence the number of differential
forms on M get larger. In higher genus case, this fact makes the above
question much more difficult. After some try and errors, we decide to
develop our deformation theory for a certain class of Fuchsian PSL(2; C)-
connections on M. Reflecting the geometry of Riemann surfaces, this class
can be an object of very beautiful deformation theory.

The result of this paper was announced in the symposium “Die gewohn-
lichen Differentialgleichungen und spetial Functionen” held at Oberwolfach
in April, 1989. It was announced also as a special lecture in the annual
meeting of the Mathematical Society of Japan held in October, 1989. This
paper is the final version of the author’s preprint [Iw1].

0.2. An aspect of the monodromy preserving deformation.

We shall introduce an aspect of the theory of the monodromy preserv-
ing deformation by giving a review of a result due to K. Okamoto [Ok5],
by which we shall make clear the issue of the problem involved for our
general deformation theory. Okamoto [Ok5] considered the following
second order Fuchsian differential equation (Q) on the Riemann sphere:
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(@) ;l;zz =Q(2)z,
where Q(x) is given by
Q) = T3+ (xflnz - x(xaj 1)
+2{g —bjt,v * x(;(—tl;(al,)ft)}
* é {4(:0ig PAE rc(jck(—ziixl)—ﬂ;k)] '

Hence the differential equation (@) depends on the parameters
¢=(t, Ay, Ao ; by, =<+, by),
E=(ty,*++, tn), A=A, , AN,
p=(p, o, pn) s h=(hy, o hy) .

When emphasis on this dependence is neccessary, (Q) is written as
(Q(e, t, A, p, h)). The difference of the characteristic exponents of (Q) at
x=2, is an integer (=2). Hence Frobenius’ method in the theory of
Fuchsian differential equations implies that there exist rational function
Hjc; t, 2, p€Cllc, t, 2, 1) such that the singular points z=4, (k=1,---, N)
are logarithmic or non-logarithmic according to h,#H;(c;t, A, ¢#) or not.
Now we assume

(A) hy=Hc; t, 2,2  (3=1,--,N),

namely, x=4, (k=1,---, N) are non-logarithmic singular points. Under
this condition (Q) depends on the parameters (c,t, 4, p): (Q)=(Ql(c, t, 2, p)).
We call Hj(c; t,4, ) the Hamiltonians. The reason for this naming will
be clear soon (see Theorem 0.2).

The differential equation (@) determines the linear monodromy repre-
sentation (up to conjugacy)

(LM) nl(Pl\{O: 1: o, tl; Tty tN.- 'ilx Ty 2N})_-—)‘SI/(Z ) C) .

By the assumption (A), it is easy to see that the circuit matrix C, at
x =24, determined by (LM) belongs to the centor of SL(2; C); in fact C,=
—1I, where I is the unit matrix in SL(2; C). Passing to the quotient
PSL(2; C)=SL(2; C)/{*1}, we obtain from (LM) the projective monodromy
representation (up to conjugacy)
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(PM) n'l(Pl\{O: 1:°°;tl)"':tN})—)PSL(2;C)'

Thus the singular points x=4, have no effect on the projective monodromy
representation. For this reason, they are called apparent singular points.
Let us consider the following problem.

Problem 0.1. Find a necessary and sufficient condition such that the
deformation of the parameters (c; ¢, 4, p) subjecting this condition does not
change the conjugacy class of projective monodromy representation of (Q).

We call such a deformation of the differential equation (Q(c;t, A, p))
the monodromy preserving deformation. Notice that the parameters ¢=
(@, @y, Qo ; by, -+, by) are the local monodromy data which are uniquely
determined by the characteristic exponents of (Q) at the regular singular
points. Hence ¢ must be kept invariant under the monodromy preserving
deformation. Hereafter we regard ¢ as absolute constants. Under a cer-
tain generic condition on ¢, Okamoto [Ok5] proved the following theorem.

THEOREM 0.2 (Okamoto). If t=(t, -, ty) are viewed as deformation
parameters, then the monodromy preserving deformation of (Qc;t, A, p)
18 governed by the following completely integrable Hamiltonian system

J%_aHf

ot, ou’

(G) ’ o (j:kzly'“:N)-
O _ 0,
ot; 0,

Okamoto called () the Garnier system. In fact, Garnier [Gal] had
already obtained essentially the same system of nonlinear differential equa-
tions. But the credit for the discovery of such an ingenious expression as
(G) goes to Okamoto. In case N=1, (G) is known to be equivalent to the
sixth Painlevé equation. Hence the Garnier system is an extension of the
Painlevé equation to several variables. Essentially in the same method,
Okamoto [Ok6] also obtained an analogous result for Fuchsian equations
similar to (@) on an elliptic curve, which can be explicitly represented in
terms of the Weierstrass p-functions and {-functions instead of rational
functions in the case of genus zero.

0.3. The problems involved for the deformation on a Riemann
surface of an arbitrary genus.

In the present paper we want to develop a deformation theory on a
closed Riemann surface of an arbitrary genus. Okamoto [Ok5, 6] obtained
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his result by direct and explicit calculation. In an arbitrary genus case,
however, things are not so simple. We can not avoid speaking rather
abstract language. We must recognize what are essential in the relevant
problem and make up them into an abstract theory. More precisely, let
M be a Riemann surface of genus g=0; of course our particular interest
lies in the higher genus case g=2. We need to ask for what class of
Fuchsian differential equations on M the theory of the monodromy pre-
serving deformation works out beautifully. To make clear the issue in-
volved, we must settle the following problems.

Problem 0.3. (i) What are the second order linear Fuchsian differ-
ential equations on the Riemann surface M'? Which equations among them
correspond to (Q) on the Riemann sphere? How many apparent singular
points do we need in order to develop a suitable deformation theory?

(ii) In case g=2, Fuchsian equations on M admit no such explicit
representation as in the cases g=0 and 1. Thus, to begin with, we must
takcle the problem of constructing the moduli space of the relevant Fuchsian
equations on M and studying its geometric structure as an analytic
space or a complex manifold. In fact, this moduli problem with turn out
to be much harder and more central than the problem of the monodromy
preserving deformation itself. Many results of the deformation problem
will naturally follow from those of the moduli problem.

(iii) To develop the deformation theory on a Riemann surface of an
arbitrary genus, we must provide an intrinsic meaning with Okamoto’s
work [Ok5, 6] by using, for example, the Riemann-Roch formula, the Serre
duality theorem, the Kodaira-Spencer theory and other geometric tools.

(iv) In addition to the monodromy preserving deformation, consider
also the monodromy changing deformation (especially from the point of
view of Poisson geometry).

0.4. SL-operators (Fuchsian projective connections).

Before describing our main results of the present paper, we shall
briefly explain the object of our deformation theory. Let M be a closed
Riemann surface of genus g=0. In Section 1, we shall define a class of
second order Fuchsian differential operators on M and call them SL-operators
(Definition 1.2). In geometric terminology, they are a kind of Fuchsian
PSL(2; C)-connections on M. Moreover, we shall make various definitions
related to SL-operators. Of particular importance among them are classi-
fication of singular points of SL-operators (generic singular points and
apparent singular points) and the multiplicity at an apparent singular
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point (see §§1.2). Roughly speaking, an SL-operator is a differential
operator L : M(&)— M(ERx®?), where M is the sheaf of germs of mero-
morphic functions on M, x the canonical line bundle over M, & any fixed
holomorphic line bundle over M with the first Chern class ¢,(§)=1—g=Z
=~H¥M; Z), (see Remark 1.4). An SL-operator L is said to be of ground
state if all of its apparent singular points are of multiplicity one: other-
wise L is said to be of excited state. SL-operators of ground state are
the main object of our research, though those of excited state will be
considered as well in the first half of the present paper.

We shall see that the set of all SL-operators can be identified with
the I'(M ; M(£®?))-affine space Q of all meromorphic projective connections
on M. By fixing a projective structure on M subordinate to its complex
structure, we can further identify it with the linear space I'(M; M (x®?))
of all meromorphic quadratic differentials on M. Hence we use the letter
Q as well as L to denote an SL-operator, where @ is the initial letter of
quadratic differential. Only Fuchsian SL-operators will be considered in
the present paper. Hereafter we mean by an SL-operator a Fuchsian SL-
operator. Given an SL-operator Q, let

m :=the number of generic singular points of @,
n :=the number of apparent singular points of Q.
We shall see that it is natural to assume
n=m+3g—3
(%) =the moduli number of Riemann surfaces
of genus ¢ with m punctures

when we consider the deformation theory for SL-operators of ground state
(see §§5.3).

0.5. Moduli and deformation for SL-operators.

Owing to the length of the present paper, it is better to provide the
reader with a general picture of the paper by giving its outline in some
detail. Although we shall be concerned with SL-operators of excited state
as well as those of ground state in the first half of the paper, we confine
ourselves to stating only those results which are concerned with SL-
operators of ground state for the sake of simplicity. Moreover the state-
ment of the outline below will not always be arranged in the order in
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which our theory is developed in the main body of the paper (§1-§9)
when such a rearrangement seems to be helpful to the reader’s under-
standing.

Let M be a closed Riemann surface of genus ¢=0, m a natural number
such that n:=m+3¢g—3 is positive. For a fixed 8=(6,,---,0,)(C\Z)™, let

SL-operators with m+mn ordered regular singular
points such that, for j=1,---,m, the j**
Elm:0):= singular point has the characteristic exponents

1
E(li—&,) and the last » singular points are

apparent and of ground state.
Moreover we put
B() :={(py, -+, p)eM"; i+7 implies p,#p,}.

