J. Fac. Sci. Univ. TokyoSect. IA, Math.38 (1991), 623-640.

On the well-posedness of the Cauchy problem for a class of linear partial differential equations of infinite order in Banach spaces

Dedicated to Professor G. Santagati, with my greatest esteem, on his sixtieth birthday

By Biagio RICCERI

Introduction

Let $n \in \mathbb{N}$. In the sequel, when, with regard to a family $\{w_{\alpha}\}_{\alpha \in \mathbb{N}_0^n}$ $(\mathbb{N}_0 = \mathbb{N} \cup \{0\})$ of elements of a Banach space, we consider the symbol $\sum_{|\alpha|=0}^{\infty} w_{\alpha}$, it is understood that the family $\{w_{\alpha}\}_{\alpha \in \mathbb{N}_0^n}$ is absolutely summable and that $\sum_{|\alpha|=0}^{\infty} w_{\alpha}$ is its sum.

Let $(E, \|\cdot\|_E)$ be a real or complex Banach space. Let us introduce the basic function space of this paper. Namely, we denote by $V(\mathbb{R}^n, E)$ the space of all functions $u \in C^{\infty}(\mathbb{R}^n, E)$ such that, for every non-empty bounded set $\Omega \subseteq \mathbb{R}^n$, one has

$$\sup_{\alpha\in \mathbf{N}_0^n}\sup_{x\in\Omega}\|D^\alpha u(x)\|_{\mathit{E}}\!<\!+\infty$$

where
$$D^{\alpha}u = \frac{\partial^{\alpha_1 + \cdots + \alpha_n u}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$
, $\alpha = (\alpha_1, \cdots, \alpha_n)$.

As it is shown by Proposition 2 below, for each Q as above, the mapping

$$u \longrightarrow \|u\|_{\Omega,E} = \sup_{\alpha \in \mathbf{N}_0^n} \sup_{x \in \Omega} \|D^{\alpha}u(x)\|_{E}$$

is a norm on $V(\mathbf{R}^n, E)$ and the space $(V(\mathbf{R}^n, E), \|\cdot\|_{\Omega, E})$ is complete.

We denote by $\mathcal{L}(E)$ the space of all continuous linear operators from E into itself, endowed with the usual norm:

$$||A||_{\mathcal{L}(E)} = \sup_{||v||_{E} \le 1} ||A(v)||_{E}.$$

The aim of this paper is to prove the following well-posedness result which was announced in [3]:

THEOREM 1. Let $k \in \mathbb{N}$. For each $j=0,1,\dots,k-1$ and each $\alpha \in \mathbb{N}_0^n$, let $A_{j,\alpha} \in \mathcal{L}(E)$ be given. Assume that

(1)
$$\sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} ||A_{j,\alpha}||_{\mathcal{L}(E)} < 1.$$

Then, for every $f \in V(\mathbf{R}^{n+1}, E)$ and every $\varphi_0, \varphi_1, \dots, \varphi_{k-1} \in V(\mathbf{R}^n, E)$, there exists a unique function $u \in V(\mathbf{R}^{n+1}, E)$ such that, for all $t \in \mathbf{R}$, $x \in \mathbf{R}^n$, one has

$$\begin{split} D_t^k u(t,x) + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} A_{j,\alpha} (D_t^j D_x^{\alpha} u(t,x)) = & f(t,x) \\ D_t^j u(0,x) = & \varphi_j(x) \quad for \quad j=0,1,\cdots,k-1 \,. \end{split}$$

Moreover, if $\lambda \in]0,1[$ is chosen in such a way that

$$\sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} \lambda^{j-k} ||A_{j,\alpha}||_{\mathcal{L}(E)} \leq 1,$$

this function u satisfies, for each $r \ge 0$ and each non-empty bounded set $\Omega \subseteq \mathbb{R}^n$, the following inequality:

$$(2) \qquad \max_{0 \leq j \leq k-1} \lambda^{-j} \|D_{t}^{j} u\|_{[-r,r] \times \Omega, E}$$

$$\leq \min \left\{ e^{r} \left(\frac{\lambda^{1-k}}{1-\lambda} \|f\|_{(0) \times \Omega, E} + \max_{0 \leq j \leq k-1} \lambda^{-j} \|\varphi_{j}\|_{\Omega, E} \right), \right.$$

$$\lambda^{1-k} \left(re^{\lambda r} + \frac{1}{1-\lambda} \right) \|f\|_{[-r,r] \times \Omega, E} + e^{\lambda r} \max_{0 \leq j \leq k-1} \lambda^{-j} \|\varphi_{j}\|_{\Omega, E} \right\}.$$

We wish to remark at once that the conclusion of Theorem 1 does not hold, in general, if condition (1) is violated. In this connection, the simplest example is provided by the equation

$$\frac{\partial u}{\partial t} - u = e^t$$
.

Of course, there is no solution of this equation in $V(\mathbf{R}^{n+1}, \mathbf{R})$, although the function $(t, x) \rightarrow e^t$ belongs to that space.

Nevertheless, the problem of finding a necessary and sufficient condition for the validity of (the first part of) the conclusion of Theorem 1, remains still open. In fact, we do not know any previous well-posedness result in the space $V(\mathbb{R}^{n+1},E)$.

The paper is arranged into two sections. In Section 1, we present a series of auxiliary results which lead to the proof of Theorem 1. Section 2 contains some consequences of Theorem 1. In particular, we put there

a reformulation of it in purely algebraic terms (see Theorem 2) as well as a result on systems of infinitely many partial differential equations (see Theorem 5), and another on partial integro-differential equations (see Theorem 6).

1. Auxiliary results and proof of Theorem 1

Let us fix some notation. If $\alpha=(\alpha_1,\cdots,\alpha_n)\in N_0^n$ and $x=(x_1,\cdots,x_n)\in \mathbf{R}^n$, as usual, we put $\alpha!=\alpha_1!\cdots\alpha_n!$ and $x^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$ (with the convention $0^0=1$). Moreover, we denote by $l^\infty(N_0^n,E)$ (resp. $\bar{l}^\infty(N_0^n,E)$) the space of all families $\{v_\alpha\}_{\alpha\in N_0^n}$ in E such that $\sup_{\alpha\in N_0^n}\|v_\alpha\|_E<+\infty$ (resp. $\sup_{\alpha\in N_0^n}\alpha!\|v_\alpha\|_E<+\infty$).

We now point out a characterization of $V(\mathbf{R}^n, E)$ used several times later.

PROPOSITION 1. Let $f: \mathbb{R}^n \to E$ be a given function. Then, the following assertions are equivalent:

- (a) $f \in V(\mathbf{R}^n, E)$.
- (b) f is analytic in \mathbb{R}^n and $\{D^{\alpha}f(0)\}_{\alpha\in\mathbb{N}_0^n}\in l^{\infty}(\mathbb{N}_0^n, E)$.
- (c) There exists $\{v_{\alpha}\}_{\alpha\in \mathbb{N}_{0}^{n}}\in \dot{l}^{\infty}(\mathbb{N}_{0}^{n}, E)$ such that

$$f(x) = \sum_{\alpha=0}^{\infty} x^{\alpha} v_{\alpha}$$

for all $x \in \mathbb{R}^n$.

