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1. Introduction

We are concerned with the zeros of a function f(2) meromorphic in
the plane, and those of a linear differential polynomial in f, say

F(z)=L(f)=f"(2)+ E B;(2)f (2) (1.1)

where the coefficients B,, - - -, B,_, are rational functions. Our starting
point is the following result of Frank and Hellerstein [3], in which the
notation is that of [7].

THEOREM A. Suppose that k=3, that B, ,=0, and that B,, ---, B,_,
are polynomials. If f is meromorphic in the plane, and F=L(f) 1s
given by (1.1) and 1s not identically zero, then

T(r, f1f)=0(N(r, 1/f)+N(r, 1/F)+r") (1.2)
at least outside a set of finite measure, where
A=max{l+deg(B;)/(k—j): 7=0,---,k—2}.
If B;,=0 for all j, then r* can be replaced by log r in (1.2).

It follows that if f and F have only finitely many zeros then
T(r, f/1f)=0(r*), and that if N(r,1/fF*®)=o0(T(r, f'/f)) for some k>3 then
f'|f is rational. Note that assuming that B,_,=0 in this case amounts
to multiplying f and F by a factor exp(P), with P a polynomial, and
that the estimate (1.2) is not known for k=2, except when f is entire.

The problem then arises of characterizing those functions f for which
f and F have no zeros, and this has been done by Steinmetz [12] for
constant coefficients. For rational coefficients the following was proved
in [9]:
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THEOREM B. Suppose that f is meromorphic in the plane and that
F(z) is given by (1.1), where k=3 and for j=0,---,k—1, each B; 1s
rational and satisfies

B;(2)=0(]z|~*%) as z—oo. (1.3)
If f(z) and F(z) have only finitely many zeros, then f'|f is rational.

Note that the assumption (1.3) implies that the homogeneous equa-
tion L(w)=0 has a regular singular point at infinity. With an additional
assumption on the poles of f the following was proved in [10] for k=2.

THEOREM C. Suppose that f is meromorphic in |z|=R, and that f
and F have no zeros there, where F(2)=f"(z)+a.(2)f (2)+a,(2)f(2), and
a, a, are analytic in |z|=R such that, for j=0,1,

a;(z)=0(|z]"7?) as z—»oo. (1.4)
If N(r,f) has finite lower order, then f'|f has at most a pole at infinity.

Here N(r, f) denotes the counting function of the points in |z|>=R
at which f has poles (see [2, p.98]). Theorem C is sharp at least to
the extent that the condition (1.4) cannot be weakened. The function
g(z)=sec(+/z) has no zeros and nor has

9"+ (1/22)9' + (1/42) g =g*|2z.

On the other hand it seems likely that the hypothesis on N(r, f) is not
necessary.
However Theorem B is not sharp. We shall prove:

THEOREM 1. Suppose that k=3, that f(z) is meromorphic in |z|=R,,
and that By, ---, B,_; are analytic there, with

B,_.()=0(1/]z]) as z—co, (1.5)
and for some A=0, and for 7=0, .-, k—2,
B;(z) =0(|z|*- =) as z—oo. ‘ (1.6)

Suppose further that f(z) and F(z) have no zeros in |z|=R, where F(z)
is given by (1.1). Then if 1=1/2,

T, f/If)=0(")  as r—oco. (1.7)
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If 2<1/2 then f'|f has at most a pole at infinity.

Note that if B,, ---, B,_; are any functions analytic in |z|>R, and
each having at most a pole at infinity, then by means of a transforma-
tion f=g¢g exp(P), F=G exp(P), with P a polynomial, we can always ensure
that B,_, satisfies (1.5). Notice also that for k=2 and 1<1/2, the condi-
tion (1.6) reduces to (1.4), and that Theorem B corresponds to 1=0.