B(l) is naturally an [ dimensional complex manifold as an open submani-
fold of M'. We have a natural map

n: E(m;0) —> B(m+n)
U W
Q — 7':(231; *tty Doy Qry t an) »

where r is the ordered singular points of ). By using the Riemann-Roch
formula, the Kodaira-Spencer theory and elements of local analytic ge-
ometry, together with some basic facts concerning Fuchsian differential
equations (Fuchs’ criterion for regular singularity and Frobenius’ method,
etc.), we can show the following theorem.

THEOREM A (see Theorem 2.4). E(m;0) carries a natural structure
of an analytic space of pure dimension m-+2n such that = is a holomorphic
surjection.

Let p: M"X M"DB(m+n)—B(m)CM™ be the projection into the first
m factors. We have the following commutative diagram.

p.3 E(m; 8)
(D1) B(m+n) lm’
P B(m)

where =, p and @ are surjective. Given any pe B(m), let
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Ep;0):={QeE(m;0); w@=p;.

THEOREM B (see Theorem 2.5). For any p<B(m), E(p;0) is an
analytic subspace of E(m ; 8) of pure dimension 2n.

The fact that the dimension of E(p; @) is even will turn out to be
very important in connection with the symplectic geometry.

Next we proceed to the reducibility and irreducibility of SL-operators.
We give a rough definition of them.

DEFINITION (See Definition 3.1 for the rigorous definition). An SL-
operator L is said to be reducible if there exists first order differential
operator K such that L=K-K*, where K is locally written as K=
—(d/dz)+ P and K* is the formal adjoint of K. For a set & of SL-
operators, we put

Sreq :={Q<= S : Q is reducible},
Sirr :={Qe S : Q is irreducible} .

Reducible SL-operators cause some troubles in considering the moduli
theory of SL-operators. The following theorem asserts that the reducible
SL-operators form only a thin set.

THEOREM C (see Theorems 3.6-3.8). (i) E(m; 0)ieq s an analytic
subspace of E(m :60) whose condimension s at least n—1. For any pe
B(m), E(p; 0)ieq 15 an analytic subspace of E(p; 0) whose codimension 1s
at least n—1.

(il) E(m; 0)req ts empty for 0 in « Zariski open subset.

Next we turn to the consideration of the space of projective repre-
sentations of the fundamental group of the Riemann surface M with m
punctures. Given p=(py, - -, pn)=B(m), let |p| be the unordering of p i.e.
Ipl={p, """, pn}. We denote the Lie group PSL(2; C) by G. Let us con-
sider the space

R(p) :=Hom (m(M\|p|) : G),

topologized with the compact-open topology, where =, (M\|p|) is regarded
as a discrete group. The space R(p) can be embedded into the product
space G™*?¢ as a complex submanifold. Although such an embedding is
not unique, the induced complex manifold structure on R(p) is unique. A
representation pe R(p) is said to be irreducible if the image group Im pC
G=Aut (P') has no fixed point in P'. For any subset R of R(p), let R,..
be the subset of LR consisting of all irreducible representations of R. The
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inner automorphism group Ad(G) acts on R(p) by conjugacy. R(p)i. is
invariant under this action. By Schur’s lemma, Ad(G) acts on R(p).
freely. We put

R(D)ive :=R(p)iee] Ad(G) .

We see that R(p)i. carries a natural complex manifold structure of di-
mension 3m-+6g—6 such that the canonical projection R(p)i,,HR(p)i,, is a
holomorphic principal Ad(G)-bundle. Now we put

the circuit matrix (mod 1) at p;
Rp;0).:= pE R(p)i.r; induced by p has eigenvalues
exp (£xv —16;) (mod +1), j=1,---,m

R(p; 0);.. is also invariant under the action of Ad(G). We put
B(p; 0 :=R(p; 0)irs/ Ad(G) .

THEOREM D (see Theorem 5.2). R(p; )i s a 2n-dimensional com-
plex submanifold of R(p)ic..

We put
Ie(m)irr:: H R(p)irr;

PEB(mM)

R(m ) 0)irr = H R(p ) 0)irr .
PEB(mM)
R(m),,, carries a structure of a local system over B(m) (i.e. a covariant
functor of the fundamental groupoid of B(m) into the category of complex
manifolds) whose characteristic homomorphism at a point p°B(m) is
given by
Br(m) :=n(B(m), p°) —> Aut(R(p°)i.)

W U]

! — [o—p- 1],
where Br(m)— Aut(zm(M\|p°|)), (—!sx denotes the natural action of the braid
group Br(m) on the fundamental group =,(M\|p°|). We see that

THEOREM E (see Theorem 5.4). R(m; 0)i. 18 a local subsystem of
R(m)i,r over B(m). In particular, R(m; 80)i. s a complex manifold of
dimension m-+2n.

Now we can define the projective monodromy map PM by
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PM: E(m ; 0)i;y —> R(m ; 0);,
u v
0 the conjugacy class of projective)
‘ monodromy representation of @ /)

One can check that PM is a holomorphic map. We have the following
commutative diagram :

PM
T E(m H 0)irr R(m ) 0)irr
/
(D2) B(m+n) \ l’m’ /
P B(m)

We notice that =, p and w are surjective.

The analytic space E(m ; 6);,., may contain singularities. It is difficult
to investigate the behaviour of the projective monodromy map PM on the
singularity set of E(m;#);.. Thus we have to remove from E(m ; ).
an analytic subset which contains all of the singularities of E(m ; 0);,. A
clever way to do this is to consider a family of holomorphic line bundles
{&(r) ; re B(m+n)} over M defined by

E(r) :=r2Q[pi+ - +Dm— (@1 + -+ +q2)]

for r=(y, *, Pm, ¢, -**, ) EB(m), where [D] denotes the line bundle asso-
ciated with a divisor D. The assumption (#) n=m-+3¢g—3 implies ¢,(&(r))
=g—1. Hence the Riemann-Roch formula yields the following equality :

(F'A) ' dim H(M ; O(&(r)))=dim H (M ; O(&(r)))

for re B(m+mn). This is one of major advantages of the assumption (#).
We call (FFA) the Fredholm alternative. The reason for this naming will
be clear soon. Let

A(m) :={re B(m-+n) ; dim H"(M ; O(&(r))) >0},
X(m) :=B(m+n)\A(m) .

By Grauert’s theorem [Gra, §7, Satz 3], A(m) is an analytic subset of
B(m+mn). In case g=0 or 1, A(m) can be explicitly written down (see
Example 6.2). Furthermore we have the following lemma.

LEMMA (see Corollary 4.14). X(m) 1s a nonempty Zariski open subset
of B(m+mn) such that the projection p=p|X(m): X(m)— B(m) is surjective.
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Now we put
Em; 0) i i =n"(X(m))TE(m ; ),

and consider &(m ; 6);,. instead of E(m:#),,. Then we obtain from (D2)
the following diagram :

P
T e(m H 0) irr —_—M—> R(m; 0)irr

p\’lw

B(m)

(D3) X(m)

We note that =, p and & are surjective. On the space &(m; 8);. the
projective monodromy map PM has the following nice property.

THEOREM F (see Theorem 5.9). PM: E(m; 6);.,—R(m : 0),.. 18 a locally
biholomorphic map. In particular, E(m ; 0);., 18 & complex manifold.

To establish this theorem, we need the concept of a kind of gauge
equivalence. In the category of holomorphic integrable connections on a
holomorphic vector bundle, it is a standard fact that the following prop-
erty (GM) holds :

(GM) Two connections are gauge-equivalent if and only if they
give rise to the same monodromy representation class.

In the category of Fuchsian integrable connections, things are more com-
plicated. If one considers only Fuchsian connections with fixed singularities,
one can define the meromorphic gauge equivalence with the property (GM)
in a similar manner as in the case of the ordinary holomorphic gaupe
equivalence. To consider the deformation theory, however, we must con-
sider Fuchsian connections whose singularities may be changed connection
by connection. In such a situation it is difficult to define a precise gauge
equivalence with the property (GM). In Section 4, we shall introduce a
certain kind of “gauge equivalence” for SL-operators which enjoys the
property (GM) as long as two SL-operators are sufficiently close. See
Theorem 4.19, Theorem 5.6 and Theorem 5.8.

Recall that R(m; 0);., has a structure of a local system over B(m),
(Theorem F), which determine a foliation on R(m ; 6);,, such that each
leaf is locally a horizontal section of R(m ; 8);..— B(m). Since PM is locally
biholomorphic, the above foliation induces a one on &(m; 6);.. This folia-
tion just describes the monodromy preserving deformation on &(m ; 6);,..
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Let &(m ; 6) be the inverse image of X(m) by the projection z: E(m ; 6)
—B(m+n). We can investigate the structure of the space &(m ; #) more
deeply from a different point of view, i.e. by considering a Cousin prob-
lem associated with the line bundles &(r) (re X(m)). Here we would like
to consider &(m ; ) rather than &(m; 0);.. First, we want to refer to
an affine bundle structure of =n: &(m ; )= X(m). Introducing the concept
of accessory parameters of an SL-operator, which play a role of fiber
coordinates, we can show the following theorem.

THEOREM G (see Theorem 6.16). The complex manifold &(m ; 6) has
a matural structure such that =:E(m; 0)—X(m) is a holomorphic affine
bundle of rank n.

To establish the theorem, we need to solve a certain Cousin problem
associated with the line bundles £(r) (re X(m)) which is stated as follows.