PROOF. The implication (a) \Rightarrow (b) follows directly from a classical analyticity criterion. So, assume (b). By Abel's lemma, the power series $\left\{\frac{x^{\alpha}}{\alpha!}D^{\alpha}f(0)\right\}_{\alpha\in\mathbb{N}_{0}^{n}}$ is absolutely summable in \mathbb{R}^{n} . For each $x\in\mathbb{R}^{n}$, put

$$g(x) = \sum_{\alpha=0}^{\infty} \frac{x^{\alpha}}{\alpha!} D^{\alpha} f(0)$$
.

Thus, the function g is analytic in \mathbf{R}^n and, for each $\alpha \in \mathbf{N}_0^n$, one has $D^{\alpha}g(0) = D^{\alpha}f(0)$. Consequently, since f is assumed to be analytic in \mathbf{R}^n , one has f(x) = g(x) for all $x \in \mathbf{R}^n$. Hence, (c) holds by taking $v_{\alpha} = \frac{D^{\alpha}f(0)}{\alpha!}$ for all $\alpha \in \mathbf{N}_0^n$. Finally, let (c) hold. Then, $f \in C^{\infty}(\mathbf{R}^n, E)$ and, for each $\alpha \in \mathbf{N}_0^n$, $x \in \mathbf{R}^n$, one has

$$D^{\alpha}f(x) = \sum_{|\beta|=0}^{\infty} \frac{(\alpha+\beta)! x^{\beta}}{\beta!} v_{\alpha+\beta}.$$

Consequently, if we put $M = \sup_{\alpha \in \mathbb{N}_0^n} \alpha! \|v_\alpha\|_E$ (so, $M < +\infty$ by hypothesis), for every $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, we get

$$\sup_{\alpha \in \mathbf{N}_0^n} \|D^{\alpha} f(x)\|_E \leq M e^{|x_1| + \dots + |x_n|}.$$

Hence, $f \in V(\mathbb{R}^n, E)$.

Before stating the next proposition, it is useful to introduce the following notation. Namely, if Ω, Ω_1 are two non-empty bounded subsets of \mathbb{R}^n , we put

$$c(\mathbf{Q}, \mathbf{Q}_1) = \sup_{(x_1, \dots, x_n) \in \mathcal{Q}} \inf_{(y_1, \dots, y_n) \in \mathcal{Q}_1} \sum_{i=1}^n |x_i - y_i|.$$

We have the following

PROPOSITION 2. Let $\Omega \subseteq \mathbb{R}^n$ be any non-empty bounded set. For each $u \in V(\mathbb{R}^n, E)$, put

$$\|u\|_{\varOmega,E} = \sup_{\alpha \in \boldsymbol{N}_0^n} \sup_{x \in \varOmega} \|D^{\alpha}u(x)\|_E.$$

Then, the mapping $u \to \|u\|_{\Omega,E}$ is a norm on $V(\mathbb{R}^n, E)$ and the space $(V(\mathbb{R}^n, E), \|\cdot\|_{\Omega,E})$ is complete. Moreover, if $\Omega_1 \subseteq \mathbb{R}^n$ is another non-empty bounded set, one has

(3)
$$e^{-c(\Omega_1,\Omega)} \|u\|_{\Omega_1,E} \le \|u\|_{\Omega,E} \le e^{c(\Omega,\Omega_1)} \|u\|_{\Omega_1,E}$$

for all $u \in V(\mathbb{R}^n, E)$.

PROOF. The first claim follows at once, taken into account that each function $u \in V(\mathbf{R}^n, E)$ is analytic in \mathbf{R}^n . In view of (3), the completeness of $(V(\mathbf{R}^n, E), \|\cdot\|_{0.E})$ follows, for instance, from that of $(V(\mathbf{R}^n, E), \|\cdot\|_{0.E})$, where $\|\cdot\|_{0.E}$ stands briefly for $\|\cdot\|_{0.LE}$. Thus, to prove that $(V(\mathbf{R}^n, E), \|\cdot\|_{0.E})$ is complete, let $\{f_h\}$ be any Cauchy sequence in that space. Hence, in particular, for each $\alpha \in N_0^n$, $\{D^\alpha f_h(0)\}$ is a Cauchy sequence in E. Let $w_\alpha = \lim_{h \to \infty} D^\alpha f_h(0)$. By a standard reasoning, it is seen that $\{w_\alpha\}_{\alpha \in N_0^n} \in l^\infty(N_0^n, E)$. For each $x \in \mathbf{R}^n$, put

$$f(x) = \sum_{|\alpha|=0}^{\infty} \frac{x^{\alpha}}{\alpha!} w_{\alpha}.$$

Then, by Proposition 1, one has $f \in V(\mathbb{R}^n, E)$, and it is immediate to check that

$$\lim_{h\to\infty}\sup_{\alpha\in\mathbf{N}_0^n}\|D^\alpha f_h(0)-D^\alpha f(0)\|_E=0\ ,$$

as desired. Thus, it remains only to prove (3). To this end, let $u \in V(\mathbf{R}^n, E)$ and $x^0 \in \Omega_1$. Since, for each $\alpha \in \mathbf{N}_0^n, x \in \mathbf{R}^n$, one has

$$D^{\alpha}u(x) = \sum_{|\beta|=0}^{\infty} \frac{(x-x^0)^{\beta}}{\beta!} D^{\alpha+\beta}u(x^0)$$
,

it follows that

$$||D^{\alpha}u(x)||_{E} \le e^{c(x^{0},x)}||u||_{x^{0},E} \le e^{c(x^{0},x)}||u||_{Q_{1},E}.$$

Hence, since x^0 is an arbitrary point of Ω_1 , we get

$$||u||_{\Omega,E} \leq e^{c(\Omega,\Omega_1)}||u||_{\Omega_1,E}$$
.

The other inequality in (3) is obtained, of course, interchanging the roles of Ω and Ω_1 .

Another basic result is the following

PROPOSITION 3. Let $m \in \mathbb{N}$ and let $S \subseteq \mathbb{R}^m$, $Q \subseteq \mathbb{R}^n$ be two non-empty bounded sets. Consider on $V(\mathbb{R}^n, E)$, $V(\mathbb{R}^m, V(\mathbb{R}^n, E))$, $V(\mathbb{R}^{m+n}, E)$ the norms $\|\cdot\|_{Q,E}$, $\|\cdot\|_{S,V(\mathbb{R}^n,E)}$, $\|\cdot\|_{S\times Q,E}$, respectively. For each $u \in V(\mathbb{R}^m, V(\mathbb{R}^n, E))$, let $\Psi(u)$ be the function, from \mathbb{R}^{m+n} into E, defined by putting

$$\Psi(u)(s,x) = u(s)(x)$$

for all $s \in \mathbb{R}^m$, $x \in \mathbb{R}^n$.