Theorem 1 is sharp, at least for even k. Using the fact that the
function h,(w)=cos *(w) satisfies h?+n’h,=(n*+n)h,,., and the change
of variables w=4/2 one can construct examples for any even k with
2=1/2. For example f(z)=sec(v z) satisfies

SO+ (3/2)f® 4 ((102+3)/42°) " + (5/42°) f'+ (9/162°) f = (3/22°) f° 0. (1.8)

It seems possible however that the second conclusion of Theorem 1 holds
for 2<1 if k is odd.

Our method is similar to that of [9], coupling the techniques of [3]
with the Tsuji characteristic. However the change of independent variable
used in [9] is dispensed with except in one subcase, and this makes the
proof of (1.7) easier. The proof of the second conclusion of the theorem
requires the cos 7p theorem, Wiman-Valiron estimates, and a lower bound
for the logarithmic derivative of an entire function of order less than
1/2 which satisfies a third order linear differential equation.

The author would like to acknowledge valuable conversations with
his colleagues Giinter Frank and Michael Heckner. Thanks are also due
to the referee for some very helpful comments.

2. Lemmas required for the Proof of Theorem 1

Our proof requires the Tsuji characteristic (see [11], [13]): if f(2) is
meromorphic in Im(z)=0 we define

1 Srz-ein_l(llr) . . do
= log*| f(r sin 0 e
2r g/ ) r sin? 0

mi(r, f) (2.1)

sin~Y(1r)

and

Nl(r,f)zgznl(t, Aatfe,

where n,(t, f) is the number of poles of f, counting multiplicities, in
{z: |2—1t/2|£t/2, |z|=1}. (Obviously analogous functionals can be defined
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in any closed half-plane.) Setting T(r, f)=m(r, )+ Ni(r, f) we have
the following properties of this Tsuji characteristic. T, differs from a
non-decreasing function by a term which is bounded, and if f is non-
constant then for all complex numbers a,

T\(r,1/(f—a))=Ti(r, /)+0(1). (2.2)
Also importantly
ma(r, f'[f)=0(log* Ty(r, f)+log r) (2.3)

outside a set of r of finite measure. If « satisfies 0<a<7/2 then there
is a constant A>1 such that if n,(r, f) is the number of poles of f in
1Z2|Er, agarg z<rw—a, then

ny(r, f)=0(rN,(Ar, f)) (2.4)

(see [9, p.272]). Finally we need an estimate for the Tsuji characteristic
of a function analytic in a closed half-plane.

LEMMA 1. If K>0, M=0, and f(z) is analytic in Im(z)=0 with
log* | f(2) | K(1+1log* |2|+ |2|*) there, then

Ti(r, f)=0(r""'+log r) as r—oo, (2.5)

PRrROOF. If M=0 then (2.5) is immediate. If M is positive then in
(2.1),
log* | f(r sin 6 ¢”)| < K7™ sin™ 6 +O(log 7).

If 0<M<1 then since rsinf#=1 on the range of integration,

n’—sin_l(llr) da
sin~la/m sin @

my(r, f):O(log T+S ):O(log ).

On the other hand if M>1 we have
ma(7, f) =O<log r+ r”—lg" sin®-2 0d0) =0(r"Y).
0

The next lemma is standard. Here the weight of a differential
monomial (k)o(h)1 --- (R™)im is defined as %,+2¢,+ --- +(m+1),.
LEMMA 2. Suppose that h=f"/f. Then for k=2,

SEIf=h+Qu(h)
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where the differential polynomial @, is a sum of monomials each of
degree at most k—1 and weight at most k.

The next lemma summarizes some information from the Wiman-
Valiron theory (see [6] for details). For an entire function g(z)= i a,2",
n=0

we denote by M(r,g) the maximum of |g(2)] on |[z|=7. If p(r)=
max{|a.|r":n=0,1, ---} is the maximum term, then the central index
y(r) is the largest n such that |a,|r"=p(r).

