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On some nonlinear wave equations II:

global existence and energy decay of solutions
By Masanori HosoyA and Yoshio YAMADA

§1. Introduction.

This paper is concerned with the initial boundary value problem of
the form

(L.1) u“—M<S9|Vu|2dx)Au+51u|“u+7u,:f in Qx[0,c0),
(1.2) =0 on ['X[0, o),
(1.3) u(xz, 0)=u'(x), w,=u'(x) in 2,

where 2 is a bounded domain in R* with smooth boundary I", 6>0, =0
and 2>>0 are given constants and M(r) is a positive C'-function on [0, o).
In our previous paper [4], we have discussed local existence and regu-
larity properties for (1.1)-(1.3) in the case y=0. Our interest of the
present paper is to derive global existence and decay properties of solu-
tions to (1.1)-(1.3) in the presence of restoring term d|u|*w and damping
term yu..

We mention here some related global existence results for (1.1).
When initial data {«’, '} and I" are analytie, there is a pioneering work
of Pohozaev [11], who has established the global existence theory for
(1.1)-(1.8) in the case d=7=0. His result is extended by Arosio and
Spagnolo [1] and Nishihara [8] in each direction (see also the paper of
Nishihara [9], where the exponential decay of solutions is studied in the
case 0=0 and y>0). When analyticity or sufficient smoothness of {u°, u'}
is not assumed, it seems very difficult to get the global existence for
(1.1) in the case y=0. Under the presence of a linear damping term
(i.e., y>0), some authors (see, e.g., Brito [2, 3], Ikehata [5] and Yamada
[12]) have shown global existence results for (1.1) with d=0 by putting
some smallness conditions on {u°, u'}.

The purpose of the present paper is to show that the restoring
term does not give any serious effects on the global existence properties
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for (1.1)-(1.3) in the case y>0 when {u’, u'} € Hy(2) N H*(2) X Hy(2) is small
in a sense. Moreover, we will give a simple proof for deriving decay
rates of solutions. Finally we should refer the works of Nakao [7] and
Nishihara [11], who intend to look for an unbounded set of {u°, u'} which
assures the global existence for (1.1)-(1.8) (6=0).

In the following sections we take 0=1 without loss of generality.
Section 2 contains main results; Theorem I (existence of global solution)
and Theorem II (decay of global solution). In Sections 2 and 3 we give
the proofs of Theorems I and II.

In the course of writing the manuseript the first author has not
been able to continue the work because of illness. This paper is com-
pleted in the present style by the second author.

Notation. For any Banach space X, its norm is denoted by |-|x.
Especially, for X= L), its norm and inner product are simply denoted
by ||-]| and (-,-). By B(0,0); X) we mean the space of all functions

% :[0,0)—X such that « is bounded and continuous. Moreover, we
denote by B,([0,c0); X) the space of bounded functions % such that u
is continuous in the weak topology of X with respeet to t €0, o).

§2. Assumptions and results.

Throughout this paper we impose the following assumptions on M,
a,u’, ' and f:

) MeC10,00) and M(r)=m,>0 for r=0,

) 0Zag2/(n—4) if n=5 and 0Za<oco if n=1,2,3,4,
) w'e Hy(Q)NH Q) and u'e Hy(f2),

) fELY0,00; Ha(2))NL(0,00; L¥R)).
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Our global existence result reads as follows.

THEOREM I. Under assumptions (A.1)-(A.4), there exists a positive
constant ¢, (depending on [Vu'||, [w'|pesz, W' and [[flliio,wrien) such
that, if {u’,u', f} satisfies

0

AW + [V +j IVf(E)ldt<eo

then there exists a unique solution u for (1.1)-(1.8) in the class

(2.1)  weB([0,); Hy(2)) NB.([0,c0); H* )N L0, 0; H2)),
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(2.2) u, € B([0, o0); L*R2)) N B,([0, o0); Hy(2))NL*0, 005 Hy(2)),
(2.3) U, € L2(0, co; L*Q)).

The solution % in Theorem I actually decays to zero (in a sense) as
t—oco. Indeed, the mapping t—|Vu(t)||* is integrable on [0, oo) by (2.1)
and uniformly continuous on [0, c0) by (2.1) and (2.2); so that || Vu(t)|—0
as t—oco. In the similar manner we see from (2.2) and (2.3) that ||u.(t)|| -0
as t—co. We can also derive some decay rates for wu.