Problem (CP). Given a data on the location of singular points re
X(m) and accessory parameters v=(y,-+,v,)eC", construct the corre-
sponding SL-operator. Moreover investigate the holomorphic dependence
of the solution on the data (r,v).

We abbreviate our Cousin problem as (CP). There is no room for ex-
plaining why the line bundles &(r) are related to (CP). We confine our-
selves to explaining why (['A) is called the Fredholm alternative. (F'A)
implies that the vanishing of H°M; O(£(r))) is equivalent to that of
H' (M ; O(&(r))). On the other hand, the vanishing of H'(M ; O(£(r))) implies
the solvability of (CP) and that of HY(M ; O(&(r))) implies the uniqueness
of solution of (CP). Hence (['A) suggests that the solvability and the
uniqueness of solution are equivalent in our Cousin problem. Thus, if one
regards cohomology as an abstract version of the theory of integral equa-
tions, one can call (/'A) the Fredholm alternative. From the very defi-
nition of X(m), the following lemma is evident, but plays a key role in
solving our Cousin problem.

LEMMA (see Lemma 6.4).
(1) HYM;OE@r)=0 and
(ii) HYM; O(&(r))=0

(iii) hold for all re X(m).

The statement of the above lemma consists of one sentence. We
remark that, as mentioned before, (i) guarantees the solvability of (CP),
(ii) guarantees the uniqueness of solutions of (CP) and, by Kodaira-Spencer’s
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theorem [KS, III, Theorem 7] (iii) guarantees the holomorphic dependence
of the solution to (CP) on datum. Through the investigation of (CP), we
can further establish the following theorems, which are the main results
of the present paper.

THEOREM H (see Theorem 6.18). There exists a canonically defined
closed 2-form 2 on &E(m ; 0) such that the restriction of 2 to each fiber
EP;0) of w:&(m: 6)— B(m) determines a symplectic structure on Ep; 6),
(p€ B(m)).

THEOREM I (see Theorem 8.8 and 9.8). The monodromy preserving
deformation &(m ; 0)i.. 1s characterized by the Q-Lagrangian foliation on
E(m; 6);.r which is transverse to each fiber of w : E(m; 6)i..— B(m).

Moreover we state some results concerning a Poisson structure on the
moduli space &(m ; 6), (see Section 9).

THEOREM J (see Proposition 9.1). The moduli space E(m ; 6) admits
a Poisson structure {-,-} of constant rank 2n whose symplectic leaves
consist of all fibers of w : &(m ; 6)— B(m).

We can construct commuting vector fields 4(; (¢=1,---,m) on E(m ; 6)
locally, (Theorem 9.6). Let ¢, (i=1,---,m) be an ‘“‘admissible” coordinate
system of B(m), then the (1, 1)-tensor

D=3 9,Qdt,
i=1

makes sense globally on &(m ; 68), (Lemma 9.10). We put
QP =0 oema(@*ANPT*B(m)) ,
P=Ker[D: 29-07].

We call P the sheaf of monodromy changing Hamiltonians, and a (local)
gection of P a monodromy changing Hamiltonian. We expact that the
Hamiltonian flow generated by a monodromy changing Hamiltonian de-
seribes a nice monodromy changing deformation in a certain sense.

THEOREM K (see Theorems 9.2 and 9.4). < is a Poisson subalgebra
of the structure sheaf Ogum.s of the moduli space E(m; 0). P admits the
following resolution by Oewm.o-modules :

D
O——>£P‘—>.Q(0)—-—>"'~—>Q(m)—->0.
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Hamiltonian vector fields generated by a monodromy changing Hamiltonian
commuts with the vector fields H; (i=1,---,m).

The sheaf & and the monodromy changing deformation must be con-
sidered further in the future.
In the last section (Section 10), we shall give some open problems.

§1. SL-operators on a Riemann surface.
1.1. GL-operators and SL-operators.

We shall use the following notation :

M: a closed Riemann surface of genus ¢g=0,

©: the sheaf of germs of holomorphic functions over M,

O*: the sheaf of germs of nonzero holomorphic functions over M,

M : the sheaf of germs of meromorphic functions over M,

éc H (M, O*) : a holomorphic line bundle over M,

U={(U,, x;)}: a coordinate covering of M,

(£;0)€ZY(U,O*) : a representative 1-cocycle of & with respect to the
covering U, and

D;=d/dx;: the differentiation with respect to x;.

DEFINITION 1.1. A GL-operator on & for a coordinate covering U is,
by definition, a collection L=(L,) of second order linear meromorphic dif-
ferential operators

(1.1) L;=—D%+P;D;+Q;, P;, Qe MU,

such that, if f;=¢&,.f, in U,NU,, then the two differential equations L;,f
=0 and L,f,=0 are equivalent as differential equations in U,N\U,. Each
L; is called a local expression of L. Let L and L’ be GL-operators on a
lines bundle & for coordinate coverings U and U’, respectively. L and
L/ are said to be equivalent if the union L\UL’ is a GL-operator on & for
the coordinate covering U\UU’. A GL-operator on & is, by definition,
an equivalence class of a GL-operator on & for a coordinate covering of M.

DEFINITION 1.2. An SL-operator on & is, by definition, a G L-operator
on & which contains a representative GL-operator L on & for some coordi-
nate covering U satisfying

(1.2) P;=0 in U; for every j.

LEMMA 1.3. Let & be a holomorphic line bundle over M. There exist
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SL-operators on & if and only if the first Chern class c¢,(€) of &€ is 1—g.
Here HYM, Z) s identified with Z.

PROOF. Given an SL-operator on &, let L=(L;) be a representative
SL-operator for a coordinate covering U={(U;,x;)} of M. Let « be the
canonical line bundle of M and let (£;,), (k) €Z (U, O*) be the representa-
tive 1-cocycles of £ and «, respectively. Notice that «;,=dux,/dx; in U;NU.,.
As an easy calculation shows, (1.2) implies that 75, :=£&%«,. is constant in
U;NU, Hence (y;,)cZ(U,C) defines a holomorphic line bundle 5 with
ci()=0. Since £2*=»®«® ! and ¢,(xr)=2¢g—2, we have ¢(r)=1—g.

Conversely, for any holomorphic line bundle & with ¢,(§)=1—g, there
exists an SL-operator on & To see this, we first consider a line bundle ¢
such that ¢®2=x®"!. Since ¢,(x®')=2—2¢ is even and the Picard variety
Pic(M) of M is a torus of real dimension 2g, there are 2% such line
bundles. Fix any one of them. Let (¢,,)Z'(U,O*) be a representation
1-cocycle of ¢. Let {f;x} denote the Schwarzian derivative of f with
respect to x:

_3f"(@)°—2f"(x)f"(2)
4f'(x)? '

Since ¢j,=«j in U;NU,, an easy calculation shows that

{f; x}

(1.3) 0'_,_;(‘ D;ajkzlfﬁk(l)fz‘ﬁjk)
holds as a differential operator in U;,NU,, where
(1.4) ojk:{wj; Xu)

(0,,) defines a 1l-cocycle with coefficients in %%, i.e., (6,)=Z" (U, O(x%?).
Consider an H°(M, M (x®?))-affine space

(1.5) Q={Q=(Q,)eC(U, Mx®): 6(Q;) =0},

where 6 is the coboundary homomorphism. For any element Q=(Q,)Q,
if it exists, put

(16) IIJ:_]);_}_Q] in Uj.
Then (1.3) implies the compatibility condition
(17) L,-Ujk:ojklcﬁkﬂk in U,f\ Uk .

Any line bundle ¢ with ¢,(§)=1—g admits a decomposition §=7&¢ with
ne€ Pic(M). Let (p;)€Z'(U,C*) be a flat representative of . Then we
get the l-cocycle (£;,) defined by &,,=n,:0;: as a representative of §. Now
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(1.7) shows that the compatibility condition
(1.8) L& =& k5L in U,NU,

holds. Hence L=(L,) is an SL-operator on ¢ for U. The above argu-
ment shows that if Q is nonempty then an SL-operator exists. Let U
be a covering of M such that any finite intersection of open sets in U is
contractible. Then HY (U, M(x®%))=0, i.e., ZY(U, M(£®?))=06CU (U, M(£®?).
Hence () is nonempty. |

Hereafter we fix a line bundle & with ¢,(§)=1—g. So an SL-operator
on £ is called simply an SL-operator.

REMARK 1.4. By (1.8), an SL-operator L can be regarded as a differ-
ential operator I : JM(&)— M(ERL>?).

REMARK 1.5. The affine space Q defined by (1.5) is the space of
meromorphic projective connections on M. The argument in the proof of
Lemma 1.3 shows that there is a one-to-one correspondence between the
set of SL-operators on & and that of meromorphic projective connections
on M.

REMARK 1.6. The space () (see (1.5)) parametrizing the SL-operators
is an H'(M, M(x®?)-affine space. However, if a nice coordinate covering
U={(U,,x;)} is chosen, then () is viewed as a linear space H%(M, M (x®?))
of meromorphic quadratic differentials on M. To see this, recall that any
closed Riemann surface M admits projective structures subordinate to its
complex structure, (see e.g., Gunning [Gul, pp. 172-173]). In case g=1,
such projective structures are not unique; in fact they depend on
max{l,3¢g—3} parameters. Fix one of them and let U={(U,, z,)} be the
corresponding projective coordinate covering. Then 6;, defined by (1.4) are
identically zero. Hence the space Q of SL-operators is identified with
HYM ; M(x®?) by the following correspondence

{SL-operators} == H"(M, M(x®?)
(1.9) w v
L=(-Dj+Q;) < Q=(Q;).