Then, the mapping $u \rightarrow \Psi(u)$ is a linear isometry from $V(\mathbf{R}^m, V(\mathbf{R}^n, E))$ onto $V(\mathbf{R}^{m+n}, E)$. Moreover, for each $u \in V(\mathbf{R}^m, V(\mathbf{R}^n, E))$, $\gamma \in \mathbf{N}_0^m$, one has

$$(4) D^{r}\Psi(u) = \Psi(D^{r}u).$$

PROOF. Let $u \in V(\mathbf{R}^m, V(\mathbf{R}^n, E))$. First, we prove that $\Psi(u) \in V(\mathbf{R}^{m+n}, E)$. Let $\{f_r\}_{r \in N_0^m}$ be the family in $l^{\infty}(N_0^m, V(\mathbf{R}^n, E))$ such that

(5)
$$u(s) = \sum_{\substack{\gamma \\ \gamma = 0}}^{\infty} s^{\gamma} f_{\gamma} \quad \text{for all } s \in \mathbf{R}^{m}.$$

So, we have

(6)
$$\Psi(u)(s,x) = \sum_{|\gamma|=0}^{\infty} s^{\gamma} f_{\gamma}(x) \quad \text{for all } s \in \mathbb{R}^{m}, x \in \mathbb{R}^{n}.$$

Next, for each $\gamma \in N_0^m$, let $\{v_{\gamma,\alpha}\}_{\alpha \in N_0^n}$ be the family in $\tilde{l}^{\infty}(N_0^n, E)$ such that

(7)
$$f_{\gamma}(x) = \sum_{|\alpha|=0}^{\infty} x^{\alpha} v_{\gamma,\alpha} \quad \text{for all } x \in \mathbf{R}^{n}.$$

Now, put $L = \sup_{\gamma \in \mathbf{N}_0^m} \gamma! \|f_{\gamma}\|_{\mathcal{Q}_{-E}}$. Then, for every $\alpha \in \mathbf{N}_0^n$, $\gamma \in \mathbf{N}_0^m$, taking into account (3), one has

$$\gamma! \alpha! \|v_{r,\alpha}\|_E = \gamma! \|D^{\alpha} f_r(0)\|_E \leq \gamma! e^{c(0,\Omega)} \|f_r\|_{\Omega,E} \leq Le^{c(0,\Omega)}$$
.

Consequently, $\{v_{\gamma,\alpha}\}_{(\gamma,\alpha)\in\mathbb{N}_0^{m+n}}\in \tilde{l}^{\infty}(\mathbb{N}_0^{m+n},E)$. On the other hand, in view of (6) and (7), by associativity (see, for instance, [2], p. 96), we have

(8)
$$\Psi(u)(s,x) = \sum_{\substack{(x,\alpha) \in \mathbb{N} \\ |x| = 0}}^{\infty} s^{\gamma} x^{\alpha} v_{\gamma,\alpha} \quad \text{for all } s \in \mathbb{R}^m, x \in \mathbb{R}^n.$$

Hence, $\Psi(u) \in V(\mathbf{R}^{m+n}, E)$ by Proposition 1. Now, observe that, by (5) and (7), one has

(9)
$$D^{\gamma}u(s)(x) = \sum_{\substack{\delta = 0 \\ \delta \neq s}}^{\infty} \frac{(\gamma + \delta)! \, s^{\delta}}{\delta!} \sum_{\substack{j = 1 \\ j = 0}}^{\infty} x^{\alpha} v_{\gamma + \delta, \alpha}$$

and that (8) yields

(10)
$$D_{s}^{\gamma}\Psi(u)(s,x) = \sum_{1\leq\delta,\alpha}^{\infty} \frac{(\gamma+\delta)! \, s^{\delta}x^{\alpha}}{\delta!} \, v_{\gamma+\delta,\alpha} \, .$$

By associativity again, the right-hand sides of (9) and (10) are equal, and so (4) follows. Furthermore, we have

$$\begin{split} \|u\|_{S,V(R^n,E)} &= \sup_{\tau \in \boldsymbol{N}_0^m} \sup_{s \in S} \|D^\tau u(s)\|_{\mathcal{Q},E} \\ &= \sup_{\tau \in \boldsymbol{N}_0^m} \sup_{s \in S} \sup_{\alpha \in \boldsymbol{N}_0^n} \sup_{x \in \mathcal{Q}} \|D^\tau_s D^\alpha_x \Psi(u)(s,x)\|_E \\ &= \sup_{(\tau,\alpha) \in \boldsymbol{N}_0^{m+n}} \sup_{(s,x) \in S \times \mathcal{Q}} \|D^\tau_s D^\alpha_x \Psi(u)(s,x)\|_E = \|\Psi(u)\|_{S \times \mathcal{Q},E} \;. \end{split}$$

That is, Ψ is an isometry. Finally, the surjectivity of Ψ is proved by means of the same kind of reasoning adopted to show that $\Psi(V(\mathbf{R}^m, V(\mathbf{R}^n, E)))$ $\subseteq V(\mathbf{R}^{m+n}, E)$. We leave the details to the reader.

The next two propositions deal with ordinary differential equations.

PROPOSITION 4. Let $A \in \mathcal{L}(E)$ be such that $||A||_{\mathcal{L}(E)} < 1$. Moreover, let $B \in V(\mathbf{R}, E)$ and $v \in C^1(\mathbf{R}, E)$ be such that

$$v'(t) = A(v(t)) + B(t)$$
 in R .

Then, $v \in V(\mathbf{R}, E)$ and, for every $r \ge 0$, the following inequality holds:

(11)
$$||v||_{[-\tau,\tau],E} \leq \min \left\{ e^{\tau} \left(||v(0)||_{E} + \frac{||B||_{0,E}}{1 - ||A||_{L(E)}} \right), \right.$$

$$\|v(0)\|_{E}e^{r\|A\|_{\mathcal{L}(E)}}+\left(re^{r\|A\|_{\mathcal{L}(E)}}+\frac{1}{1-\|A\|_{\mathcal{L}(E)}}\right)\|B\|_{[-\tau,\tau].\,\mathbf{B}}\right\}.$$

PROOF. First, observe that $v \in C^{\infty}(\mathbf{R}, E)$, since $B \in C^{\infty}(\mathbf{R}, E)$. Next, by induction, it is seen that

(12)
$$v^{(m)}(t) = A^{m}(v(t)) + \sum_{j=1}^{m-1} A^{j}(B^{(m-j-1)}(t)) + B^{(m-1)}(t)$$
 for all $t \in \mathbb{R}, m \in \mathbb{N}, m \ge 2$.

Fix $r \ge 0$. From (12), we then get

(13)
$$\|v^{(m)}(t)\|_{E} \leq \|v(t)\|_{E} + \frac{\|B\|_{[-r,r],E}}{1 - \|A\|_{C(E)}}$$
 for all $t \in [-r,r], m \in N_{0}$.

Consequently, $v \in V(\mathbf{R}, E)$. In particular, (13) yields

$$||v||_{0.E} \le ||v(0)||_E + \frac{||B||_{0.E}}{1 - ||A||_{L(E)}}$$

and so, by (3), one has

(14)
$$||v||_{[-\tau,\tau],E} \leq e^{\tau} \Big(||v(0)||_{E} + \frac{||B||_{0,E}}{1 - ||A||_{\mathcal{L}(E)}} \Big).$$

On the other hand, being $v(t) = v(0) + \int_0^t A(v(\tau))d\tau + \int_0^t B(\tau)d\tau$, one has

$$\|v(t)\|_{E} \leq \|v(0)\|_{E} + r\|B\|_{\mathsf{C-r.r3.E}} + \|A\|_{\mathcal{L}(E)} \left| \int_{0}^{t} \|v(\tau)\|_{E} d\tau \right|$$
 for all $t \in [-r, r]$.