THEOREM II. Assume (A.1)-(A.4) and let u be the solution in Theorem

(i) Define
(2.4) E(u(t)) = () I*+ M ([ Vu(t) ") + 2

g (@)l 7232

with M(r):SrM(s)ds. Then there exist positive constants 0 and C such
that
25) Blu(t) < C{Blu(o) e+ o] £(s)]ds)

0

for all t=0.
(ii) Define

(2.6) E*(u(t)) = [ Ve () "+ | Au(E) |

then there exist positive constants w and C* such that

(2.7) B (u(t) < CH{ B*u(0) e+ [ ere0 V7)) ds)
for all t=0.

(iii) lim E(u(t) = lim E*(u(t))=0.

t—co t—oo

As a result of Theorem II, we see that, if | f(f)| and |Vf ()| decay
exponentially to zero as t—oo, then both E(u(t)) and E*(u(t)) decay
exponentially to zero as t—oo.

REMARK 2.1. It is possible to show (2.5) for every solution in the
class (2.1)-(2.3) without any restrictions on {u’, u', f} (see also Remark 4.1).
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§3. Proof of Theorem 1.

As in our previous paper [4], we employ the Galerkin method to
construct a global solution to (1.1)-(1.3). Let {;};2, be a sequence of
eigenvalues for

—Aw=Aw in 2 and w=0 on [

Let w; € Hi(Q) N H*RQ) be the corresponding eigenfunction to ; and take
{w;}2, as a completely orthonormal system in L*2). We construct
approximate solutions u, (m=1,2,8,.-.) in the form

tlt)= 3 Ginlt)o0s

where ¢, (7=1,2, ---, m) are determined by
(3.1) (un(t), w;) + M| VUn () %) (Vi (t), V0,) + (1% (8) |*%n (2), ;)
+r(wn(t), w;) = (f(t), w), J=12,---,m,

("=0a/ot and ”=0%/at*) with initial conditions

(8.2) wun(0)=ul= 3 (u, w;)w;, — w* in HQ)NHXQ) as m—roco,

(3.3) uin(O):ui,,_z_fj(u‘,wj)w,——»ul in Hyf2) as m—oo.

i=1

We concentrate our analysis in deriving some global estimates
(independent of m) for wu, because the limiting procedure is a routine
work (for details, see, e.g., [4]). In what follows, we sometimes drop
the subscript of u, for the sake of simplicity.

We use the following lemma.

LEMMA 8.1. Suppose that a positive continuous function X(t) satisfies
X(t)ZgA+2§‘B(s)X(s)ds for t20,
0

where A 1s a positive constant and B is a nonnegative integrable fumnc-
tion on [0, ). Then

t

«/A_+§ B(s)ds  for all 0.

0

X(t)

IA
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The proof of Lemma 3.1 is elementary; so we omit it. Making use
of this lemma we first derive the following estimate.

LEMMA 3.2. Let u, be defined by (8.1)-(3.3). Then there exists a
positive constant C, depending on |u’| etz [[VU|, [|u'] and | f|lii0,w: @)
such that

(3.4) (|05 @)1+ [ Ve (8) |2+ [ 20m (2)| 2:3-z+j; [ wn(s)||*ds < Ct
Jor all t=0.

PrOOF. Multiplying the j-th equation (3.1) by g}, and summing up
with respect to 5 we have

(3-5) (w”(t), w'(t)) + M|V (t) ") (Vu(t), Vo'(2))
+ (lu(®)[*u(t), w'(8) +rllw (@) *=(f (), w(2)),

where the subscript “m” is dropped. Define the functional E(u) by (2.4).
Then (3.5) leads to

(3.6) -2 Blult) + 27w (0)*=2(/1t), /().

Integration of (3.6) over [0, t] gives
BT Bl +2r| e ds<Ewo) +2{ 17 1w e 1ds
< B((0)+2{ 1/(6) | Elu(s) ds.

By (A.2) and Sobolev’s lemma, H*Q) is embedded in L***Q); so that it
follows from (3.2) and (3.3) that E(«(0)) is bounded by a positive constant
independent of m. We apply Lemma 3.1 to (3.7) with

X(0)={ () +2 | lwe)ds)
A=E((0) and B(t)=|f().

If we note M(|Vu(t)||*)=m,||Vu(t)|? by (A.1), then (3.4) easily follows.
At the same time, this estimate implies that u,, exists globally in [0, o).
q.ed.