LEMMA 3. Let 8 be a positive constant and let g(z) be a transcendental
entire function with central index v(r). Then there exists a set E of finite
logarithmic measure such that if r is not in E and |z|=r with |g(z)|=
M(r, g) then for j=1,2, .-

99 (2)/g(2)=(v(r)[2)’(140(1)) (2.6)
and if f=1/g,
FP@)[f(2)=(v(r)[2)’((=1)'F0o(1)). (2.7)
Also if 7=1,2, ---, then for z as above
(9'19)? (2)=o0(v(r)[r)*". (2.8)

In addition, if r is not n E,
v(r) < (log M(r, g))™°. (2.9)
Further, if v(r)=0(r*) as r—oo for some 2>0, then
log M(r, g)=0(r%) as r—oo. (2.10)

Finally if g has finite order then for any ¢>0 there is a set E, of finite
logarithmic measure such that if z is as above with, in addition, |2| not
in E, then

(9'/9) (2) =O(u(r)r?). (2.11)

Proor. For (2.6) to (2.9) see [6] and Lemma 3 of [9]. Defining (as
in [6])

a(r):rj—r(logM(r,g)) and b(r):rT(a(r))

then Lemma 6 of [6] implies that, except for isolated values of r, if
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|2|=7 and |g(z)|=M(r, g), then

a(r)=z9'(2)/g(z) (2.12)
and

129’ (2)/9(2) +2°(¢'[9)' (2)| < b(r). (2.13)
Now (2.10) follows at once from (2.6) and (2.12). To prove (2.11) we
note that for any positive constant d the fact that rb(r)a(r)‘l"‘dr/r

converges implies that b(r)<a(r)"*¢ outside a set of finite logarithmic
measure. This and (2.13) give

2(9’[9) () =0(a(r)"**) =0(v(r)"+%)
if r is not in E. Now we choose d so that y(r)?<r:.

LEMMA 4. Suppose that k=2, and that a,, - - -, a,_1 are analytic in
|2| =R such that for some 21=0,

a;(2) =0(|z| A=) as z—oo, (2.14)
Let f(z) be a solution of
L(y) =y + g™+ - +ay=0 (2.15)
i a sectorial region
S={z: |2| >R, a<argz<a+2r} (2.16)
where a vs real. Then as z—oo in S,
log* [ f(2)|=0(]2|*+log |2]). (2.17)

ProoF. If 2>0 we take a subregion of S on which Z=2* is analytic
and one-one. Defining F(Z)=f(2) transforms (2.15) into a differential
equation

dFlAZ+ A, dFIdZE 4 - + AF=0

in which the coefficients A; are by (2.14) bounded. This gives log* |F(Z)|=
O(|Z|) and hence (2.17). The details are standard and we omit them. If
2=0 then (2.15) has a regular singular point at infinity and (2.17) can
be obtained by setting Z=log z.

LEMMA 5. Suppose that M=0, that k=1, and that a, ---,a,_; are
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meromorphic in |z| >R. Suppose further that for any real a the equa-
tion (2.15) has in the sectorial region (2.16) a fundamental set of analytic
solutions f, - - -, fr each satisfying

log™* | £5(2)| =0(|2|" +log |2]) (2.18)
as z—co 1n S. Then we have, for each j.
log* | f3(2)| =O(|z]* +log |2]) (2.19)

as z—oo in S. In addition, there exists a positive constant M, such that
if |z| lies outside a set of finite logarithmic measure, we have, for j=
0, ---,k—1,

a;(z)=0(|2|"). (2.20)

ProOF. To prove the first part we just note that, by (2.18) and
Cauchy’s integral formula, the estimate (2.19) holds for large z with
a+r/2<arg z<a+3r/2. To obtain (2.19) in the whole sector (2.16) we
need only consider fundamental solution sets for different values of a.