Therefore, by Gronwall's lemma, we get

(15)
$$||v(t)||_E \le (||v(0)||_E + r||B||_{[-r,r],E})e^{r||A||_{\mathcal{L}(E)}}$$
 for all $t \in [-r,r]$.

At this point, (11) follows at once from (13), (14) and (15).

PROPOSITION 5. Let $k \in \mathbb{N}$ and let $A_0, \dots, A_{k-1} \in \mathcal{L}(E)$. Assume that

$$\sum_{j=0}^{k-1} ||A_j||_{\mathcal{L}(E)} < 1.$$

Then, for every $B \in V(\mathbf{R}, E)$ and every $w_0, w_1, \dots, w_{k-1} \in E$, there exists a unique $v \in V(\mathbf{R}, E)$ such that

$$v^{(k)}(t) = \sum_{j=0}^{k-1} A_j(v^{(j)}(t)) + B(t)$$
 in **R**

$$v^{(j)}(0) = w_i$$
 for $j = 0, 1, \dots, k-1$.

Moreover, for every $r \ge 0$ and every $\lambda \in [0, 1]$ such that

$$\sum_{j=0}^{k-1} \lambda^{j-k} \|A_j\|_{\mathcal{L}(E)} \leq 1$$
 ,

this function v satisfies the following inequality:

(16)
$$\max_{0 \le j \le k-1} \lambda^{-j} \| v^{(j)} \|_{[-\tau, \tau], E}$$

$$\leq \min \left\{ e^{\tau} \left(\max_{0 \le j \le k-1} \lambda^{-j} \| w_j \|_E + \frac{\lambda^{1-k}}{1-\lambda} \| B \|_{0, E} \right), \right.$$

$$\left. e^{\lambda \tau} \max_{0 \le j \le k-1} \lambda^{-j} \| w_j \|_E + \lambda^{1-k} \left(\tau e^{\lambda \tau} + \frac{1}{1-\lambda} \right) \| B \|_{[-\tau, \tau], E} \right\}.$$

PROOF. If k=1, the conclusion follows at once from Picard-Lindelöf's theorem and Proposition 4. So, let us assume $k \ge 2$. Consider the space E^k equipped with the norm

$$\|y\|_{E^k} = \max_{0 \le j \le k-1} \|y_i\|_{E}, \quad \text{where } y = (y_0, y_1, \dots, y_{k-1}).$$

Fix $\lambda \in [0,1[$ in such a way that

(17)
$$\sum_{j=0}^{k-1} \lambda^{j-k} ||A_j||_{\mathcal{L}(E)} \le 1 .$$

Of course, this is possible since $\sum_{j=0}^{k-1} \|A_j\|_{\mathcal{L}(E)} < 1$. Next, consider the operator $A: E^k \to E^k$ defined by putting

$$A(y_0, y_1, \dots, y_{k-1}) = \left(\lambda y_1, \lambda y_2, \dots, \lambda y_{k-1}, \sum_{j=0}^{k-1} \lambda^{j-k+1} A_j(y_j)\right)$$
for all $(y_0, y_1, \dots, y_{k-1}) \in E^k$.

Plainly, $A \in \mathcal{L}(E^k)$. Moreover, for each $(y_0, y_1, \dots, y_{k-1}) \in E^k$, in view of (17), we have

$$\begin{split} \|A(y_0, y_1, \cdots, y_{k-1})\|_{E^k} &= \max \left\{ \lambda \max_{1 \leq j \leq k-1} \|y_i\|_E, \, \left\| \sum_{j=0}^{k-1} \lambda^{j-k+1} A_j(y_j) \right\|_E \right\} \\ &\leq \max \left\{ \lambda, \, \sum_{j=0}^{k-1} \lambda^{j-k+1} \|A_j\|_{\mathcal{L}(E)} \right\} \max_{0 \leq j \leq k-1} \|y_i\|_E \\ &= \lambda \|(y_0, y_1, \cdots, y_{k-1})\|_{E^k} \, . \end{split}$$

Consequently, one has

Now, let $B \in V(R, E)$ and $w_0, w_1, \dots, w_{k-1} \in E$. By Picard-Lindelöf's theorem, there exists a unique $v \in C^k(R, E)$ such that

$$v^{(k)}(t) = \sum_{j=0}^{k-1} A_j(v^{(j)}(t)) + B(t)$$
 in R
 $v^{(j)}(0) = w_j$ for $j = 0, 1, \dots, k-1$.

Let $\Gamma, \omega: R \rightarrow E^k$ be the functions defined by putting

$$\Gamma(t) = (0, \dots, 0, \lambda^{1-k}B(t))$$

and

$$\omega(t) = (v(t), \lambda^{-1}v'(t), \lambda^{-2}v''(t), \cdots, \lambda^{1-k}v^{(k-1)}(t)) \quad \text{for all } t \in R.$$

Of course, $\Gamma \in V(R, E^k)$ and $\omega \in C^1(R, E^k)$. Furthermore, observe that

$$A(\omega(t)) + \Gamma(t)$$

$$= \left(v'(t), \lambda^{-1}v''(t), \cdots, \lambda^{2-k}v^{(k-1)}(t), \lambda^{1-k} \sum_{j=0}^{k-1} A_j(v^{(j)}(t)) + \lambda^{1-k}B(t)\right)$$

$$= (v'(t), \lambda^{-1}v''(t), \cdots, \lambda^{2-k}v^{(k-1)}(t), \lambda^{1-k}v^{(k)}(t)) = \omega'(t).$$

Then, since $||A||_{\mathcal{L}(E^k)} < 1$ (by (18)), thanks to Proposition 4, we have $\omega \in V(R, E^k)$, and so $v \in V(R, E)$. Moreover, by (11) and (18), for each $r \ge 0$, we have

$$\begin{split} \max_{0 \leq j \leq k-1} \lambda^{-j} \| v^{(j)} \|_{\mathbb{L}^{-r,r],E}} &= \| \omega \|_{\mathbb{L}^{-r,r],E}k} \leq \min \Big\{ e^{r} \Big(\| \omega(0) \|_{E^{k}} + \frac{\| \Gamma \|_{0.E^{k}}}{1 - \| A \|_{\mathcal{L}(E^{k})}} \Big), \\ \| \omega(0) \|_{E^{k}} e^{r\| A \|_{\mathcal{L}(E^{k})}} + \Big(r e^{r\| A \|_{\mathcal{L}(E^{k})}} + \frac{1}{1 - \| A \|_{\mathcal{L}(E^{k})}} \Big) \Gamma_{\mathbb{L}^{-r,r],E^{k}}} \Big\} \\ &\leq \min \Big\{ e^{r} \Big(\max_{0 \leq j \leq k-1} \lambda^{-j} \| w_{j} \|_{E} + \frac{\lambda^{1-k}}{1 - \lambda} \| B \|_{0.E} \Big), \\ e^{\lambda r} \max_{0 \leq j \leq k-1} \lambda^{-j} \| w_{j} \|_{E} + \lambda^{1-k} \Big(r e^{\lambda r} + \frac{1}{1 - \lambda} \Big) \| B \|_{\mathbb{L}^{-r,r],E}} \Big\} \end{split}$$

that proves (16).