We fix a projective structure of M subordinate to its complex structure
and keep the identification (1.9) throughout the paper. For this reason,
hereafter, we shall often use the notation @ for an SL-operator in stead
of L; @ is the initial letter of ‘‘qudratic differential”.
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1.2. Apparent singular points and their multiplicities.

In an obvious manner, various notions concerning local properties of
meromorphic differential operators are extended to GL-operators on a
Riemann surface M through their local expressions. In order to establish
terminology, a brief explanation of them will be included here. For a
GL-operator L, a point peM is said to be a regular singular point of L
if p is a regular singular point of its local expression. Characteristic ex-
ponents of L at p are those of its local expression. These definitions are
independent of the choice of the local expression, whence well-defined. All
GL- and SL-operators treated in the present paper are Fuchsian. So,
hereafter, GL- and SL-operators mean Fuchsian GL- and SL-operators.

We introduce a total order > into C by

def | either Re(1)>Re(p)

(1.10) Drpe=

or Re(l)=Re(p), Im(2)=Im (p).
We put
(1.11) C,:={0=C; 60}.

If 2 and p are the characteristic exponents of L at a regular singular
point p with >y, then 8 :=2—peC, is called the difference of the charac-
teristic exponents of L at p.

REMARK 1.7. If L is an SL-operator, then i+pu=1. Hence we have

1446 1-46
. A=—, =
(1.12) 5 7 2
In particular, characteristic exponents are uniquely determined by its dif-

ference.

A regular singular point p is said to be generic if 6 is not an integer.
Otherwise it is said to be nongeneric. At a nongeneric regular singular
point p the equation Ljf=0 has linearly independent solutions of the form
either

a* f(a) a* f(x)
(i) or (ii)
x*g(x)+a*h(x) log x#g(x),
where z is a local coordinate of M at p with x(p)=0 and f(x), g(x) and
h(x) are nonzero convergent power series of x. In case (i) the regular
singular point p is said to be logarithmic;in case (ii) it is said to be non-



Fuchsian projective connections 451

logarithmic or apparent. Remark that at an apparent singular point the
difference of the characteristic exponents is necessarily an integer greater
than or equal to 2.

DEFINITION 1.8. (i) Let peM be an apparent singular point of a
GL-operator L. If the difference of the characteristic exponents of L at
p is N+1 (NeN), then L is said to have multiplicity N at p. Moreover,
if the multiplicity N is the minimal possible value 1, than L is said to
be of ground state at p.

(ii) Let p,, -+, . be the mutually different apparent singular points
of a GL-operator L of multiplicities N, -+, N,, respectively. Then the
number n:=N,+ --- + N, is called the total multiplicity of L. A GL-
operator is said to be of ground state if all of its apparent singular points
are of ground state.

§2. Analytic spaces of SL-operators.

2.1. The space E(l) of SL-operators.

As in Section 1, let M be a closed Riemann surface of genus g=0 and
let & be a fixed holomorphic line bundle over M with ¢,(§)=1—g. We
shall investigate the structure of the space

E(l) :={SL-operators on & with exactly / regular singular points}
and its various subspace from the point of view of local analytic geometry.
Let

B(l) :={sets of [ points in M} .

A natural projection x: E(/)— B(() is defined by sending an element of E(/)
to the set of its singular points. Let

C() :={(py, -+, p)EM"; 3,5 such that i#j, p.=p;},
B(l) :=M"\C() .

B(l) admits a free Adiscontinuous action of the symmetric group &, of de-
gree [ such that B(l)=B()/&,. Let p: B()—B(l) be the canonical projec-
tion. The fiber product E(!):=B(l)X,E(l) admits the following inter-
pretation :
SL-operators on ¢ with exactly ! ]
E= .
ordered regular singular points J
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Let =: E()—B() be the restriction of the projection B(/)X E())— B(l) into
E(). We are concerned with the space E(/) rather than E(/) because E(l)
is easier to hundle than E(/) and considering FE(/) is the same thing as
considering E(/) as far as one is concerned with the local deformation
problem of differential equations. Only such problem will be discussed in
the present paper. So we shall investigate the structure of E(/) and its
various subspaces from the point of view of the local analytic geometry.

2.2. The complex structure of E(/).

First we provide E(/) with a natural complex structure. To do this,
we make the following observation: Remark 1.6 and Fuchs’' criterion for
regular singularity imply that, for p=(p, -+, p.)€ B(l), (=0, the set of all
SL-operators whose regular singular points are contained in |p|:={p, -+, v}
is identified with the linear space

(2.1) F(l), :=H(M, O(«**Q[2p,+ -+~ +2p])) .

Here (and hereafter) [D] denotes the line bundle associated with a divisor
D. By the Riemann-Roch formula, we get

(2.2) dim F() ,=(2({+39—3)*, PEB(),
where
a (@>0),
at:i=491 (@=0),
0 (a<0).

Let D, (5=1,---,!) be dividors on M X B(l) associated with the hypersurface
{p; P,y P)EMXB() ; p=p,} and let ¢ : MX B()—B(/) and ¢ : MXB()—M
be the projections. Consider the sheaf <F(/) over B(/) defined by

(2.3) g(l):<P*OM;-:B(L)(¢’*/C®2®[2D1+ e +2D) .

Since dim (l), is independent of p<B(l), Kodaira-Spencer’s theorem [KS,
I, Theorem 2.2] [GR, Chap. 10, §5, Theorem 5] implies that (/) is a
locally free analytic sheaf over B(/). Let F(/) be the associated holo-
morphic vector bundle. The fiber of F(/) over pe B(l) is identified with
the linear space F(/),. Hence the rank of F(/) is 2m+3¢g—3)". Let =,
(4=1,--+,1) be the projections defined by

n'lrj : B(l)"_>B([_1); (pl!“':pl)"—_) (?)1; “"ﬁf’ "';?)L) )
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where $, stands for the ommision of the j-th entry p;. We can easily
see the following proposition.

PROPOSITION 2.1. We have E(0)=F(0) and
A
E(l)ZF(l)\j\_Jl ¥ F(l—1), [=1.

In particular, E(l) is a nonempty open complex submanifold of the
{21489 —3)* + [}-dimensional complex manifold F(l) except for the follow-
ing two cases; In case g=0, (=1, E(/) is empty ; 1n case g=0, (=0, E()
consists of a single point.

2.3. Various subspaces of E(m+k).

Let (=m+k, m=0 and k=1. We define various subspaces of E(m-+k)
which we need to consider in what follows. Let p: B(m-+k)—B(m) be the
projection into the first m factors; p is surjective. We have the diagram

T E(m+k)
(2.4) B(m+k) l (o4
P B(m)

the last & singular points
Em,k):=iQe E(m+k) ; .

of ) are apparent
Given N=(N,, -+, N,)e N*, let
the (m+j)-th singular point of @
E(m,k; N):={ Qe E(m+k);is an apparent singular point of
multiplicity N; (5=1,---,k)
Clearly we have
E(m,k)= 11 E(m,k; N).

NENT
Given peB(m), let
E(p,k; N):={QeE(m,k; N); w(@=p}, peBm).
Given 6=@,,-+,0,)(C,)™ (cf. (1.11)), let
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the difference of characteristic
E(m,k;0,N):={ QEE(m,k; N); exponents of Q at the j-th

singular point is 6, (j=1,--+,m)
Ep,k;0,N):=E({p,k; NNNE(m,k;8,N).

THEOREM 2.2. Let m=max{2—g¢,0}, k=1 and NeN* Then,
(i) E(m,k; N) is a purely dimensional analytic subspace of E(m~+k);

dim E(m, k; N)=8(m+g—1)+Fk.
(i) =: E(m,k; N)->B(m+k) is surjective.

THEOREM 2.3. Let m, k and N be as in Theorem 2.2 and let pe B(m).
Ep,k; N) is a purely dimensional analytic space :

dim E(p,k; N)=2m+k+3g—38.

THEOREM 2.4. Let m, k and N be as tn Theorem 2.2 and let 8 (C,)™.
(i) E(m,k;0,N) is a purely dimensional analytic space;

dim E(m, k; 6, N)=2m—+k+3g—3.
(ii) =: E(m,k; 0, NN >B(m+k) is surjective.

THEOREM 2.5. Let m, k, 0 and N be as in Theorem 2.4 and let ps
B(m). E(p,k;0,N) is a purely dimensional analytic space ;

dim E(p,k; 0, Ny =m+k+3g—3.

REMARK 2.6. (Part of) Theorem 2.2 is intuitively clear from the fol-
lowing heuristic argument: An SL-operator with m-+k regular singular
points contains 3(m-+k+g—1) parameters. (See Proposition 2.1. Here the
exceptional case a*#a with a=2(m+k)+39—3 is excluded.) On the other
hand, Frobenius’ method implies that there are two algebraic constraints
in order that a regular singular point p be apparent, i.e., (i) the differ-
ence of characteristic exponents at p is an integer, (ii) there is no loga-
rithmic solution at p. Thus the condition that the last k singular points
be apparent lessen the number of parameters by 2k. Hence E(m, k; N) is
expected to be a 3(m+g—1)+k dimensional analytic subspace of E(m+k).
However rigorous proof of this theorem needs some labor.

Theorem 2.2 will be proved in §§2.4. Theorems 2.3-2.5 can be estab-
lished in a similar manner. So their proofs are omitted.
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We conclude this subsection with introducing the space E(p|n), pe
B(m), n=1, defined by

(2.5) Epn):= 1 Ep,k;N),
(k. NYEA(N)
where
(2.6) Am) :={(k,N); 0<k<n, NeN* |[N|=N,+ -+ + N, =n}.

