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Introduction
Let n=N. In the sequel, when, with regard to a family {w.}.en?

(Ny=N U {0}) of elements of a Banach space, we consider the symbol }5 W,

laei =0

it is understood that the family {w.},enx? is absolutely summable and that
> w, is its sum.

| =

0

Let (E,|-llz) be a real or complex Banach space. Let us introduce the
basic function space of this paper. Namely, we denote by V(R", E) the
space of all functions we= C*(R", E) such that, for every non-empty bounded
set RER", one has '
sup sup || D u(x) |z < + oo

aENg zeR

ay+ota

where Du= —%T%, a=(ay, -, a,).

As it is shown by Proposition 2 below, for each £ as above, the
mapping

u —> fullg. = sup suplD“u(x)|x
"ENY zeQ

is a norm on V(R",F) and the space (V(R", E), |- [0 5) is complete.

We denote by L(E) the space of all continuous linear operators from
E into itself, endowed with the usual norm :

HA”I(E):uSEspx 1AWz .

The aim of this paper is to prove the following well-posedness result
which was announced in [3]:
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THEOREM 1. Let keN. For each j=0,1,---,k—1 and each acN?,
let A; ,€.L(E) be given. Assume that

k-1 oo
(1) 2 2 A all £ery<1.

J=0lai=0
Then, for every f& V(R"F“,E) and every ¢o, @1, , 01 V(R E), there
exists a unique function uwe V(R E) such that, for all tc R, x= R",
one has

8

tult, o)+ S B A, DDt 9) =F(t,2)

Diu(0, z)=¢;(x) for 7=0,1,--,k—1.

Moreover, if A€]0,1[ is chosen in such a way that
k-1 oo )
2 2 AHMA ST,
j=01a1=0

this function u satisfies, for each r=0 and each non-empty bounded set
QER", the following inequality :

@) max 27| Diullc-r.rx0. £
0sjsk-1

1-

(A »
< minfe(= If oo s+ max 2-4lglo.s),

24 (e 42 fleeromea s+ e max 271g,los)
- 0sjsk-1

We wish to remark at once that the conclusion of Theorem 1 does
not hold, in general, if condition (1) is violated. In this connection, the
simplest example is provided by the equation

ou .
5y Tu=e

Of course, there is no solution of this equation in V (R"*!, R), although
the function (£, x)—e’ belongs to that space.

Nevertheless, the problem of finding a necessary and sufficient condi-
tion for the wvalidity of (the first part of) the conclusion of Theorem 1,
remains still open. In fact, we do not know any previous well-posedness
result in the space V(R"*! E).

The paper is arranged into two sections. In Section 1, we present a
series of auxiliary results which lead to the proof of Theorem 1. Section
2 contains some consequences of Theorem 1. In particular, we put there
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a reformulation of it in purely algebraic terms (see Theorem 2) as well
as a result on systems of infinitely many partial differential equations
(see Theorem 5), and another on partial integro-differential equations (see
Theorem 6).

1. Auxiliary results and proof of Theorem 1

Let us fix some notation. If a=(a;,*,a,)=N; and x=(2,,*,%,) E
R™, as usual, we put a! =a,! - a,! and x*=gxg --- x5 (with the convention
0°=1). Moreover, we denote by I*(N?®, E) (resp. I”(N?%, E)) the space of
all families {v,},enn in E such that sup [|va|z<-+oo (resp. sup al|vele<

aENT aEN
+ o),

We now point out a characterization of V(R", E) used several times

later.

PROPOSITION 1. Let f: R*—E be a given function. Then, the fol-
lowing assertions are equivalent :

(a) feV(R", E).

(b) fis analytic in R™ and {D°f(0)}aenzs1”(NT, E).

(¢) There exists {vo}acnr€I"(NT, E) such that

for all xR,

PROOF. The implication (a)= (b) follows directly from a -classical
analyticity criterion. So, assume (b). By Abel’s lemma, the power series

{oc D"f(O)} v is absolutely summable in R*. For each x= R", put

a! aENY

Thus, the function ¢ is analytic in R™ and, for each a= NP, one has
D*g(0)=D*f(0). Consequently, since f is assumed to be analytic in R?",
D f(0)

a!
for all ac N?. Finally, let (c) hold. Then, feC=(R", E) and, for each
ac N, x=R™, one has

one has f(x)=g(x) for all x=R" Hence, (¢) holds by taking v,=

Difw)= 2
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Consequently, if we put M= sup a! |v.llz (so, M<+c by hypothesis), for

nENB’
every x=(x,, '+, x,)ER", we get

sup | D f(x) || g < Me' =1+ * 50!,

aENg
Hence, fe V(R",E). =

Before stating the next proposition, it is useful to introduce the fol-
lowing notation. Namely, if 2,0, are two non-empty bounded subsets of
R*, we put

c(2,92,)= sup inf 3 |z — vl .