We also need the following

PROPOSITION 6. Let $\{A_{\alpha}\}_{{\alpha}\in N^n_0}$ be an absolutely summable family in $\mathcal{L}(E)$. For each $u\in V(\mathbb{R}^n,E), x\in \mathbb{R}^n$, put

$$T(u)(x) = \sum_{\alpha=0}^{\infty} A_{\alpha}(D^{\alpha}u(x)).$$

Then, $T(u)(\cdot) \in V(\mathbb{R}^n, E)$, the mapping $u \to T(u)$ belongs to $\mathcal{L}(V(\mathbb{R}^n, E))$ and one has

(19)
$$||T||_{\mathcal{L}(V(\mathbb{R}^n, E))} \leq \sum_{|\alpha|=0}^{\infty} ||A_{\alpha}||_{\mathcal{L}(E)}$$

for any norm $\|\cdot\|_{\Omega,E}$ on $V(\mathbf{R}^n, E)$.

PROOF. Fix $u \in V(\mathbb{R}^n, E)$. Then, for each $x \in \mathbb{R}^n$, one has

$$\sum_{|\alpha|=0}^{\infty} A_{\alpha}(D^{\alpha}u(x)) = \sum_{|\alpha|=0}^{\infty} A_{\alpha}\left(\sum_{|\beta|=0}^{\infty} \frac{x^{\beta}}{\beta!}D^{\alpha+\beta}u(0)\right)$$

$$= \sum_{|\alpha|=0}^{\infty} \sum_{|\beta|=0}^{\infty} \frac{x^{\beta}}{\beta!} A_{\alpha}(D^{\alpha+\beta}u(0)) = \sum_{|\beta|=0}^{\infty} x^{\beta} \sum_{|\alpha|=0}^{\infty} \frac{A_{\alpha}(D^{\alpha+\beta}u(0))}{\beta!}.$$

Observe that $\left\{\sum_{|\alpha|=0}^{\infty} \frac{A_{\alpha}(D^{\alpha+\beta}u(0))}{\beta!}\right\}_{\beta\in N_0^n} \in \bar{l}^{\infty}(N_0^n, E)$. Consequently, $T(u) \in V(\mathbf{R}^n, E)$ by Proposition 1. Also, a direct verification shows that $D^{\beta}T(u) = T(D^{\beta}u)$ for all $\beta \in N_0^n$. Now, fix any norm $\|\cdot\|_{\Omega, E}$ on $V(\mathbf{R}^n, E)$ (Ω , of course, being a non-empty bounded subset of \mathbf{R}^n). Then, one has

$$\begin{split} \| \, T(u) \|_{\varOmega,E} &= \sup_{\beta \in \mathbb{R}_0^n} \sup_{x \in \Omega} \bigg\| \sum_{|\alpha|=0}^{\infty} A_{\alpha}(D^{\alpha+\beta}u(x)) \bigg\|_E \\ &\leq \| u \|_{\varOmega,E} \sum_{|\alpha|=0}^{\infty} \| A_{\alpha} \|_{\pounds(E)} \end{split}$$

that yields (19), the linearity of T being obvious.

At this point, we are able to give the following

PROOF OF THEOREM 1. Fix $f \in V(\mathbf{R}^{n+1}, E)$ and $\varphi_0, \varphi_1, \dots, \varphi_{k-1} \in V(\mathbf{R}^n, E)$. Consider $V(\mathbf{R}^n, E)$ equipped with any fixed norm $\|\cdot\|_{\mathcal{Q}_{-E}}$. For each $j=0,1,\dots,k-1,\ v\in V(\mathbf{R}^n,\ E), x\in \mathbf{R}^n$, put

$$T_j(v)(x) = -\sum_{|\alpha|=0}^{\infty} A_{j,\alpha}(D^{\alpha}v(x))$$
.

So, by Proposition 6, each mapping $v \to T_j(v)$ belongs to $\mathcal{L}(V(\mathbb{R}^n, E))$ and, taken into account (1) and (19), one has

$$\sum_{j=0}^{k-1} \|T_j\|_{\mathcal{L}(V(\mathbf{R}^n, E))} < 1.$$

Consequently, thanks to Proposition 5, there exists a unique function $\omega \in V(R, V(R^n, E))$ such that

(20)
$$\begin{cases} \omega^{(k)}(t) = \sum_{j=0}^{k-1} T_j(\omega^{(j)}(t)) + \Psi^{-1}(f)(t) & \text{in } \mathbf{R} \\ \omega^{(j)}(0) = \varphi_j & \text{for } j = 0, 1, \dots, k-1, \end{cases}$$

where Ψ is the mapping, from $V(R, V(R^n, E))$ onto $V(R^{n+1}, E)$, defined in the statement of Proposition 3.

Then, for every $t \in \mathbb{R}$, $x \in \mathbb{R}^n$, one has

$$\begin{split} \varPsi(\omega^{(k)})(t,x) &= \sum\limits_{j=0}^{k-1} \varPsi(T_j \circ \omega^{(j)})(t,x) + f(t,x) \\ &= -\sum\limits_{j=0}^{k-1} \sum\limits_{|\alpha|=0}^{\infty} A_{j,\alpha}(D^{\alpha}\omega^{(j)}(t)(x)) + f(t,x) \\ \omega^{(j)}(0)(x) &= \varphi_j(x) \qquad \text{for} \quad j = 0, 1, \cdots, k-1 \,. \end{split}$$

Hence, if we put $u = \Psi(\omega)$, taking into account (4), we get

(21)
$$\begin{cases} D_t^k u(t,x) + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} A_{j,\alpha} (D_t^j D_x^{\alpha} u(t,x)) = f(t,x) \\ D_t^j u(0,x) = \varphi_j(x) & \text{for } j = 0, 1, \dots, k-1. \end{cases}$$

That is, the function u solves our problem. Conversely, if a function $\bar{u} \in V(\mathbb{R}^{n+1}, E)$ satisfies (21), then the function $\Psi^{-1}(\bar{u})$ satisfies (20), and so $\Psi^{-1}(\bar{u}) = \omega$, that is $\bar{u} = u$. Finally, inequality (2) follows at once from (16) and Proposition 3, taking into account (18) again.