E(p|n) is the space of SL-operators with the ordered regular singular
points p and with apparent singular points of total multiplicity <n. Notice
that Theorem 2.3 implies

dim E(p, k; N)<dim E(p,n;1,;)  for (k, N)& A(n)\{(n,1,)},
where 1,=(1,---,1) (an n-vector). Hence “almost all” operators in E(p|n)
are of ground state.
2.4. Proof of Theorem 2.2.

To prove Theorem 2.2 we consider the following subsheaves of the
sheaf F(m+k) (cf. §2.2),

F(m, k) :=0xO yxmew(@* Q2D+ -+ +2Dy]) ,
2= 05Oy s (@ P Q2D+ -+ +2Dp+vDnsj))
(G=1,,k,v=1,2).
Given p=(py, -+, Pmss) € B(m+k), let
F(m, k),=H'(M ; O(x**QI[2p,+ -+ +2pn))),
Fiie ,=H(M; O(:®*Q[2p+ -+ +2pntvpns,)) -

Then, by the Riemann-Roch formula, we get
2.7) dim F(m, k),=@m+89—3)*, dim F'3% ,=@m+v+39—3)*

for pe B(m+k), where a,=max {a,0}. Since dim F(m,k), and dim F}* ,
are independent of p=B(m+k), a theorem of Kodaira-Spencer [KS, I,
Theorem 2.2] [GR, Chap. 10, §5, Theorem 5] implies that F(m,k) and
v are locally free analytic sheaves over B(m+k). The associated holo-
morphic vector bundles F(m, k) and F';% are identified with I Fim,k),

X . PEB(m+k)
and II FY% ,, respectively. Clearly we have
PEB(M+E)
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Fim, k)CFuhC FLRACEFm+k)  (5=1,-,k),

where F’C I indicate that F"” is a subbundle of a vector bundle F. Notice
that (2.7) implies that

rank FjY=rank F(m, k)+1, rank I =rank F}L%+1,
(2.8)

rank F(m~+k)=rank F(m, k)+2k (53=1,-,k)
hold except for the two cases g=0, m=<1and g=1, m=0. Hence, for any
point p°=(p’, -, pm+r) EB(m+k), there exist an open product neighbour-
hood U=U,;X ++* X Upye of p° in B(m+k) (so U; is an open neighbourhood
of p§ in M) and sections

Q;.€ Fin(U) (9=1,--,k v=1,2),
R.eF(m, k)(U) (=1, ,m :=2m+3g—3=rank F(m,k)),
such that the following properties hold for p=p°.

(2 9) (Qj.l( )e E 111 ln \-P'(m; k)p ’ (JJZ(p)E Iﬂf)‘t’?la,p\lw;’;l..lk.p ’
' R(p), -, Rn(p) is a basis of the vector space I'(m,k),.

Replacing U by a sufficiently small one, if necessary, we may assume that
(2.9) holds for every pe U. Moreover multiplying @,, by a suitable holo-
morphic function in U, if necessary, we may assume that @;.(p) and R.(p)
(ps U), regarded as meromorphic quadratic differentials on M, have the
following local expressions

0;

Ut 3 Qis(p) @it o,
G S P ) i

Q.(p)=]

(2.10)
R[<p>={c§0Rz'“( (35— t(P))” }(dm

in Upei ,7=1,+,k, v=1,2, (=1,---,m’), where z; is a local coordinate of
M in U,.; and t(p)=x:(Pms+:) for p=(p1, ", Pnse) € U. Note that t;, Q2
Ri*eO(U). It follows from (2.8)-(2.10) that Q;,, R, (5=1,---,k, v=1,2,
[=1,--+,m’) form a frame over U of the vector bundle F(m-4£k). Hence
we have an isomorphism

Fm+k)| U= UxC**™
(2.11) 0] W
Q «~>(p;a,b,c)
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under the relation

k o m
(2.12) Q= 21 {0,Q;.:(p)+b,Q,.(p)} + LZICLRL(P) )
i< =
where a=(a,, >+, @), b=(by, -+, by) and c=(cy, ", Cn)-
Now we shall obtain a useful description of the condition that a reg-
ular singular point become apparent. Consider the germ of differential
equation at x=0,

2 £
(2.13) — gx—fz—kx‘zl)(w)f:(), with P(x)= E_O.Pax"

where P(x) is a convergent power series. The following lemma is an easy
consequence of Frobenius’ method.

LEMMA 2.7. The origin =0 1s an apparent singular point of (2.13)
of multiplicity N (=1) if and only if the following condition holds :

(2.14) PO—%N(N—HZ):O,
N
(215) l)N-#'l-i_‘;1 PN+I-uVu:0)

where V, (v=1,--+, N) are defined recursively by

) 1 v-1
V= -SSPV, (v=1,---,N), -1
SN B N, Vo=t

By an induction argument, we can easily show the following lemma.
LEMMA 2.8. V, (1Zv=<N), defined wn Lemma 2.7, can be written as

Vv:au(Pl)b_'_f»(Ply”':P») (Vz]-;"'JN))

where a,=(N—y)![v! NI #£0 (with the convention 0! =1) and f,€Q|P,, -, P,],
deg f,<v—1.

Combining the above two lemmata, we obtain

PROPOSITION 2.9. For any N&N, there exists a polynomial Hye
Q[P+, Py,] with deg Hy< N such that the origin x=0 1s an apparent
singular point of (2.18) of multiplicity N 1f and only if the following
condition holds :
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) 1
(2.16) Po——ZN(N-l-Z):O ,
(2.17) (Px)NH‘*‘HN(Pn Tty sz+1):O .

Given N=(N,,:--, Ny N*, let
the (m+j)-th singular point of Q
F(m,k; N)=3 Qe F(m+k); is an apparent singular point of
multiplicity N; (5=1,--,k)

Note that E(m,k; N)=F(m,k; NNNE(m+k). In the following lemma, we
shall give a useful description of F(m,k; N)|U.

LEMMA 2.10. There exist G,p;b,c)sO(U)[by, -+, by, ¢1,,Cm], pOlY-
nomials in b, ¢ with coefficients in O(U) (5=1,--+, k) such that the follow-
g conditions hold :

(1) deng(p; )gNJ (j:l:'”;k: pe U):

(ii) Under the identification F(m+k)|U=UXC**™ as in (2.11),

F(m,k; N)U is the zero set ZC UXC**™ of the following 2k equations :
1 .

(2.18) a‘]_—ZN](NJ+2):0 (.7:1;"';]9):

(2.19) )" +Gy(p; b, e)=0  (§=1,-,k).

In particular, F(m,k; N) is an analytic subspace of F(m+k).
PROOF. Consider Q& F(m+k)|U defined by (2.12). Put

& .
m:mj"tj(P), N:Nj; Po:aj; I)lzbj+i§1ang,';1(p):
(2.20) k ,
Po= 2 {0 Qis D) +bQUE P+ B ekt p),  az2,

then @ becomes the equation (2.18), and Proposition 2.9 applies to Q. Thus
@ has an apparent singular point of multiplicity N; at pn.; if and only if
(2.16) and (2.17) hold under the assumption (2.20). Now (2.16) becomes
(2.18). Moreover, substituting (2.18) and (2.20) into (2.17), we see that
(2.17) is equivalent to (2.19). Hence the lemma is proved. ]

Let VcC? be a domain with a coordinate 2, and let g;(z; X)e
OWMI[X,,-+,X:] (5=1,---,k) be polynomials in X=(X,,-+,X,) with co-
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efficients in O(V) such that degg,(z; -)<N; (z€V) for a given N=
(N, -+, N,)e N*. Consider the analytic set

Z={(z,2) € VXC*; (x,)¥*' +g;(z; 2)=0 (§=1,--,k)}.

Let #:Z—V be a natural map induced by the projection z,: VX C*— V.
The following is a key lemma of this section.

LEMMA 2.11. =#:Z—-V is a finite map.

PROOF. We provide C* with the norm |x|=max {|x,|, -+, ||}, and put
B(r)={x=C*; |x|<r}. Let K be any compact subset of V. Since degg,(z; -)
< Nj, there exists a constant » such that |g;(z; x)| <»|x|"/ for 2= K, x=C*
and |z|=r (j=1,---,k). We assert z7(K)=ZNa(K)CKXB(r). To see
this, let (z,x)ex '(K). Then |x|=|z;| for some j, and |x|¥it'=|x,;|Vi*'=
lgi(z; x)| <max (r|z|¥/, »"/*'). Hence |x|<r, which proves the assertion.
Since 7 Y(K) is a closed subset of the compact set KX B(r), ="' (K) is also
compact. Hence = is a proper map. Moreover, = !(z) (z€ V) is a compact
analytic subset of zXC*=C* So = !(K) is necessarily finite. Hence the
map = is finite. [

LEMMA 2.12. Under the assumption of Theorem 2.2, E(m,k; N),=
E(m,k; NN\NF(m+k), is nonempty for each peB(m+k). In particular,
E(m,k; N) 13 nonempty.

PROOF. We may assume pcU. By Lemma 2.10, F(m,k; N),=
F(m,k; N\NF(m+k), is identified with an affine algebraic subset Z of
C*™ defined by

Z={(b,e)eC*xC™ ; (b)"i*'+G;(p; b,e)=0 (5=1,---,k)}.