(Il_.---.xn)eﬁ W1 yp)ER L i=1

We have the following

PROPOSITION 2. Let QSR™ be any non-empty bounded set. For each
we V(R", E), put
lullg. = sup supllD“uw(x)| & .
nENg' re
Then, the mapping u— |ullo.x 18 a norm on V(R™ E) and the space
(V(R™, E), |- lg.z) 18 complete. Moreover, if 2,SR" is another non-empty
bounded set, one has

(3) e @Dl o< lulo 5 S e @ ulg, x

for all us V(R" E).

PROOF. The first claim follows at once, taken into account that each
function v V(R", E) is analytic in R". In view of (3), the completeness
of (V(R™, E),|l-lg.r) follows, for instance, from that of (V(R", E), |- ..£),
where || - ||o.z stands briefly for |- |l o,.z. Thus, to prove that (V(R™, E), |- llo. )
is complete, let {f,} be any Cauchy sequence in that space. Hence,
in particular, for each ac= Nj},{D"f,(0)} is a Cauchy sequence in E. Let

We =1himD“fh(0). By a standard reasoning, it is seen that {w,}.en2€1”(N§, E).

For each x€ R", put

f@)= 2 gy
Then, by Proposition 1, one has feV(R", E), and it is immediate to
check that
lim Supnll D*f,(0)—D*f(0)| =0,

-0
aEN g
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as desired. Thus, it remains only to prove (3). To this end, let ue
V(R", E) and 2°2,. Since, for each ac N}, x=R", one has

o 0B
Dulz)= |/3|2=0 < ﬁ’x)

Dt By(a'),

it follows that
| D*u(@) &< =" = ull so. e S € P llullq, .5 -
Hence, since 2" is an arbitrary point of £,, we get
lullg. e <e “?ullg, .5 .

The other inequality in (3) is obtained, of course, interchanging the roles
of Qand 2, =

Another basic result is the following

PROPOSITION 8. Let me N and let SSER™, QSR be two mon-empty
bounded sets. Consider on V(R" E), V(R™ V(R" E)), V(R™" E) the
norms | -llo.g, I s.vcan. g5, | * | s <0. 5, Tespectively. For each us V(R™, V(R",E)),
let ¥(u) be the function, from R™" into E, defined by putting

T (u)(s, ) =u(s)(x)
for all ssR™, x= R",

Then, the mapping u—¥(u) is a linear isometry from V(R™, V(R", E))
onto V(R™ " E). Moreover, for each usV(R™, V(R" E)), reN®, one
has

(4) D (w)=¥(D'u).

PROOF. Let usV(R™, V(R", E)). First, we prove that ¥(u) <
V(R™" E). Let {f;};enr be the family in [*(N7, V(R", E)) such that

(5) u(s)= liosff} for all s R™,
7=
So, we have
6) U (u)(s, v) = iosff,(x) for all se R™, yc R .
7=

Next, for each y& N, let {v; s}acnn be the family in {*(N}, E) such that

(7) Jr(x)= 3 T Vy, for all x=R",

la =0
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Now, put L= sup 7!llf;llo.z. Then, for every ac N}, ye N, taking into
rEN{

account (3), one has
rlal vy ale=71!ID*f0) e <71 | fillg. s < Let ™2 .

Consequently, {v;. o} wrenmtr€l"(N* ", E). On the other hand, in view
of (6) and (7), by associativity (see, for instance, [2], p. 96), we have

oo

(8) T(u)(s,x)= X sx°v,, for all seR™ g R",

17, a)1=0

Hence, ¥(u)e V(R™ ", E) by Proposition 1. Now, observe that, by (5)
and (7), one has -

- T
(9) D))= 5 TN S ey,
161=0 5' la|=0
and that (8) yields
o | @Oma
(10) D¥ (s, )= 5 IHONswt,
13, @) 1=0 0!