2. Some consequences of Theorem 1

As we said in the Introduction, Theorem 1 admits a reformulation in purely algebraic terms. Precisely, we have

THEOREM 2. Let condition (1) be satisfied. Then, for every $\{w_{h,\beta}\}_{(h,\beta)\in\mathbb{N}_0^{n+1}}\in l^{\infty}(N_0^{n+1},E)$ $(h\in\mathbb{N}_0,\beta\in\mathbb{N}_0^n)$ and every $\{\omega_{0,\beta}\}_{\beta\in\mathbb{N}_0^n},\{\omega_{1,\beta}\}_{\beta$

(22)
$$\begin{cases} v_{k+h,\beta} + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} A_{j,\alpha}(v_{j+h,\alpha+\beta}) = w_{h,\beta} \\ v_{j,\beta} = \omega_{j,\beta} \quad \text{for } j=0,1,\cdots,k-1. \end{cases}$$

PROOF. In view of Theorem 1 and Proposition 1, we know that there exists a unique function $u \in (\mathbf{R}^{n+1}, E)$ such that, for every $t \in \mathbf{R}, x \in \mathbf{R}^n$, we have

(23)
$$\begin{cases} D_t^k u(t,x) + \sum\limits_{j=0}^{k-1} \sum\limits_{|\alpha|=0}^{\infty} A_{j,\alpha}(D_t^j D_x^{\alpha} u(t,x)) = \sum\limits_{|(\beta,\beta)|=0}^{\infty} \frac{t^h x^{\beta}}{h! \beta!} w_{h,\beta} \\ D_t^j u(0,x) = \sum\limits_{|\beta|=0}^{\infty} \frac{x^{\beta}}{\beta!} \omega_{j,\beta} \quad \text{for} \quad j=0,1,\cdots,k-1. \end{cases}$$

Hence, taking into account that

$$D_t^j D_x^{lpha} u(t,x) = \sum_{|\{h,eta\}|=0}^{\infty} rac{t^h x^eta}{h! \, eta!} D_t^{j+h} D_x^{lpha+eta} u(0)$$
 ,

we have

$$(24) \begin{cases} \sum_{1 \leq h, \beta \leq 1=0}^{\infty} \frac{t^h x^{\beta}}{h! \beta!} \left(D_t^{k+h} D_x^{\beta} u(0) + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} A_{j,\alpha} (D_t^{j+h} D_x^{\alpha+\beta} u(0)) \right) \\ = \sum_{1 \leq h, \beta \leq 1=0}^{\infty} \frac{t^h x^{\beta}}{h! \beta!} w_{h,\beta} \\ \sum_{1 \leq h=0}^{\infty} \frac{x^{\beta}}{\beta!} D_t^{j} D_x^{\beta} u(0) = \sum_{|\beta|=0}^{\infty} \frac{x^{\beta}}{\beta!} \omega_{j,\beta} \quad \text{for } j=0,1,\cdots,k-1. \end{cases}$$

Then, if we put $v_{h,\beta} = D_t^h D_x^{\beta} u(0)$, we have $\{v_{h,\beta}\}_{(h,\beta) \in \mathbb{N}_0^{n+1}} \in l^{\infty}(\mathbb{N}_0^{n+1}, E)$ and, by a classical result (see, for instance, [2], p. 195), we get (22) directly from (24). Conversely, if a family $\{\bar{v}_{h,\beta}\}_{(h,\beta) \in \mathbb{N}_0^{n+1}}$ in $l^{\infty}(\mathbb{N}_0^{n+1}, E)$ satisfies (22), then it is seen that the function $(t,x) \to \bar{u}(t,x) = \sum_{|(h,\beta)|=0}^{\infty} \frac{t^h x^{\beta}}{h! \, \beta!} \, \bar{v}_{h,\beta}$ (which belongs to $V(\mathbb{R}^{n+1}, E)$) satisfies (23), and so $\bar{u} = u$, that is $\bar{v}_{h,\beta} = v_{h,\beta}$ for all $h \in \mathbb{N}_0$, $\beta \in \mathbb{N}_0^n$.

In the sequel, it is understood that the space $V(\mathbb{R}^n, E)$ is considered with any fixed norm $\|\cdot\|_{\Omega, E}$. We now state

THEOREM 3. Let k_1, \dots, k_n be n $(n \ge 2)$ positive integers and let A_1, \dots, A_n be n linear homeomorphisms from E onto itself. Let T be the element of $\mathcal{L}(V(\mathbf{R}^n, E))$ defined by putting

$$T(u)(x) = \sum_{j=1}^{n} A_{j} \left(\frac{\partial^{k_{j}} u(x)}{\partial x_{j}^{k_{j}}} \right)$$
 for all $u \in V(\mathbf{R}^{n}, E)$, $x \in \mathbf{R}^{n}$.

Assume that

$$\min_{1 \le i \le n} \sum_{\substack{j=1 \\ i \ne j}}^{n} \|A_i^{-1} \circ A_j\|_{\mathcal{L}(E)} < 1.$$

Then, there exists a linear subspace F of $V(\mathbf{R}^n, E)$ such that $T_{|F|}$ is a linear homeomorphism from F onto $V(\mathbf{R}^n, E)$.

PROOF. Let $h \in N$ $(1 \le h \le n)$ be such that

$$\sum_{\substack{j=1\\j\neq h}}^{n} \|A_{h}^{-1} \circ A_{j}\|_{\mathcal{L}(E)} = \min_{\substack{1 \le t \le n\\j\neq t}} \sum_{\substack{j=1\\j\neq t}}^{n} \|A_{t}^{-1} \circ A_{j}\|_{\mathcal{L}(E)}.$$

Then, applying Theorem 1 in an obvious manner, for every $f \in V(\mathbf{R}^n, E)$, we get a unique $u \in V(\mathbf{R}^n, E)$ such that

$$\frac{\partial^{k_h} u(x)}{\partial x_h^{k_h}} + \sum_{\substack{j=1\\ j\neq h}}^n A_h^{-1} \left(A_j \left(\frac{\partial^{k_j} u(x)}{\partial x_j^{k_j}} \right) \right) = A_h^{-1} (f(x)) \quad \text{in } \mathbf{R}^n$$

$$\frac{\partial^{j} u(x_{1}, \dots, x_{h-1}, 0, x_{h+1}, \dots, x_{n})}{\partial x_{h}^{j}} = 0 \quad \text{in } \mathbf{R}^{n-1}, \text{ for } j = 0, 1, \dots, k_{h} - 1.$$

Therefore, T(u)=f. To get our conclusion, it suffices to take

$$F = \{ v \in V(\mathbf{R}^n, E) : D^j_{x_h} v(x_1, \dots, x_{h-1}, 0, x_{h+1}, \dots, x_n) = 0 \text{ in } \mathbf{R}^{n-1},$$

$$\text{for } j = 0, 1, \dots, k_h - 1 \}. \quad \blacksquare$$

In particular, we have

THEOREM 4. Let $h, m \in \mathbb{N}$ and $a, b \in \mathbb{R} \setminus \{0\}$. Then, the differential operator

$$u \longrightarrow a \frac{\partial^h u}{\partial x^h} + b \frac{\partial^m u}{\partial y^m}$$

from $V(\mathbf{R}^2, \mathbf{R})$ into itself, is surjective if and only if $|a| \neq |b|$.