Since Z is defined by k equations, we have codim Z<k i.e. dimZ=m’. On
the other hand, the assumption of Theorem 2.2 implies that m’'=2m+3g—3
is positive. Hence Z is nonempty. Under the identification F(m,%; N),
=Z, Proposition 2.1 implies that E(m,k; N),=ZNC*x(C™\H), where H
is a finite union of proper linear subspaces of C™'. If E(m,k: N), were
empty, then ZCC*x H. Thus, if 7: Z—C™ be a map induced by the pro-
jection C*xC™—C™, then =(Z)CH. By Lemma 2.11, z is a finite map,
whence dimZ<dim H<m’'—1. This is absurd, since dim Z=m’ was already
established. Hence E(m,k; N), is nonempty. ]

Now it is easy to give a proof of Theorem 2.2.
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PROOF OF THEOREM 2.2. We shall show that E(m,k; N)isa 3(m+g-—1)
+/k dimensional analytic subspace of the complex manifold E(m+k). It is
already known (Lemma 2.12) that E(m,k; N) is nonempty. Recall that
Em,k; Ny=F(m,k; NN\NE(m+k), E(m-+k) is an open submanifold of the
complex manifold F(m+k), and F(m+k; N) is an analytic subspace of
F(m+k) (Lemma 2.10). Thus it suffices to show that F(m,k; N) is of
dimension 3(m+g¢—1)+k at each point Q°< F(m,k; N). We may assume
that Q°€ F(m+k)|Uand Q°=(p°, a®, b°, ¢°) under the isomorphism F(m+k)|U
=UxC#*™ gtated in (2.11). In order to see dim F(m,k; N)<3(m+g—1)
+k at Q°, it suffices to establish the following claim: Q° 4s an isolated
point of the zero set of the 3(m+g—1)+k holomorphic functions in
F(m,k; N)|U defined to be the restriction of p,—p;, ¢,——cf€O(UX C*+™)
(7=1,-,m-+k, (=1, ,m"=2m+39g—38). Since F(m,k; N)|U is defined by
(2.18) and (2.19), the above claim is equivalent to saying that 5°=C* is
an isolated point of the zero set of the functions (b;)"/*'+G;(p°;b,c°)
(7=1,--,k) in C*. Thus Lemma 2.11 implies that this claim is true.
On the other hand, dim F(m,k; N)=3(m+g—1)+k is clear, since the am-
bient space F(m+k)|U is a complex manifold of dimension 3(m+k+g—1)
and F(m,k; N) is defined to be the zero set of 2k holomorphic functions
in F(m+k)|U. Hence the first half of the theorem is proved. The second
half is already established in Lemma 2.12. ]

§3. Reducible and irreducible SL-operators.

3.1. Reducible SL-operators.

DEFINITION 3.1. An SL-operator L=(L;) with L;=-D%4Q, for a
coordinate covering U ={(U,, x;)} is said to be reducible if there exist first
order differential operators M;=—D;+ P, with P,e M(U;) such that L;=
M#M,;. Here M7 is the formal adjoint of M;, i.e., M¥=D;+P;. An SL-
operator is said to be reducible if it has a reducible representative for
some coordinate covering.

We put
E()req :={Q€ E() ; Q is reducible},
E(l)i. :={Q€ E(l) ; Q is irreducible}.
THEOREM 3.2. Let (=max {1,2—g}.

(i) If g=0 and (=2, then E(l)rea=E(l).
(ii) Otherwise E(l).eq 18 a proper analytic subspace of E(l) whose
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dimension and codimension are given by
dim E({);eqa=2({+g—1, codim E({);eqa=[+29—2.

Let (=m+k, m=max{l,2—g}, k=0. For any analytic subspace D of
E(m+k), we put

Dred::DmE(m+lc)redy Dirr ::DmE(m+k)irr~

Theorem 3.2 implies that D..q is an analytic subspace of D.

THEOREM 3.3. Let m=max{l,2—g}, k=0 and NeN"* E(m,k; N)iea
18 an analytic subspace of E(m,k; N) such that

dim E(m, It ; N)req=2m+k+g—1, codim E(m,k; N)rea=m+29—2.

In particular, except for the case g=0, m=2, E(m,k; N)ea 18 @ proper
subspace of E(m,k; N).

THEOREM 3.4. Let m, k and N be as in Theorem 3.3 and let p& B(m).
E(p,k; N)iea 18 an analytic subspace of E(p,lk; N) such that

dim E(p,k: N)rea=m~+k+g—1, codim E(p,k; N)rea=m+29—2.

In particular, except for the case g=0, m=2, E(p,k; N)ea 18 @ proper
subspace of E(p,k; N).

DEFINITION 3.5. Let =(8,,-+,0,)(C,)™ and N=(N,, -, N)& N* be
given. The pair (8, N) is said to be generic if

m k
21 0.0+ 3 e;(N;+1)#29—-2—m—k
i= j=1

for every 4;, ¢,e{+1} (1=1,---,m, j=1,---, k). Otherwise (4, N) is said to
be nongeneric.

THEOREM 3.6. Let m and k be as in Theorem 3.3 and let (8, N)
(C,)"xX N*. If (0, N) 1is generic, then E(m,k; 6, N).eq 18 empty.

This theorem implies that all SL-operators in E(m,/k; 8, N) are irre-
ducible for “almost all” (6, N).

THEOREM 3.7. Let m, k and (68, N) be as in Theorem 3.6. If (6, N)
18 nongeneric, then E(m,k ; 0, N).eq 18 an analytic subspace of E(m,k;8,N)
such that

codim E(m, k ; 6, N)ea=m—+2g—3.
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THEOREM 3.8. Let m, k and (0, N) be as in Theorem 3.7 and let pe
B(m). If (6,N) is mnongeneric, then E(p,k:60,N).q 15 an analytic sub-
space of E(p,k;0,N) such that

codim E(p, &k ;0, N);ea=m+29—3.
3.2. The auxiliary space V(/).

If we put
1 .
TijEDjlog/c,k in Uijk,

then we have (r;,)€Z'(U ; O(r)). Let us introduce an affine space P de-
fined by

P={P=(P)eCAU ; M) ; o(P))=(r;)}.

Under the notation of Definition 3.1, an easy calculation shows

LEMMA 3.9. Let L=(L;) with L;=—D%+Q; be an SL-operator for a
coordinate covering U={(U,,x;)}. L is reducible if and only if there
exist P,e M(U,) such that

(i) P=(P)e%,

(i) dP;/dw;+Pi=q;,

(iii) P, has at most simple poles in U,.

REMARK 3.10. After taking a refinement of the covering, if necessary,
we may assume that each P; has at most one simple pole in U; and no
pole in U;N\ U, for every k (#7). The Serre duality theorem yields an
isomorphism HY(M ; O@))=H(M ; ©)*=C. This isomorphism identifies r&
HY(M ; O(x)) defined by the 1l-cocycle (r;) with the complex number
> Res (P,dx,), where Res(P;dx;) denotes the residue of the 1-form P;dx;
J

in U;. On the other hand, an explicit calculation of the first Chern class
¢.(k)=2¢g—2 shows that the above isomorphism identifies = with (1/2)e¢,(x).
Hence we have :

3.1) 2 Res (Pydx;)=g—1.
J
In view of Lemma 8.9, (i), (iii), we shall investigate the structure of
the space
V() :={P= P ; P has exactly [ ordered simple poles},
for (=1. Let
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A :=fa=(a), -+, a)eC" s ay+ -+ +ar=g—1,a; - a,#0}.

Then we have a natural projection

T V(l)—*A(l)XB([); P’—'(a;p):

where p=(p,, -+, p.)EB() is the [-tuple of ordered simple poles of P, and
a=(ay, - ,a)EA(l) is such that «; is the residue of P at p,.

THEOREM 3.11. If g=1, then V() carries a natural structure of
complex manifold such that =: V()—A()XB(l) s a holomorphic affine
bundle of rank g. If g=0, then V() carries a natural structure of com-
plex manifold such that n: V()= A()XB(l) is a biholomorphism. In
particular, dim V([)=2[+g—1.

PROOF. For any p°=(p’, -, pl)eB(), let U={(Uj,x,;)} be a coordi-
nate covering of M such that p€ U, and U;nU,+@ for j,k=1,---,L.
Then U=U,X --- X U, is a neighbourhood of p° in B(/). For p=(py, -, )
e U, we put t;(p)=x,;(p;,). Let (§(a,p))ECAU ; Mk)) with (a, p)e A(l)
X U be a 0-cochain defined by

a;d log (x;—t;(p)) in U; (5=1,--,1),
fj(a,P):
0 in Uy (5#1,-,1).

Then the 1-cocycle o8(¢;(a, p)YeZ (U ; O(k)) determines an element 7'
HY M, O(x)). By the definition of A(/), ¢’ corresponds to the complex num-
ber g—1 under the isomorphism H'(M ; O(x)) = C mentioned in Remark 3.10.
Hence =7’ in H'(M; O(x)). Consider the 1l-cocycle a(a, p)=/(0;:(a, p))€&
ZY U ; O(x)) defined by

aila, p)=tdx;+&(a, p)—&a, P) in UNnUy.
Since o(a,p)=0 in H'(M; O(x)) and g,,(a, p) is holomorphic in (a, p)= A(l)
X U, a theorem of Kodaira-Spencer implies that (possibly after the coordi-

nate covering U is replaced by a more refined one, which is still denoted
by U) for any a®°< A(l) there exists (y;(a, p))=C’(U ; O(x)) such that

(i) o'jk(ayp):’]k(a:p)_ﬂj(a’p) in U;f\ Uk:
(i1) 7j(e, p) is holomorphic in (a, p)edX U, where 4 is a sufficiently
small neighbourhood of a° in A(!().