By associativity again, the right-hand sides of (9) and (10) are equal, and
so (4) follows. Furthermore, we have

%l s.vcrn. 2y = sup suplD™u(s)lle. £
1EN] s€S

= sup sup sup sup|DED¥ (u)(s, )l g

7ENT" 3€S aENT] z€Q

= sup sup DD (w)(s, )l e=I1¥ (W sv0.5 -

T, ENTFT (5, 2)ESXR

That is, ¥ is an isometry. Finally, the surjectivity of ¥ is proved by
means of the same kind of reasoning adopted to show that ¥ (V(R™, V(R" E)))
SV(R™" E). We leave the details to the reader. =

The next two propositions deal with ordinary differential equations.

PROPOSITION 4. Let Ac.L(E) be such that ||Alrez<1. Moreover,
let B V(R,E) and veCY (R, E) be such that

v’'(t)=A(v(t))+ B(t) wm R.
Then, ve V(R, E) and, for every r=0, the following inequality holds:

I Bllo.2 ))

(11) ||vH[_7ﬂvE§min{e’(llv(0)||z+ 1— 1Al £ &>
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1
r1!AII_£ E T"A“.L‘ E) }
[9(0) 1564238+ (g™ s¢ +~————1_“A”m)nBuc-r.ﬂ.x :
PROOF. First, observe that veC*(R, E), since B€C*(R, E). Next, by
induction, it is seen that
m-1
(12) () =A"(v(t)+ 2 AI(B™ITP(t)+B™ (L)
j=1
for all teR,meN,m=2.

Fix r=0. From (12), we then get

”B”[—r.r].E

€D S AN
(13) o (t)llgéllv(t)lls+1—HAIII<E)

for all te[—r,r], meN,.

Consequently, ve V(R, E). In particular, (13) yields

__|1Blo.z
1olo.z = 10O e+ 7= 7, —
and so, by (3), one has
(14) nvnt-r.ﬂ.sée’("v“’)“ﬁ"1‘—%%;)

On the other hand, being v(t):v(0)+S:A(v(r))dr+S‘B(r)dr, one has
0

[0S 10O s+ Bl s+ 1 AlLrces || o) e

for all te[—r,7].
Therefore, by Gronwall’s lemma, we get
(18) v 1< Uv0) | g+7IBlc-r. 1. pe 4 £E> for all te[—r,r].
At this point, (11) follows at once from (13),(14) and (15). =

PROPOSITION 5. Let k€N and let Ay, -+, A, .€.L(E). Assume that
k-1
_20 1Al £y <1.
=

Then, for every Be V(R,E) and every w, w,, -, W, E, there exists a
unique ve V(R, E) such that

v<k>(t)=:§: AP +Bt)  in R
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v (0)=w; for 7=0,1,-- k—1.
Moreover, for every r=0 and every 1<]0,1[ such that
‘ E-1
_ZE] PV HANry =1,
o

this fumction v satisfies the following inequality :

(16) max 2770l e
0sjSk-1
. ) 21—-12
§m1n[e’< max 1_]“wjl|1;+ﬁ“B“o,E>:
0sjsk-1

o' max z-fuw,-nﬁz*-*(re“Jr -—1—) 1Blc-r.r.s).
0sjsk-1 1—-2

PROOF. If k=1, the conclusion follows at once from Picard-Lindelof’s
theorem and Proposition 4. So, let us assume k=2. Consider the space
E* equipped with the norm

lylex= max lly:le, where ¥= (Yo, Y1, ", Yr-1) -
0sjsk-1

Fix 4]0, 1[ in such a way that

k-t
17 - J% A S 1.

k-1

Of course, this is possible since Z‘:) Il A;l £z, <1. Next, consider the operator
=

A: E*>E* defined by putting

k-1
A(’.‘lo: ?/1, tty yk—l): <2yl: 22/2) Tty lyk—l; j§0 Zj—k"‘llq.?'(/‘ll.l'))
for all (Yo, Y1, ", Yu-) EE*.