PROOF. The sufficiency of the condition follows directly from Theorem 3. To prove necessity, assume |a|=|b|. Then, we have to show that both the operators

$$u \longrightarrow \frac{\partial^n u}{\partial x^n} + \frac{\partial^m u}{\partial y^m}$$

and

$$u \longrightarrow \frac{\partial^n u}{\partial x^n} - \frac{\partial^m u}{\partial y^m}$$

considered as acting in $V(\mathbf{R}^2, \mathbf{R})$, are not surjective. For instance, let $u \in C^{\infty}(\mathbf{R}^2, \mathbf{R})$ be such that

$$rac{\partial^h u(x,y)}{\partial x^h} + rac{\partial^m u(x,y)}{\partial y^m} = e^x g(y)$$
 in \mathbf{R}^2 ,

where g is any non-null function belonging to V(R, R) such that

$$q^{(m)}(y) + q(y) = 0$$
 in \mathbf{R} .

Then, it is easy to check that, for each $p \in N$, one has

$$\frac{\partial^{ph} u(x,y)}{\partial x^{ph}} + (-1)^{p+1} \frac{\partial^{pm} u(x,y)}{\partial y^{pm}} = pe^x g(y) \quad \text{in } \mathbf{R}^2.$$

Consequently, one has $u \notin V(\mathbb{R}^2, \mathbb{R})$. Analogously, it is seen that, for instance, the equation

$$\frac{\partial^h u}{\partial x^h} - \frac{\partial^m u}{\partial y^m} = e^{x+y}$$

has no solution in $V(\mathbb{R}^2, \mathbb{R})$.

The next application of Theorem 1 deals with infinite differential systems. But before it is useful to point out the following proposition, where, as usual, l^{∞} stands for $l^{\infty}(N, R)$, with the norm $\|\xi\|_{l^{\infty}} = \sup_{h \in N} |\xi_h|$ $(\xi = \{\xi_h\})$.

PROPOSITION 7. Let $f: \mathbb{R}^n \to l^{\infty}$, and let $f(x) = \{f_n(x)\}$ for each $x \in \mathbb{R}^n$. Then, the following are equivalent:

- (i) $f \in V(\mathbf{R}^n, l^{\infty}).$
- (ii) $\{f_n\}$ is a bounded sequence in $V(\mathbf{R}^n, \mathbf{R})$.

PROOF. Let (i) hold. For each $h \in \mathbb{N}$, $\xi = \{\xi_h\} \in l^{\infty}$, let $T_h(\xi) = \xi_h$. Then, since $T_h \in (l^{\infty})^*$, the function $T_h(f(\cdot))$ (that is f_h) belongs to $V(\mathbb{R}^n, \mathbb{R})$. Also, for each $\alpha \in \mathbb{N}_0^n$, $x \in \mathbb{R}^n$, we have

$$|D^{\alpha} T_{b}(f(x))| = |T_{b}(D^{\alpha} f(x))| \le ||D^{\alpha} f(x)||_{t^{\infty}}$$

that yields (ii). Conversely, let (ii) hold. We then have

$$\sup_{\mathbf{h}\in\mathbf{N}}\sup_{\alpha\in\mathbf{N}_0^n}|D^\alpha f_{\mathbf{h}}(0)|<+\infty\;.$$

Consequently, if we put $w_{\alpha} = \left\{ \frac{D^{\alpha} f_{h}(0)}{\alpha!} \right\}_{h \in \mathbb{N}}$, we have $\{w_{\alpha}\}_{\alpha \in \mathbb{N}_{0}^{n}} \in \tilde{l}^{\infty}(\mathbb{N}_{0}^{n}, l^{\infty})$.

On the other hand, for each $h \in \mathbb{N}$, $x \in \mathbb{R}^n$, one has

$$T_{\hbar} \left(\sum_{|\alpha|=0}^{\infty} x^{\alpha} w_{\alpha} \right) = \sum_{|\alpha|=0}^{\infty} \frac{x^{\alpha}}{\alpha!} D^{\alpha} f_{\hbar}(0) = f_{\hbar}(x)$$

that is to say

$$f(x) = \sum_{\alpha=0}^{\infty} x^{\alpha} w_{\alpha}$$
.

Hence, $f \in V(\mathbf{R}^n, l^{\infty})$ by Proposition 1.

We now state

THEOREM 5. Let $k \in \mathbb{N}$. For each $j=0,1,\dots,k-1$, $\alpha \in \mathbb{N}_0^n$, h, $p \in \mathbb{N}$, let $a_{j,\alpha,h,p} \in \mathbb{R}$ be given. Assume that

$$\sum_{j=0}^{k-1}\sum_{|\alpha|=0}^{\infty}\sup_{h\in\mathbb{N}}\sum_{p=1}^{\infty}|a_{j,\alpha,h,p}|<1.$$

Then, for every bounded sequence $\{f_h\}$ in $V(\mathbf{R}^{n+1}, \mathbf{R})$ and every k-tuple of bounded sequences $\{\varphi_{0,h}\}$, $\{\varphi_{1,h}\}$, \cdots , $\{\varphi_{k-1,h}\}$ in $V(\mathbf{R}^n, \mathbf{R})$, there exists a unique bounded sequence $\{u_h\}$ in $V(\mathbf{R}^{n+1}, \mathbf{R})$ such that, for every $t \in \mathbf{R}$, $x \in \mathbf{R}^n$, $h \in \mathbf{N}$, one has

$$D_t^k u_h(t,x) + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} \sum_{p=1}^{\infty} a_{j,\alpha,h,p} D_t^j D_x^{\alpha} u_p(t,x) = f_h(t,x)$$

$$D_t^j u_h(0, x) = \varphi_{j,h}(x)$$
 for $j = 0, 1, \dots, k-1$.

PROOF. Let $f(t,x) = \{f_h(t,x)\}, \varphi_j(x) = \{\varphi_{j,h}(x)\}$. So, by Proposition 7, we have $f \in V(\mathbf{R}^{n+1}, l^{\infty}), \varphi_j \in V(\mathbf{R}^n, l^{\infty})$. For each $j = 0, 1, \dots, k-1, \alpha \in \mathbf{N}_0^n$, let $A_{j,\alpha}$ be the continuous linear operator, from l^{∞} into itself, given by

$$A_{j,\alpha}(\xi) = \left\{ \sum_{n=1}^{\infty} a_{j,\alpha,h,p} \xi_p \right\}_{h \in N} \quad \text{for } \xi = \{\xi_h\} \in l^{\infty}.$$

As it is known (see, for instance, [4], p. 223), one has

$$||A_{j,\alpha}||_{\mathcal{L}(l^{\infty})} = \sup_{h \in \mathbb{N}} \sum_{n=1}^{\infty} |a_{j,\alpha,h,p}|.$$

Consequently, by Theorem 1, there exists a unique $u \in V(\mathbf{R}^{n+1}, l^{\infty})$ such that, for each $t \in \mathbf{R}$, $x \in \mathbf{R}^n$, one has

$$D_t^k u(t,x) + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} A_{j,\alpha} (D_t^j D_x^{\alpha} u(t,x)) = f(t,x)$$

$$D_t^j u(0, x) = \varphi_j(x)$$
 for $j = 0, 1, \dots, k-1$.

Let $u(t,x) = \{u_h(t,x)\}$. Then, it is seen at once that the sequence $\{u_h\}$ satisfies our conclusion.