Let P(a, p)=(P;(a, p))C’(U ; M(x)) with (a,p)€D=4%X U be defined by

Pia,p)=¢&(a, p)+7n;(a,p)  in U;.
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Emphasizing the dependence on D, we put P(a, p)=P(a,p; D). Then by
the definition of P(a, p; D), it is clear that

(3.2) Va.p=n""a,p)=Pla,p; D)+H' M ; O(x)), (a,p)ED.

In particular, since (a°, p°)=D is an arbitrary point of A(/)XB(l), = is
surjective. Moreover, if g=0, then H(M ; O(x))=0, whence = is bijective.
Let ¢, : MX A() X B(l)>M and ¢, : MX A(l) X B(l)— A(l) X B(!) be the canonical
projections. A theorem of Kodaira-Spencer [KS, I, Theorem 2.2] [GR,
Chap. 10, §5, Theorem 5] implies that ¢xO s« sty (@ie) is a locally free
analytic sheaf over A(/)XB(/). Let W{(/) be the associated holomorphic
vector bundle, then each fiber W(l)ca ,, With (a, p)= A()) X B() is identified
with the g-dimensional vector space H'(M ; O(x)). Hence (3.2) implies that

V([)(n.p):P(a)p; D)+ ]V(l)(a.p)) (a;p)E]) .

If D’ is another open set in A(/) X B(!/) similar to D, then P(- ; D)— P(-; D’)
becomes a holomorphic section of W(/) over DN\ D’. Thus the holomorphic
vector bundle structure of W{(/) induces a holomorphic affine bundle struc-
ture of V(/) over A(/)XB(!). Hence the theorem is proved. ]

3.3. Proof of Theorem 3.2.

We consider the holomorphic map

@ V(I) —> E()
u W
P=(P,) —> Q=(D,P,+ P?).

REMARK 3.12. Lemma 3.9 implies
E(D)cea=P(V(1)) .

It is easy to see that @ is a closed map. Moreover, we have

PROPOSITION 8.18. Each fiber of @ contains at most 2° points. In
particular @ is a finite holomorphic map.

PROOF. Given any Qe E(l), let p=(p,, -+, p.)EB(l) be the [-tuple of
ordered singular points of @ and let #,C, (j=1,---,() be the difference
of the characteristic exponents of Q at p;. For ¢=(a,, -+,0,){+1}}, we
put
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(3.3) a(a)z(%(l—i—alﬁl),---,%(l—hnﬂt)).

By the definition of @, it is easy to see that

(3.4) (I)—I(Q)C,,e,y“t V(D acor p -
Thus, in order to show that @ '(Q) contains at most 2' points, it suffices
to establish the following lemma. ]

LEMMA 3.14. The map @ s injective on V(()(a.,, Sfor each (a,p)E A(l)
X B(l).

PROOF. In case g=0, each V() ,, consists of only one point, (Theo-
rem 3.11). Hence the lemma is trivial. In case g=1, we shall establish
the lemma by contradiction. Suppose that there exist P=(P,), P'=(Pje
V(l)¢a.p such that P#P’ and ®(P)=@(P’). By (3.2), R:=P—P’ is a (non-
zero) holomorphic 1-form. Condition @(P)=@(P’) is then rewritten as

log R,) in U;.

J

1 d
(3.5) Py= §<R,— ,
This equality implies that
(3.6) (the sum of all residues of P)

1
Z—E(the number of zeros of R counted with multiplicities).

By (8.1), the left-hand side of (3.6) is equal to g—1=0. However since
Pe V() with (=1, P has at least one pole. Hence, by (3.5), R has at
least one zero. So the right-hand side of (3.6) is negative. This contra-
diction establishes the lemma. [

PROOF OF THEOREM 3.2. Since V(!) is a complex manifold of dimen-
sion 2/+g—1 (Theorem 3.11), Proposition 3.13 and the finite mapping
theorem imply that @(V(/)) is an analytic subspace of FE(/) such that
dim @(V(/))=dim V(/)=2/4+g—1. By Remark 3.12 we have E(()..q=P(V(l)).
Hence E(l)rea is a (2/4+g—1)-dimensional analytic subspace of E(/). Let
[Zzmax {1,2—g} and (g,()#(0,2). Then dim E(/)=3({+g—1) (Proposition
2.1), whence codim E(/);eq={+2g—2. This proves the second assertion (ii)
of Theorem 3.2. Proof of the first assertion (i) is easy. n
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3.4. Proof of Theorem 3.3—Theorem 3.8.

PROOF OF THEOREM 3.3. Given N=(N,,---,NJ)eN* and 6=(c,, -+, q,)
{1}, let

ams;=B;(N, o)
A(m, ki N,o) :={a=(ay, ", anis) S A(m+k): B
j’_—-l;“':k

A(m,k;N):= U A(m,k;N,o),
se(x1)k
where
1 .
(3.7) Bi(N, 0) ::§{I+a’(N’+1)}’ j=1, k.
In order to prove the theorem, we need the following lemma.

LEMMA 3.15. Let @: Vim+k)—E(m+k) be the map introduced in the
Sirst part of this subsection with [ replaced by m—+k. Then we have

(1) E(m, k; N)eeaC@(V(m+k)|A(m, k ; N) X B(m+k)),
(ii) E(m,k; N)eea DO(V(m+k)|A(m, k ; N,=1,) X B(m+k)),

where =1,=(—1,.-+, -1)e{+ 1}~

Accepting this lemma for the moment, we continue the proof of the
theorem. Since C:=A(m,k; N)X B(m+k)and C’' :=A(m,k ; N,=1) X B(m+k),
are (2m+k—1)-dimensional submanifolds of A(m+k)X B(m+k), V(im+k)|C
and V(im+k)|C' are (2m+k+g—1)-dimensional submanifolds of V(m-+k)
(cf. Theorem 3.11). In particular, V(m+k)|C and V(m+k)|C’ are closed in
Vim+k). Since @: V(im+k)—E(m+k) is a finite map (Proposition 3.13),
we conclude that @(V(m+k)|C) and @(V(m+k)|C’) are analytic subspaces
of E(m+¥k), whose dimensions are equal to those of V(m+k)|C and
Vim+k)|C’, respectively, i.e.,

dim @(V(m+k)|C)=dim &(V(m+k)|C')=2m~+k+g—1.

Hence Theorem 3.3 follows from Lemma 3.15. n

PROOF OF LEMMA 3.15. By the definition of A(m, k; N), it is easy to
see that
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O(V(im, k)|A(m, k ; N)X B(m+k))

characteristic exponents of @ at the (m+j)-th

— . 1 1 .
=1Q€Em+E)rea; gingular point are 5 5 N+, (5=1,-,k)

This implies that the first assertion (i) holds. We proceed to the second
assertion (ii). Let L be the SL-operator corresponding to an arbitrary
element @ of O(V(m-+k)|A(m,k; N,=1)XB(m-+k)), (cf. (1.9)). Around its
(m+7)-th singular point pn+;, L has a local expression L;=M*M; with
M;=—D;+P;, z; being a local coordinate of M around p,,; such that
%j(Pm+;)=0 (cf. Definition 3.1). Since P; has a simple pole at p,.; with
residue p:=1/2—(1/2)(N;+1), the equation M;v=0 has a local solution of the
form v=ua#f,(z;), where f,(x)eC{x}, i.e., a convergent power series of z.
Notice that 1:=1/24(1/2)(N;+1) and g are the characteristic exponents of
L at pu.; such that A—p>0 and that v is a solution of the differential
equation Lf=0 corresponding to the exponent p. Since 4—p>0, Frobenius’
method implies that Lf=0 has a solution of the form w=ux%f(z,) with
Si(x)e C{x}. Since w and v contain no logarithmic term, L has an apparent
singular point at p,.; of multiplicity N;, Hence Qe E(m, k; N). Combin-
ing the fact Qe E(m+k)req, We have Q€ E(m,k; N),eq. This establishes
the lemma. ]

In a similar manner, we can prove Theorem 3.4. So we omit its
proof.

PROOF OF THEOREM 3.6. Suppose E(m, k ;8, N).eq is nonempty and let
@ be an element of E(m,k;0, N),eq. Let p=B(m+k) be the ordered reg-
ular singular points of Q. For o=(o,, ,0mnss)E{F1}"", we define al(o)
i=(a1(0), "+, anssl0)) € A(m+k) by

{1+aj0j} (jzly'“,vm)y
(3.8) a(o) =
{1+0,(N;,_»+1)} (j=m+1,-,m+k),

(cf. (3.3) and (3.7)). In a similar manner as in (3.4), we have

o '(Qe Um+kV(m’+k)(““’)""'

gE(£1)

Hence there exists a o= {+1}"** such that @ Q)< V(im+k)aw ., By the
definition of A(m+k), we have
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m+k

2 ajl0)=g—1
Jj=1

for this ¢. This contradicts the assumption that (4, N) is generic, (cf.
Definition 3.5). u

PROOF OF THEOREM 3.7. Let a(s), o={+1}"** be the elements of
A(m+k) defined by (3.8). Since C”:={a(o);occ{x1}"**}x B(m+k) is an
(m+k)-dimensional complex submanifold of A(m+ k)X B(m+k), Vim+k)|C”
is an (m+k+g)-dimensional complex submanifold of V(m+k). As in the
proof of Lemma 3.15, we can easily show that

(3.9) Em, k; 0, N),edT®(Vim+k)|C").