To prove (2.20) we first observe that by analytic continuation, (2.15)
has a solution f(z)=2z%(z), where d is a constant and g is analytic in
|2| >R (see [8, pp.357-358]). By (2.18) g has finite order of growth and
we have, for some positive M,,

|fP (=) f(2)| < 2" (2.21)

for j=1, - - -, k and for |z| lying outside a set of finite logarithmic measure.
Now (2.20) is obvious for k=1. For k=2, we proceed by induction,
assuming the proposition true for k—1.

Let y be an arbitrary solution of (2.15) in a sector (2.16) such that
y and f are linearly independent. Then u=vy/f—yf’ is analytic in S and
by (2.19) satisfies an estimate of type (2.18). Locally we can write

y=f Su/ fiz so that y'= f’gu/ fidz+u/f. It is easy to prove by induction
that for j=2, - -, k, )

Y :f""ju/fde-{—%(u”“” +Q;(u)), (2.22)

where each @;(u) is a linear combination of u, - - -, u%~?, with coefficients
which are differential polynomials in f//f. By (2.22) and the fact that
L(y)=L(f)=0, we obtain a differential equation
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u* 4+ B, u*?+ ... +Bu=0,

where for j=0, ---,k—2, each function B,—a;,, is a linear combination
of a,i,, ---,a, with coefficients which are differential polynomials in
f'|f. Here for convenience we write a,=1. The induction hypothesis
gives B;(z)=0(|z|Y), say, for |z| outside a set of finite logarithmic measure,
so that we obtain (2.20) for j=1, - -+, k—1, using (2.21). Now (2.21) again
gives (2.20) for a,.

LEMMA 6 ([9]). Let fi, ---, f: be linearly independent solutions of
(2.15), where a,, - - -, a,_, are analytic in Im(2)=0. Then for j=1, -,k
we have

T.(r, a;)=0O(log*(max T\(r, f;))+log r)

at least outside a set of finite measure.

LEMMA 7. Suppose that g(z) is a transcendental entire function of
order less than 1/2, and that g(z) satisfies an equation

9 (2) + A:(2)9” (2) + Ai(2)g’ (2) + Ao (2)9(2) =0,

where A, A, and A, are each analytic in |2|=R with at most a pole at
wmfinity. Then for each ¢>0 there exists a set L of finite logarithmic
measure such that if |z| is not in L we have

|2]7%= < g’ (2)[g (=) | < || 722+ (2.23)
Proor. We can write, for j=1, 2,3,
A;(z)=d;z"i(1+0(1))

as z—oco, where d; is a constant and 7; is an integer, and we denote
the central index of g by v(r). Then for large r outside a set of finite
logarithmic measure, we have, if z is a maximum modulus point of g on
2| =",

99(2)/g(2)=(1+0(1))(v(r)/2)’ for j=1,2,3.

Also v(r) is unbounded but satisfies v(r)=O0O(r"*~*) for some positive s.
Let
m=max{n;—J:0=<j<2 and A4,;%0}
and
D=max{j:0<j<2 and A;%0 and n;—j=m}.
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Then for z as above we have
A,g” g+ Ay’ |9+ Ay=dpz™v(r)?(1+0(1)).
For if 0<7<2 and n,—j<m, then
A;(v(r)[r)i=0(rmtri=?),
Therefore we obtain
p(r)-2 = —dpz™ (1 +o(1)).

This forces D=0 and m= —2, since otherwise we find that either y(r)
is bounded or g has order at least 1/2. So n,<—1, ;< —2, and n,=—2.
Therefore, for ¢>0 and for |z| outside a set of finite logarithmic measure
we have, by Theorem 3 of [5], for j=1,2,

99" (2)]g' () =O(Iz]~7+%)
and
9'(2)/9(z)=O(|z|*+#").

This gives the required upper bound for g’/g. To obtain a lower bound
we can write

—Ao=(0"19)(O(|2|~“P*+<") + A,0(|2| ") + A,)
=(9'/9)0(|2|~“+<)

which gives the required estimate, since A,~d,z 2
The following lemma summarizes information from Lemmas 6 and 9
of [3].