Before stating the last results, we introduce another function space. Namely, let Y be a given compact topological space. We denote by $V_0(\mathbf{R}^n \times Y, E)$ the space of all functions $u: \mathbf{R}^n \times Y \to E$ such that, for each $\alpha \in \mathbf{N}_0^n$, the function $(x, y) \to D_x^\alpha u(x, y)$ is (defined and) continuous in $\mathbf{R}^n \times Y$

and, for each non-empty bounded set $\Omega \subseteq \mathbb{R}^n$, one has

$$\sup_{\alpha \in \mathbf{N}_0^n} \sup_{(x,y) \in \Omega \times Y} \lVert D_x^{\alpha} u(x,y) \rVert_E < + \infty.$$

As usual, let $C^0(Y, E)$ denote the space of all continuous functions from Y into E, with the sup-norm. Then, we have the following proposition, whose proof (based on Proposition 1 and, in principle, similar to that of Proposition 3) is left to the reader.

PROPOSITION 8. For each $u \in V(\mathbb{R}^n, C^0(Y, E))$, let $\Psi_n(u)$ be the function, from $\mathbb{R}^n \times Y$ into E, defined by putting

$$\Psi_n(u)(x,y) = u(x)(y)$$
 for all $x \in \mathbb{R}^n$, $y \in Y$.

Then, $\Psi_n(u) \in V_0(\mathbb{R}^n \times Y, E)$ and the mapping $u \to \Psi_n(u)$ is surjective. Moreover, for each $\alpha \in \mathbb{N}_0^n$, one has $D_x^\alpha \Psi_n(u) = \Psi_n(D^\alpha u)$.

In the theorem which follows, Y is a non-empty compact subset of \mathbb{R}^m $(m \in \mathbb{N})$, and the integrals there appearing are understood in the sense of Bochner (with respect to the Lebesgue measure).

THEOREM 6. Let $k \in \mathbb{N}$. For each $j=0,1,\dots$, k-1 and each $\alpha \in \mathbb{N}_0^n$, let $T_{j,\alpha} \in C^0(Y, \mathcal{L}(E))$ and $\Phi_{j,\alpha} \in C^0(Y \times Y, \mathbb{R})$ be given. Assume that

$$\sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} \max_{y \in Y} \left(\| T_{j,\alpha}(y) \|_{\mathcal{L}(E)} + \int_{Y} | \Phi_{j,\alpha}(y,\xi) | d\xi \right) < 1.$$

Then, for every $f \in V_0(\mathbf{R}^{n+1} \times Y, E)$ and every $\varphi_0, \varphi_1, \dots, \varphi_{k-1} \in V_0(\mathbf{R}^n \times Y, E)$, there exists a unique function $u \in V_0(\mathbf{R}^{n+1} \times Y, E)$ such that, for every $t \in \mathbf{R}$, $x \in \mathbf{R}^n$, $y \in Y$, one has

$$\begin{split} D_t^k u(t,x,y) + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} \Big(T_{j,\alpha}(y) (D_t^j D_x^a u(t,x,y)) \\ + \int_{Y} & \Phi_{j,\alpha}(y,\xi) D_t^j D_x^a u(t,x,\xi) d\xi \Big) = f(t,x,y) \\ D_t^i u(0,x,y) = & \varphi_i(x,y) \qquad \text{for} \quad j=0,1,\cdots,k-1 \,. \end{split}$$

PROOF. For each $j=0,1,\cdots,k-1,\alpha\in N_0^n$, let $A_{j,\alpha}$ be the continuous linear operator, from $C^0(Y,E)$ into itself, defined by putting

$$A_{j,\,\alpha}(v)(y) = T_{j,\,\alpha}(y)(v(y)) + \int_Y \varPhi_{j,\,\alpha}(y\,,\,\xi)v(\xi)d\xi$$

for all $v \in C^0(Y, E)$, $y \in Y$. Obviously, we have

$$\|A_{j,\alpha}\|_{\mathcal{L}(\mathcal{C}^0(Y,E))}\!\leq\! \max_{y\in Y}\! \bigg(\|T_{j,\alpha}(y)\|_{\mathcal{L}(E)}\!+\!\int_Y\! |\varPhi_{j,\alpha}(y,\,\,\xi)|d\xi\bigg).$$

Consequently, by Theorem 1, in view of Proposition 8, there exists a unique function $w \in V(\mathbf{R}^{n+1}, C^0(Y, E))$ such that, for every $t \in \mathbf{R}$, $x \in \mathbf{R}^n$, one has

$$D_t^k w(t, x) + \sum_{j=0}^{k-1} \sum_{|\alpha|=0}^{\infty} A_{j,\alpha}(D_t^j D_x^{\alpha} w(t, x)) = \Psi_{n+1}^{-1}(f)(t, x)$$

$$D_t^j w(0, x) = \Psi_n^{-1}(\varphi_j)(x)$$
 for $j = 0, 1, \dots, k-1$.

Now, put $u = \Psi_{n+1}(w)$. Then, proceeding in a by now evident manner, it is seen that the function u satisfies our conclusion.

Finally, we want to stress the following very particular case of Theorem 6 which could be of interest in linear transport theory (see, for instance, [1], chapter III):

THEOREM 7. Let Y be a non-empty compact subset of \mathbb{R}^n . For each $i=1, \dots, n$, let $\delta_i = \max_{(y_1, \dots, y_n) \in Y} |y_i|$. Moreover, let $\sigma \in \mathbb{R}$ and $\Phi \in C^0(Y \times Y, \mathbb{R})$ be given. Assume that

$$|\sigma| + \sum_{i=1}^n \delta_i + \max_{y \in Y} \int_Y |\Phi(y, \xi)| d\xi < 1$$
.

Then, for every $f \in V_0(\mathbf{R}^{n+1} \times Y, \mathbf{R})$ and every $\varphi \in V_0(\mathbf{R}^n \times Y, \mathbf{R})$, there exists a unique function $u \in V_0(\mathbf{R}^{n+1} \times Y, \mathbf{R})$ such that, for every $t \in \mathbf{R}$, $x \in \mathbf{R}^n$, $y = (y_1, \dots, y_n) \in Y$, one has

$$\frac{\partial u(t, x, y)}{\partial t} + \sum_{i=1}^{n} y_i \frac{\partial u(t, x, y)}{\partial x_i} + \sigma u(t, x, y) + \int_{Y} \Phi(y, \xi) u(t, x, \xi) d\xi$$

$$= f(t, x, y)$$

$$u(0, x, y) = \varphi(x, y)$$
.

For other recent results on linear partial differential equations of infinite order, we refer to [5] and to the bibliography quoted there.

References

[1] Bardos, C., Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Sci. École Norm. Sup. (4) 3 (1970), 185-233.

- [2] Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York-London, 1960.
- [3] Ricceri, B., Sur le problème de Cauchy pour certaines équations linéaires aux dérivées partielles d'ordre infini dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. I. Math. 311 (1990), 41-44.
- [4] Taylor, A. E. and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980.
- [5] Tran Duc Van, On the pseudodifferential operators with real analytic symbols and their applications, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 803-825.

(Received February 26, 1991)

Dipartimento di Matematica Università di Messina 98166 Sant'Agata—Messina Italy and Dipartimento di Matematica Università di Catania 95125 Catania Italy