Plainly, A= .L(E*). Moreover, for each (%o, ¥, *,¥-1)EE* in view of
(17), we have

jsk-

k-1 ,
1A s, ve-) Isr=max {2 max luils, | S 2 4w |
1s 1 j=0 E

B=1
gmax{z, zzi-“‘uA,nm,} max ly,lz
j=0 0sjsk-1

= Yoy Y1, -+, Yu-Dll gk .
Consequently, one has

(18) Al ey SA.
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Now, let B V(R, E) and wo, w,, *** , w,-, < E. By Picard-Lindelof’s theorem,
there exists a unique veC*(R, E) such that :

v""(t):kz_}: A,P@)+B(E)  in R
=

pP0)=w;  for j=0,1,--+,k—1.
Let I',w: R—E* be the functions defined by putting

I'(t)=(0,--+,0, 2 " *B(t))
and

w(t)=(v(t), A~ (t), A" (F), -+, A F0* (1)) for all teR.
Of course, /' V(R, E*) and w=C'(R, E*). Furthermore, observe that
Alw(t))+1'(t)

<v’(t),2“‘v”(t), . Zz_kv(k_”(t),ll"‘ki A0 () + xl—kB(t)>
j=0
S0, 7B, -, (D), B (0) =a (1)

Then, since |Allrze, <1 (by (18)), thanks to Proposition 4, we have we
V(R,E*, and so ve V(R,E). Moreover, by (11) and (18), for each r=0,

we have

max A"'Hv”’llc-,.,-],ﬂzlIwIIE-r,,AJ,Eémin{e*(\!w(())llgwr
0sjsk-1

11 {lo, & >
1—“AH_E(E’¢) ’

riAn rhan __1___
lw(0) | gre”™ “ £ceks I—(‘re l(b">+1_|lA“I(Ek)>FL—r,rJ.E"}
1-k

gmin[e’< max A7/ w;llz+ A HBHo,E>,

0sjsk-1 1—2

e’ max Z’fll'w;lis+l"”<re"'+ ‘L‘>”B”[~r.r],E}

0sjak-1 1—2
that proves (16). =

We also need the following

PROPOSITION 6. Let {Ad}acnz be an absolutely summable family
L(E). For each ws V(R", E),xR", put
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Then, T(u)(-)e V(R",E), the mapping uw—1T(u) belongs to L(V(R", E))
and one has

(19) 1Tl coveamzivs 3 NAalcns
for any norm |-llg.x on V(R E).

PROOF. Fix ue V(R",E). Then, for each x=R", one has

o I P B
1 A(Dou(e)= 3 A,,( > ";—D“*ﬁu(m)

lal=0 lal=0 181=0 !
=3 A Do) = 5 gf 5 AaDPu0)
uﬁo 181=0 /9' A"(D u(())) |ﬂ|2=0x |a§0 ﬁ' ’

fd ya+ B
Observe that { 3 M}
lai=0 B! pen?t

V(R", E) by Proposition 1. Also, a direct verification shows that D?T(u)
=T(DPu) for all BeN;. Now, fix any norm ||-|lo.x on V(R",E) (2, of
course, being a non-empty bounded subset of R"). Then, one has

e]*(N?, E). Consequently, T(u) <

5 AuD**Puf@)|

la|=0

[ T(u)llo. z= sup sup
BENT z€Q

.S_Ilullg.ylgzollflallum
that yields (19), the linearity of 7' being obvious. ®
At this point, we are able to give the following

PROOF OF THEOREM 1. Fix feV(R™,E) and @51, ", 0s1E
V(R", E). Consider V(R", E) equipped with any fixed norm ||-{p.z. For
each j=0,1,---,k—1, ve V(R*, E),x=R", put

T(v) (@)= — IEOAJ. «(D*v(z)).

So, by Proposition 6, each mapping v—7,(v) belongs to L(V(R", E)) and,
taken into account (1) and (19), one has

k-1
Z}) [ Tj”_L‘(V(R".E))<1 .
j=

Consequently, thanks to Proposition 5, there exists a unique function we
V(R, V(R", E)) such that
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w“’(t):ki‘gl, TP +TH(f)t) in B
0P (0)=0; for 7=0,1,---,k—1,

(20)

where ¥ is the mapping, from V(R, V(R", FE)) onto V(R"*!' E), defined in
the statement of Proposition 3.
Then, for every te R, x=R", one has

T(0™®)(t, x)= kg: U(T00)(t, x)+ f(t, x)

== 2 B A, (D@ +A( )

Jj=0 lal=!
0P (0)(z) =¢,(x) for 5=0,1,---,k—1.

Hence, if we put u=¥(0), taking into account (4), we get

k- oo
fult, m)+ S 3 A, (DDAt ) = f(t, ®)
(21) =0 ltal=0
Diu(0, )= ¢,(x) for j=0,1,---,k—1.