LEMMA 8. Suppose that k=8, that a,, ---,a,_, and A,, ---, A,_, are
analytic in a domain D, and that fi, ---, f. are linearly independent
solutions in D of the equation

WP 4 a,_w* P4 - +aw=0. (2.24)

Suppose further that for some h,g analytic in D, with g=0, the func-
tions fig+fih are linearly independent solutions of

w® + A4, w* P+ - + Aw=0. (2.25)
Then with the notation b,=A;—a;, we have

— W =((k—1)/2)9" + (be_o/k)g. (2.26)
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In addition, if b, ;=0 then g satisfies a homogeneous linear differential
equation of order at most 3 over the field E generated by the a;, A; and
their derivatives. Further, if b, ,%0, either hlg is in E or hlg is a
rational function of the f; and their derivatives of first order.

ProOF. As in Lemma 6 of [3], set A.,=1, a_,=a, ,=0, M, _,=0,
and for v=0, ---,k,

ko[
Mk,p(w) — E,, < ) >Aﬂw(ﬂ—u).

Then h and g satisfy, for v=0, ---,k—1, by Lemma 6 of [3],

M, ,(h)—a,h= —M,,_.(9)+a. M, . .(9)+ (al+a,_.)g. (2.27)

Conversely if (2.27) holds for v=0, ---,k—1 with h, g replaced by H,G
then the functions f}G -+ f;H are solutions of (2.25). Now v=k—1 in (2.27)
gives (2.26). Further v=k—2 in (2.27) and (2.26) give

2— —
b,,#zhzfi%_llgm _|_g/(_("’7+ll bk#2+2Ak—z>+ ¢, (2.28)

where we use ¢, ¢;, - -- to denote elements of the field E. In addition,
v=k—3 in (2.27) and (2.26) give

2 4y o klE=1)

2 g (B b 4 2A ) bag bog. (229)

We assume henceforth that b, ,#0. Differentiating (2.28) and using
(2.26) and (2.29) we obtain

(kiz bi—s— Lz)h: 16—52 bk_zgll+c4g’+csg- (2.30)

From (2.28) and (2.30) we see that ¢ satisfies a linear differential equa-
tion as required.

The last assertion of the Lemma now follows from the method of
Lemma 9 of [3] (see also [9]). The equations (2.27) are, using (2.26),
equivalent to the equations (2.26), (2.28) and k—2 further equations each
of form either h=L(g) or N(g)=0 where L and N denote linear dif-
ferential operators with coefficients in E. Eliminating h by (2.28) we
obtain a system S of linear differential equations in g, with coefficients
in E, with the property that if G is a local common solution of these
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equations, then defining H by (2.28) the functions H and G solve (2.27).

Proceeding exactly as in [3, Lemma 9], if the system S has, up to
multiplication by a constant, just the one common solution g, then by
[8, p.126] the function g solves a first order linear differential equation
over E. Thus ¢’/g is in E and by (2.28) so is k/g. On the other hand,
if the system S has another common (local) solution G with G/g non-
constant then defining H by (2.28) there exist solutions g, of (2.24) such
that for j=1, ---  k,

fiG+fiH—gj9—g;h=0. (2.31)

The argument on p.424 of [3] shows that the rank of the coefficient
matrix of the system (2.31) is 3, and we can solve for h/g by Cramer’s
rule.

We need finally a lemma of Tumura-Clunie type.

LEMMA 9. Suppose that k=2, that 2, £=0, and that f is meromor-
phic in |z|=R, such that fF+0 there, where

Flz)=/f"(2)+ kZo a;(2).f (), (2.32)

and the coefficients a; are analytic i |2|=R, with
a;(z) =0(|z|*-DE=9) as z—oo. (2.33)
Suppose further that
N(r, £)=0(r*+1log ) as r—>oo, (2.34)
and set v=max{a, ¢}. Then as r—oo,
T(r, f|f)=0(r"+log r). (2.35)
Also if n=0 and 2<1/2, f'|f has at most a pole at infinity.