Since @ is a finite holomorphic map, (V(m+k)|C”) is an (m+k+ g)-dimen-
sional analytic subspace of E(m, k; 8, N). Since E(m, k; 0, N) is of dimen-
sion 2m+k+3g—3 (Theorem 2.4 (i)), we have codim®(V(m+k)|C")=
m+2g—3. Hence (3.9) implies codim F(m, k; 0, N)=m+2g—3. [

In a similar manner, we can prove Theorem 3.8. So we omit its
proof.

§4. Gauge equivalence for SL-operators.
4.1. Gauge equivalence in E(p; k; N).

As in Section 1, let & be a holomorphic line bundle over M with ¢,(§)
=1—g and let (¢;)=ZY (U, O*) be a representative 1-cocycle on a projec-
tive coordinate covering U ={(U;,z,)} of M. We set D;=d/dx; as before.
If necessary, the covering U will be replaced by a finer one without
comment. If f=(f,) is a local section of &, then f=(‘(f;, D,f;)) is a local
section of the vector bundle @ defined by the 1l-cocycle

1 0

(4.1) ¢jk=$jk< > in Ujf\Uk,

Nik Kjk

where 7;,=D;log&;,. Since ¢,(§)=1—g we have
1
ﬂjk:—'gpj 10glfjk.

To each SL-operator @=(Q,) on the line bundle & one can associate a mero-
morphic connection V(Q) : M(P)— M(PR«) defined by
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0 1
(4.2) V(R =d— < ) )dw;

Qy 0 ‘
with respect to the local trivialization (@) U,;=(M|U;)>. If f=(f;) isa
local solution of the SL-equation Lf=0 associated with Q, then f=(*(f;, D,f;))
is a local V(Q)-horizontal section of 9.

Now we consider the gauge equivalence for connections on @. Here @
is a holomorphic vector bundle over M not necessarily defined by (4.1). In
the holomorphic category, things are standard; two holomorphic connec-
tions V and ¥’ on @ are said to be gauge-equivalent if there exists a holo-
morphic section G of the bundle End @ having the holomorphic inverse G
such that V'=GVG~'. It is well known that V and V' are gauge-equivalent
if and only 1f their monodromy representations are equivalent. We call
this property (GM). Here we recall that, for a group G and a vector
space V, two linear representations p,p’=Hom (G; GL(V)) of G in V are
said to be equivalent if there exists a PEGL(V) such that p'(g)=Pp(g)P !
for every g=G. For meromorphic connections, it is difficult to give a
natural definition of the ‘‘gauge equivalence” having the property (GM).
Let ¥V and V' be meromorphic connections on @ with ordered regular
singular points p=(p,, -+, p) and p'=(p}, -, p))E B(l), respectively. If
anything, we can define a gauge equivalence in a similar manner as for
the holomorphic connections by saying that V and V' are gauge-equivalent
if there exists a meromorphic section G of End ® having the meromorphic
inverse G~' such that V'=GVG"'. We call it the meromorphic gauge
equivalence. In case p=p’, we can easily see that the meromorphic gauge
equivalence has the property (GM). In case p#p’, things are more difficult.
For p=(py,---,p)EB(), we put [pl:={p,--,p} and Rep(|p|:=
Hom (z,(M\|p|) ; GL(2,C)). Then the monodromy representations of ¥V and
V' are elements of Rep(|p|) and Rep(|p’]), respectively. There occur two
problems: (i) In order for (GM) to make sense, we must make clear what
we mean by saying that two elements p=Rep(|p|) and po’<Rep(|p’|) are
equivalent. To do this, we must give a canonical identification of the
fundamental group =,(M\|p|) with =,(M\|p’]). (ii) The meromorphic gauge
equivalence of two meromorphic connections always implies the equivalence
of their monodromy representations, but the converse is in general not
true. Thus, in order to define a precise gauge equivalence having the
property (GM), it might be neccessary to admit ‘‘multi-valued” meromor-
phic gauge transformations.

In the present paper we abandon to give a definition of the gauge
equivalence in a general situation. We shall preferably define the gauge
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equivalence, roughly speaking only for connections V(Q) with Qe E(p,k;N)
for a fixed peB(m). We must make things more precise in connection
with the problem (i). We proceed as follows: Let ¢ : B(m+k)—B(m+k)
be the universal covering of B(m-+k). Recall that we have the projection
m: E(m+k)—B(m+k), (see §§2.3). Let E(m-+k) be the fiber product of
B(m+k) and E(m+k) over B(m—+k) with respect to ¢ and =. We obtain
the following diagram :

E(m+k) —¢" E(m+k)
(4.3) ' l;’f lrr
B(m+k) —'¢—‘—‘> B(m+k) .

Moreover, we put
E(m,k; N)=¢ "(E(m,k; N)), E(m,k;0, N)=¢ '(E(m,k;0,N)),
E@,k; N)={Q<cE(m,k;N); #Q)=p} and
E@®,k;0, N={QeE(m,k;0,N); %@ =p)
for pe B(m), (cf. §2.3). We shall define the gauge equivalence for con-
nections V(@) with Q= E(p, k; N) for any given p< B(m).

Hereafter, we shall make the following abuse of notation: Even when
we should use the notation #, P, @ etc., we shall use =, p, @ etc. in place
of them to simplify the notation.

First of all, remark that there exists a holomorphic map

B(m+k) X B(m+k) — Pic (M)={cc H' (M ; O*) ; ¢i(0)=0}
U] )
(Q; r) > U(Q; r)

such that the following conditions hold :

(i) o(g, N®=[q,+ - Fqmar— (rit+ -+ +7n1)]
if ¢(q)=(q1y"':Qm+k): ¢(r)=(’l’1, "';'rm+le)EB(m+k)'
(ii) a(q, gy =the trivial line bundle.

Indeed, it is well-known that, for a holomorphic family of line bundles
{r(t); te T} with an even Chern class, there exist 2% solutions of the equa-
tion ¢®?*=r7(t) for each t=T depending holomorphically on ¢ but possibly
multi-valued. In our situation, since T=B(m+k) X B(m+k) is simply con-
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nected, the conditions (i) and (ii) determine the single-valued holomorphic
function ¢(q, r) uniquely.

Next we define a meromorphic connection V(q,r) on a(q,r) for each
(@, r)e B(m+k)x B(m+k) as follows: We put ¢(q@)=(qs, "+, qm+s) and 4(r)
=(7ry, -+, Tmsr). Let s(g,r) be a meromorphic section of the line bundle
lg:+ -« +qmsr—(ri+ -+ +7,4)] such that the associated divisor div (s(q, r))
is q;+ - +quer—(ri+ - +7r.4).  Such section s(q,r) is unique up to con-
stant multiples. Let D(q,r) be the unique meromorphic connection on
[qi+ -+ quer— (r1+ -+ +7ne)] such that s(q,r) is a D(q, r)-horizontal sec-
tion. D(q,r) is independent of the choice of s(q,r). There is a unique
meromorphic connection on o(q,r) whose connection forms are the half of
those of D(q,r). We denote this connection by V(q,r).

For @, ReE(p, k; N) with pe B(m), we put

) 3(Q, R)=s(zx(Q), =(R), D@, R)=DxW),=(k)).
' 0@, R)=0(x(@),=(R), V(@ R)=x(Q), (k).

REMARK 4.1. For p, q and reB(m+k), we have
a(p, p): the trivial bundle, a(p,qRa(q,rv)=ac(p,r),
Y(p, p): the trivial connection, Y(p, ) @Y(q, r)=V(p,r).

Now we can define the gauge equivalence for SL-operators in E(p, k ; N)
with pe B(m).

DEFINITION 4.2. Two SL-operators @ and R E(p, I : N) with pe B(m)
are said to be gauge-equivalent if there exists a nontrivial meromorphic
section G of the vector bundle Hom(® ; ¢(Q, R)®®) having the meromorphic
inverse G 'el'(M ; M(Hom(s(Q, R)YR®D ; ®))) such that GYQ)G '=(Q, R)®
V(R). G is called the gauge transformation sending @ to R.

If z(Q) ==(R) in B(m+k), the gauge equivalence in the sense of Def-
inition 4.2 is nothing but the meromorphic gauge equivalence.

4.2. The ¢(Q, R)-valued vector field associated with a
gauge transformation.

Suppose two SL-operators Q, R<E(p,k; N) are gauge-equivalent and
let G=(Gel'M; MHom(P;s(Q, RYQ®®P))) be the gauge transformation
sending @ to R. Let ¢-z(@)=(py, "+, Pm, @1, ", q8), ¢-7(R)=(Dy, ", P, 71,
e, r)eEB(m+k), (cf. (4.3)). We denote by v;(G) the (1,2)-entry of the
matrix G;, i.e.
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* 2;(G)
(4.5) G,-:< )

LEMMA 4.3. Under the above assumption,

(i) detG s a nontrivial D(Q, R)-horizontal meromorphic section of
the line bundle ¢(Q, R)®*=[q,+ -+ +q,— (r,+ -+ +7)]. In particular, the
associated divisor div(detG) is q,+ -+ +qe—(r,+ == +75).

(i) trG 1s a meromorphic section of the line bundle ¢(Q, R).

(i) v(@)=w;(G)) is a ¢(Q, R)-valued meromorphic vector field on M.

We call »(G) the ¢(Q, R)-valued vector field associated with the gauge
transformation G.

PROOF. We abbreviate ¢(Q, R) as ¢=(0,,). Since G is a meromorphic
section of the vector bundle Hom (@,0Q<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>