That is, the function u solves our problem. Conversely, if a function #<
V(R™*! E) satisfies (21), then the function ¥ -'(#) satisfles (20), and so
U-Y(#)=w, that is #=wu. Finally, inequality (2) follows at once from (16)
and Proposition 3, taking into account (18) again. ®

2. Some consequences of Theorem 1

As we said in the Introduction, Theorem 1 admits a reformulation in
purely algebraic terms. Precisely, we have

THEOREM 2. Let condition (1) be satisfied. Then, for every
{wr. gl prenin €N, E) (e Ny, = NY) and every {wo. 5} pent, {01 5} gent,
 {0e-1. 8} penr €IP(NT, E), there ewists a unique {vr. gt prennti€l” (NG, E)
such that, for every he N, = N7}, one has

k=1 o
A; . —

(22) vk+h'ﬂ+j§0 Ia\2=0 J-“(vJ+IL.(r+ﬁ) ’w,‘,ﬁ

V. p=wj, 8 for j=0,1,-  k—1.

PROOF. In view of Theorem 1 and Proposition 1, we know that there
exists a unique function we(R"*', E) such that, for every teR, z=R",
we have
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k-1 oo oo thxlg
Diu(t, 2)+ 2 A; (DIDu(t, @)= X oW
) =0 lai=0 1, B)1=0 h'ﬂ‘
(28) 25
1 Diu(0, x)= ,8' ;. g for 5=0,1,--,k—1.
Hence, taking into account that
P hpy
DiDzu(t, 3)= 3 B0P ) yren pat sy 0),
wBi=0 h! B!
we have
oo thxﬂ k-1 (sl N
> (D D0+ S B A, (DI DEPu0)
1Ch, BOI h!,@! j=0 lai=0
™ hp B
(24) _ t'w

ST W
.m%.:o RTgT Wn-t

0 B
T pipBL(0) = KA
|ﬁ|20 B! DDu(O) |ﬁ‘|‘10 ﬂ!w"'ﬁ
Then, if we put v, s=D}DEu(0), we have {vh,ﬁ}(h‘ﬁ,e,vgnel”(N’g“,E) and,
by a classical result (see, for instance, [2], p.195), we get (22) directly
from (24). Conversely, if a family {8, s} prenz+t in I"(NGH, E) satisfies

for j=0,1,--,k—1.

thaf

(22), then it is seen that the function (¢, x)—ul(t, x)= h% JRTB! ¥n.p (which
1Ch. B)1= P
belongs to V(R"*!, I)) satisfies (23), and so #=wu, that is ¥, g=wv,. 4 for all

he N, BeN;. =

In the sequel, it is understood that the space V(R", E) is considered
with any fixed norm |:llg.-. We now state

THEOREM 3. Let ky, -+, k, be n (n=2) positive integers and let A,,
, A, be n linear homeomorphisms from E onto itself. Let T be the
element of .L(V(R" E)) defined by putting

0 u(x) >

ppy for all ue V(R E),zsR".
2]

T = 3 4,(

Assume that

min 2 NAT e Al resy<1.

lstsnj=1
J#i

Then, there exists a linear subspace F of V(R",E) such that T\r is o
linear homeomorphism from F onto V(R E).
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PROOF. Let he N (1<h<n) be such that

n n

D 1Az A;ll rpy= min T IIAT Al rens -

Jj=1 1sisnj=1

J#h J#t
Then, applying Theorem 1 in an obvious manner, for every fe& V(R", E),
we get a unique ue V(R™, E) such that

a*ry(x) o iu(x)
dxkr ok

+3 a(a( ))=47 (@) i BT

aju'(xly a1y 0) Lr+1s """ )
ox?,

=0 in R"!, for j=0,1,:, k,—1.

Therefore, T(u)=f. To get our conclusion, it suffices to take
F={weV(R", E): Div(x, -, 1,0,%u, " ,2,)=0 1in R"-1,
for j=0,1,---,k,—1}. =
In particular, we have

THEOREM 4. Let h, meN and a, b= R\{0}. Then, the differential
operator

o"u o™ u
axh +b aym

U —> a
from V(R?, R) into itself, is surjective if and only if |a|+|b|.
PROOF. The sufficiency of the condition follows directly from Theorem

3. To prove necessity, assume |a|=|b|. Then, we have to show that both
the operators

o"u | 0™u
U —> e
and
u  0™u
W e T oy™

considered as acting in V(R? R), are not surjective. For instance, let ue
C~(R?% R) be such that

"z, y) n 0™ u(w, ¥)
ox" ay™

=e“g(y) in R?,

where ¢ is any non-null function belonging to V(R, R) such that
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g™y +9y)=0 in R.
Then, it is easy to check that, for each p= N, one has

0 u(x, y)
ox?"