Proor. We set u=f"/f and U=F/f, and clearly may assume with-
out loss of generality that w has an essential singularity at infinity,
since otherwise there is nothing to prove. We apply the Tumura-Clunie
method, as in [7, pp.69-73], but very slightly modified. We denote by
Si(r, u) any term which satisfies

Si(r, w)=0(r*+log(rT(r, u))) (2.36)



310 J. K. LANGLEY

as r—oo, at least outside a set of finite measure. Here we are using
Nevanlinna functionals defined for r>R, (see [2, p.98]). The same argu-
ment as in [7, pp.69-73] now implies that either T(r,u)=S,(r,u), in
which case both conclusions of the lemma hold at once, or

U=h (2.37)

where
k—
2k

h=u+ 1LmU+%4m:u+ﬁ%lwm+%4m. (2.38)

Assuming henceforth that (2.37) and (2.38) hold, a comparison of the
Laurent series expansions of both sides of (2.38) at a pole of f of order
m yields

m(m+1) -+ (m+k—1)=(m+ (k—1)/2)
which contradicts the arithmetic-geometric mean inequality. Therefore
f has no poles in |z|>R, and & is analytic and non-zero there. Now if

h has at most a pole at infinity then so has u, by (2.38). Therefore we
can write, without loss of generality,

B=W|h, h"=(B'+Bh, etec., (2.39)

where B is analytic in |2|>R, and T(r, B)=S(r, h), with S(r, k) the usual
error term of Nevanlinna theory. We can write, using [7, p.73], and
(2.37),
Me=ur+uruw'k(k—1)/2+u**u"kk—1)(k—2)/6

+ut(w)k(k—1)(k—2)(k—3)/8

+ay_ (Wt (k—1) (B —2)/2)

+ U Qi _s(u) (2.40)
where Q,_; is a differential polynomial in %, of degree at most k—3,

whose coefficients are linear combinations of the a;. Substituting (2.38)
into (2.40) and using (2.39) we obtain

Dh*=2=M,_4(h) (2.41)

where M,_j(h) is a polynomial in h, of degree at most k—3, whose
coefficients have Nevanlinna characteristics which are S(r,h). Here

(ke —1)
24

D= Bi4-¢,B' +c,0, 1 B4cial_+e,ai i+ a,_, (2.42)
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with ¢, - - -, ¢, constants. Since T(r, D)=S(r, k), (2.41) forces D to vanish
identically. But then by the Wiman-Valiron theory, B can have at most
a pole at infinity. Now (2.42) gives B=0(|z|*"') as z—oo, which gives,
by integration, T(r, h)=0(r*+log r) and (2.35) follows, using (2.38). Also
if 1<1/2 then in (2.42) a,=O0(z|"*?) which gives B(z)=0(1/|z]) and
T(r, h)=0(log 7).

3. Proof of Theorem 1

In view of Lemma 9, we need only obtain an estimate for N(r, f)=
N(r, f'|f). We take a sectorial region

S={z: |2| >R, —r<argz<r} (3.1)
and (as in [3] or [10]) define g(z) in S by
9(2)* =1 (2)/F(2). (3.2)

We also define, in S, linearly independent analytic solutions wu,, ---, u;
of the homogeneous equation L(u)=0, and define

W(@)=W(uy, - - -, ) (3.3)
to be their Wronskian, so that
W'(2)|W(2)= — B,_.(2) =0(1/|z]). (3.4)

We define a branch of W(z)~"* in S, and obtain from (3.3)

W(fy - fi)=1 (3.5)
where
fi=u; Wk, (3.6)
Writing
b(2)=f(z)W(z)"1*, O() =F(z) W(z)—llky 3.7)
we have
W(fi, - f[i.d)=0P=¢g~*
so that
W= (=) (38)
where

v,=fi9+fih 3.9)
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and

h=(=¢'I$)g=(—(F"|.f) — Bi-s[k)g. (3.10)