We next derive estimates for ||Au,(t)|| and || Vul(¢)|| by putting some
restrictions on the size of the given data.
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LEMMA 3.3. Let u, be defined by (3.1)-(3.3). Then there exists a
constant ¢, depending on |[Vu'|, |u||e+2, |u'] and || fllite,er2@), SUch
that, if

o+ v+l de<eo

then
(3.8) E*(u,(t)<C,  for all t=0,
(3.9) S’E*(um(s))dsgca for all =0,

with some positive constants C, and C; independent of m, where E*(u)
is defined by (2.6).

Proor. Replace w; in (3.1) by —Aw;,/4;; then

(3.10) (Vu”(t), Vw;) + M([|Vu(t)*) (Au(?), Aw;) — (|u(e)|*u(?), Aw;)
+7(VU'(t), Vw;) = (Vf(t), V), j=12---,m
Multiplying the j-th equation of (3.10) by g¢}.(t) and summing up with

respect to j one can obtain

B1) L yvw e LT - Sl IV )

= (lu(t)|“u(t), Aw'(¢) + (Vf(2), V' (t)).
If we define
Gu(t) = V' (€)I*+ M Vu @) %) | Au(e) ]|
then it follows from (3.11) that

8.12) L Gu(t)+2r| Ve (0)P=200 (| Vu(t) ) (Vul), Vo' (5) | Ault) |

dt
+2(lu(e)|“u(t), Aw' () +2(V/(t), Va'(2)).

By virtue of Lemma 8.2, the first term in the right-hand side of (3.12)
is bounded from above by

MGV (@) [ 1 An (D),

where M,=max{|M'(r)|; 0<r<C?%. The second term can be estimated
as in [4]; integration by parts yields
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(I (@) |“u(t), Aw'(t) = — (@ +1) (|u(e) |*Vu(t), V' (t)).
Therefore, on account of (A.2), Holder's inequality combined with Sobolev’s
inequality implies that the second term is bounded by

Calau (@)= v/ (@) é%lqu'(t) Ilz+2LCillAu(t) [P
r

with some positive constant C, (see the proof of (8.12) in [4]). In this
proof we denote by C; various positive constants independent of m.
Making use of these bounds we rearrange (3.12) to get

a
dt

S2M,C, ||V ()] || Aut) |l2+2—1rCillAu(t) P22 VA IH V' ()]

(3.13) G(u(t))+377nvw(t)u2

We next multiply the j-th equation of (3.10) by g¢,, and sum up
with respect to j;

(3.14) (Vu(¢), Vu(t)) + M([| Vu(t)|I*) || Au(t) [|®
+(V(u(t)|*u(?)), Vu(t)) +r(Vu'(t), Vu(t)) = (Vf(E), Vu(t)).
Since

(V(Iu()|u(t)), Vu(t) = (e+1)(|u(E)|*Vu(t), Vu(t)) 20,
it follows from (A.1) and (3.14)

(3.15) & { vy, V) + LI vule) )+ mol aue)

IV @1+ IRVl
Addition of (3.13) and (3.15) Xy gives

d s ’ 2
(3.16) 'dTH(u(t)HE”w @1

o+ {may —2MLCIVw (O] = o CHl A )} Au(e)
r
<IV/@1 @IV )] +7IVuit)]),

where H(u(t))=G(u(t))+7 (VW (t), Vu(t)) + 7% Vu(t)|?/2. We observe here
that
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(3.17) H(u(t))g%uw )2+ mo | Au(t) %

Furthermore, since |Au||=4/2;|Vu| (4, =the least eigenvalue of —A
with zero Dirichlet condition) for every u e Hy(R) N H*2), we see

318)  Hu(t) = |Vw/(0)*+ M| Au(t) |+ 7|V O Vut)| + T Ivale)*
3 2
<2 Ivw o +(d+ D)isui

where M,=max{M(r); 0<r<C3i}. By (3.17) and (3.18),
(3.19) CsE*(u(t)) < H(u(t)) SCsE*(u(t)

with some C;, C;>0.
We are ready to deduce a priori estimates for E*(u(t)) with the
aid of (3.19). Take {u),u.} satisfying

(3.20) 2Mlcl||Vu:,,u+Elr—czuAusn||2a%mor.

We will show

(3.21) 2M.C,|Vw'(¢ )Il+—CzllAu( =< %mor,

for all 0<t<co by putting some additional size conditions on {u), u., f}.