"™ u(x, y)

—1)p+1
(-1 S

=pe“g(y) in R®.

Consequently, one has u¢ V(R? R). Analogously, it is seen that, for in-
stance, the equation

o' 0™u

ErE T

has no solution in V(R?, R). m

The next application of Theorem 1 deals with infinite differential
systems. But before it is useful to point out the following proposition,
where, as usual, [ stands for [ (N, R), with the norm ||5”l°°:ﬁ"el§|5h|

(=18}

PROPOSITION 7. Let f: R"—1”, and let f(x)={f.(x)} for each xz=R™,
Then, the following are equivalent :

(i) feV(R", 1),

(ii) {fu} 1s a bounded sequence in V(R™, R).

PROOF. Let (i) hold. For each he N, é={&,}1~, let Th(§)=¢,. Then,
since T,< (I°)*, the function T,(f(-)) (that is f,) belongs to V(R", R). Also,
for each ac N}, x=R", we have

[D*Th(f ()| = Th(D* f))| < | D f(w) Il
that yields (ii). Conversely, let (ii) hold. We then have
sup sup |D*fr(0)| <+ oo

hEN aENT

D f»(0)
a!

On the other hand, for each he N,z R", one has

Consequently, if we put wa:{ }] o we have {wa}aenr€I"(NG, 7).
€

1 3 otwe)= 8 LoD 0)=fil)

1=0 la|=0 .

that is to say

flz)= S 2w, .

la|=0
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Hence, f€ V(R",1”) by Proposition 1. =
We now state

THEOREM 5. Let k<N. For each 7=0,1,--+,k—1, ac N, h, peN,
let @ 4.5, R be given. Assume that

k-1 oo ©
S 3 sup 3@ an 0l <1

j=0 lal=0 hEN p=1

Then, for every bounded sequence {fi} in V(R™*', R) and every k-tuple of
bounded sequences {@o.n}, {@1.n},*, {@s-1.a} 1 V(R", R), there exists a
unique bounded sequemce {up} in V(R"*',R) such that, for every tER,
xeR", heN, one has

oo

k-1 oo )
Diup(t, )+ 2 2 2 . a.n ,DID5u,(t, ©) =filt, x)

j=0 lal=0p=1

Diuy(0, ) =¢; n(x) for §=0,1,-,k—1.

PROOF. Let f(t,2)={/falt, 2)}, ¢;(x)={p, »(®)}. So, by Proposition 7, we
have fe V(R"*',1”), ¢,= V(R",l”). For each 7=0,1,---, k—1,ac= N3}, let
A; , be the continuous linear operator, from [ into itself, given by

Ae@={ S asmnsts) _ for e=(eall”.

he

As it is known (see, for instance, [4], p. 223), one has
||Aj,n“_m""):ig}pvpglmj,a.n.pl .

Consequently, by Theorem 1, there exists a unique we V(R"™*!, 1) such
that, for each t= R, x= R", one has

k-1 oo
Diut,2)+ 2 32 A, «(DiDgult, 2) = f(t, )
J

j=0lai=
Diu(0, 2) = ¢;(x) for 7=0,1,---,k—1.

Let u(t, z) ={us(t,x)}. Then, it is seen at once that the sequence {u,)
satisfies our conclusion. =

Before stating the last results, we introduce another function space.
Namely, let Y be a given compact topological space. We denote by
ViA(R"X Y, E) the space of all functions u: R"X Y—F such that, for each
as N7, the function (x,y)—D2u(x,y) is (defined and) continuous in R*X Y
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and, for each non-empty bounded set QS R", one has

sup sup [ Dzu(z, y)lz<+oo.
aeNg (z,Y)ENXY

As usual, let C%Y, E) denote the space of all continuous functions from

Y into E, with the sup-norm. Then, we have the following proposition,

whose proof (based on Proposition 1 and, in principle, similar to that of

Proposition 3) is left to the reader.