Suppose that there ex1sts a positive number z such that (3.21) holds for
0=<t<r and

(3.22) zmanvmr)n+2iTCﬂ|Au<r> 2= mar.

Then it follows from (3.16) together with (3.17) and (3.18) that

(3.23) %H(u(t))+2<er(u(t))éZCvllVf(t)llH(u(t))"Z, 0<t<r,

with some positive constants » and C,. Since (3.23) is rewritten in the
following differential inequality

a
dt

it is easy to deduce

{7 H(u(t))} =2C.e*"| VS (t) [{e™ ™ H(u(t) }'*,
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(3.24) e’ H(u(t))"* = H(u(0))""+ Cvg(: e[V (s)l|ds

for 0<¢<c. Especially, (3.24) together with (3.19) implies
(3.25) max{||Vu'(z)|, |Au(c) |} S E*(u(r))* < {H(u(c)) [Cs}'*

© 1/2
0

<H={HuO)+ [ 1vreld) "
We make H, sufficiently small so that

(3.26) 2MICIH0+2iCiH§“<%m07
r

holds. Then it follows from (3.25) that
2MC, |V (7)] +21—rCf||Au(r) < mar,

which contradicts to (3.22). Thus we have shown (3.21).

If A, ||[Vu!| and ||Vf|iie.e:r20), are sufficiently small, one can
easily see that (3.20) and (3.26) are valid if m is sufficiently large; so
that (3.8) follows from (3.21). In order to show (3.9), we use (3.16) and
(8.21) to derive

d

¢ Hu(®) +%{1\Vu’(t) I1*+mal| Au(t) |} = Col VA (D)

with some C;. Integration of the above inequality yields (3.9). q.e.d.

Finally we multiply (3.1) by g/, and sum up with respect to j. Then
we obtain

[ ()| < M| A (8)[| + Col| e (8) | T2+ 7w () | + LS5
so that it follows with the aid of Lemmas 3.2, 3.3 and Sobolev’s inequal-
ity that
lun (@) <Cio
with some C,,. Thus we have established all estimates which enable us

to carry out the limiting procedure. The rest of proof can be done in
the standard manner (for details, see, e.g., [4]).
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84. Proof of Theorem II.

(i) Although we can study the rate of decay for u with use of
Nakao’s technique [6] (see also [7] and [9]), we will give another simple
proof.

As in the proof of Theorem I, define u, by (3.1)-(3.3). To show
(2.5), it suffices to derive the corresponding rate of decay for u,. In
what follows we drop the subscript. Clearly, we have

(41)  (u”(8), w(t)+ M Vu) ) Vet "+ )| e+ 7 (' (2), u(E)
=(f(t), u(2)),

which is obtained by multiplying (8.1) by ¢,, and summing up with
respect to 5. We define the functional F(u) by

F(u(t))=E(u(t)) + k2w (), u(t) +rlut)]*.

where k is a positive number to be determined later. Then it follows
from (3.6) and (4.1) that

(4.2) %F(u(t)) +2(r —k)|lw ()1|*+ 2em, | Vau (8) 1|42k | (2) ] 5232

2] AN (' @) + 2k u(@)]).

Since ||Vu|?*=2||u|* for uwec H}(R2) and M(|Vu(t)|?) is uniformly bounded
in [0, co0), there exists a positive constant D, such that

(4.3) Fu@) =Di(llw @)1+ V@) [I*+ () | 7232).

On the contrary one can also show

P 2(1- )@ I Tl P
Hence, by taking k=y/2, (4.2) leads us to
(45) L Flult) + 207 Flu(t) S2D£0) | Flu(t)

dt

with some D,>0. Therefore, solving (4.5) we see that F(u) satisfies
(2.5) with E(u) replaced by F(u). Since (4.3) and (4.4) imply

D,E(u(t)) <F(u(t) <D,E(u(t)),  t=0,
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with some D, D,>0, (2.5) easily follows with the aid of the limiting
procedure m—>co.

(ii) The proof is the same as (i). We use (3.23) in place of (4.5).
Since (3.19) is valid, (2.7) is derived as (2.5).

(iii) In order to show (iii), it suffices to make use of (A.4), (2.5)
and (2.7). q.ed.

REMARK 4.1. As is seen from the proof of Theorem II, any solution
in the class (2.1)-(2.3) satisfies (2.5), while smallness conditions on {u°, u', f}
are required to get (2.7).
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