PROPOSITION 8. For each us V(R",C (Y, E)), let ¥,(u) be the func-
tion, from R™XY into E, defined by putting

U (u)(z, y) =u(z)(y) for all xeR", yeY.

Then, ¥, (u)eVy(R*"X Y, E) and the mapping uw—¥,(u) is surjective.
Moreover, for each ac N7, one has DIV ,(u) =T ,(D*u).

In the theorem which follows, Y is a non-empty compact subset of
R™ (me N), and the integrals there appearing are understood in the sense
of Bochner (with respect to the Lebesgue measure).

THEOREM 6. Let ke N. For each 5=0,1,---, k—1 and each ac N7},
let T; ,cC(Y,L(E)) and ?; ,€CA(YXY,R) be given. Assume that

S 8 max(17, @+ 0,00, 01d8) <1.

j=0 la1=0 yEY

Then, for every f€ Vy(R™"'X Y, E) and every ¢o, @1, , 0r-1€ Vo(R*"X Y, E),
there exists a wunique function us Vo(R**'XY,E) such that, for every
teR, x=R",yc Y, one has

k-1

Doty 2, )+ 5 S (TJ».,\,(y)(Dznzu(t, 2, 9)

=0 1a1=0
+{ 0.t DDz, 2, 818 ) = fit, 2, 0)

D{u(oyx’y):?j(x)y) fO’I" .7:0: 1)"')]‘7—1-

PROOF. For each 5=0,1,--,k—1,ac N3, let A, . be ‘the continuous
linear operator, from C%Y, E) into itself, defined by putting

Ao @)=T,. D)+ 0.0, 0(E)de

for all veC%Y, E), y= Y. Obviously, we have
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iiAj,a||I<CO<Y.E>>gmax(uT;-,a<y>um+g 10, .y, s)lde).
yEY Y

Consequently, by Theorem 1, in view of Proposition 8, there exists a
unique function we V(R™*!, C(Y, E)) such that, for every teR, reR",
one has

Diw(t, 2+ 2

1
=01

3 Ay DDz, @) =T, @)

<.

Diw(0, )= (p;)(x)  for j=0,1,---,k—1.

Now, put u=¥,.,(w). Then, proceeding in a by now evident manner, it
is seen that the function w satisfies our conclusion. H

Finally, we want to stress the following very particular case of
Theorem 6 which could be of interest in linear transport theory (see, for
instance, [1], chapter III):

THEOREM 7. Let Y be a non-empty compact subset of R". For each
9=1, -+, m, let 6,= max Y]yil. Moreover, let = R and 9=C (Y XY, R)

(Y1, Yp)E
be given. Assume that

o]+ iai-l—maxg Dy, &)de<1.
i=1 YEY JY

Then, for every feV(R"'XY, R) and every ¢=V(R"XY, R), there
exists a wunique function us Vy(R"''XY, R) such that, for every tcR,
,’X,'ER"’ y:(?/u ttty, ?/n)E yy, one has

oult, x, y) n ﬁ“yi oult, =, y) toult, @, y)+g Oy, Ot z, E)de
ot i=1 0x; Y
=f(t, z, y)

u(0, X, 7J)=<,0(96, Y) .

For other recent results on linear partial differential equations of in-
finite order, we refer to [5] and to the bibliography quoted there.

References

[1] Bardos, C., Problémes aux limites pour les équations aux dérivées partielles du
premier ordre a coefficients réels; théorémes d’approximation ; application a 1’équa-
tion de transport, Ann. Sci. Ecole Norm. Sup. (4) 3 (1970), 185-233.



640

[2]
£3]

[4]
(5]

Biagio RICCERI

Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York-
London, 1960.

Ricceri, B., Sur le probléme de Cauchy pour certaines équations linéaires aux
dérivées partielles d’ordre infini dans les espaces de Banach, C.R. Acad. Sci. Paris
Sér. I. Math. 311 (1990), 41-44.

Taylor, A.E. and D.C. Lay, Introduction to Functional Analysis, Wiley, New
York, 1980.

Tran Duc Van, On the pseudodifferential operators with real analytic symbols
and their applications, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 803-825.

(Received February 26, 1991)

Dipartimento di Matematica
Universita di Messina

98166 Sant’Agata—Messina
Italy

and

Dipartimento di Matematica
Universita di Catania

95125 Catania

Italy