From (3.8), (3.9) and (8.10) it follows that the v, are, in S, linearly
independent analytic solutions of an equation

v+ A, 0% .+ Aw=0 (3.11)
where A,, ---, A,_, are analytic in S.
We assert that the coefficients A4, ---, 4,_, are in fact analytic in

|z|>R,. To see this, let S* be the sectorial region obtained by rotating
S through an angle =. In S* we can define, exactly as in S, correspond-

ing functions g¢*, h*, W*, ¥ and v¥, so that the v¥ solve an equation
v AF WP 4 AFv=0,

where the A¥ are analytic in S*. But it is clear that in each component
of the intersection of S and S* each v} is a linear combination of
vy, + -+, . Therefore A¥=A; in each such component. This proves the
assertion above.

From (3.5) and (3.6) we observe that the functions f; are linearly
independent solutions in S of an equation

w(k)_l_ak_zru)(k—z)_}_ [ _I—an:O (3.12)

where the a, are analytic in |z|>R, and each satisfy log*|a;(z)|=
O(log |z|) there. We now apply Lemma 8, to obtain

—W=((k—1)/2)g" + (bi_s/k)g (3.13)

where b,_,=A, ,—a,_,. Again using Lemma 8 we can distinguish 3
possible cases.

Case 1, in which b,_,=0.
In this case we obtain from (3.13)

—h=(k—1)/2)¢'+c, (3.14)
for some constant ¢,, so that using (8.10) we have
f1f=((k—1)/2)(g'/9)+¢:/g— Bi_.[k- (3.15)

If ¢,=0 then (3.15) implies that  has no poles in [z|>R, and in this
case both conclusions of the theorem follow at once from Lemma 9. If
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¢,#0 then g is analytic in |2|>R, and we apply the Wiman-Valiron theory
to estimate the growth of g and hence of N(r, f).
To this end we can write

g(z)=2™g,(2)(1+0(1/|z))) (3-16)

as z—oo, where m, is an integer and g, is entire (see e.g. [14, p.15]).
If ¢, is a polynomial then clearly f has only finitely many poles in |z|=R,
and the conclusions of the theorem follow from Lemma 9. If g, is tran-
scendental then by Lemma 3 there exists a set L, of finite logarithmic
measure such that if z is a maximum modulus point of g, and |z| is not
in L, then for j=1, ---,k, using (2.6) and (3.16),

99 (2)/g(2)~(v(]2])/2)’ (3.17)

where v(r) is the central index of g,. For such z we also have (Lemma
3), for j=1, .-+, k—1,

(9'/9) (z)=o0(v(|z])/|2])"*".

Using (3.15) and Lemma 2 we therefore have, for such 2z, and for j=
1, .-,k
FO@)] f(2)~((k—1)/2) (v(|2)/2)". (3.18)

Substituting (3.18) into the equation F/f=g~* and using (1.6) we obtain
v(r)=0(r?) outside a set of finite logarithmic measure and hence for all
large ». This gives log M(r, g)=0(r*) as r—oo (see Lemma 3), so that
N(r, fy=0(r"). If 2=1/2, then the conclusion of the theorem follows
from Lemma 9. If 1<1/2 then by (1.5), (3.15) and the cos =p theorem [1]
applied to g, there exist arbitrarily large » such that on the circle |z|=7
we have

f'(2)[ flz)=((k—1)[2)¢’'(2)9(2) +O(1/)

which implies, using the argument principle, that f has only finitely
many poles in |2|=R,, and by Lemma 9 f’/f has at most a pole at infinity.

Case 2, in which h/g is a rational function of the A; @, and their
derivatives.

In this case we estimate the function N(r, f) as follows. We can
take a half-plane S,={z: Re(e"®z)=R,} for some fixed large R, and any
real a, and in S, define functions g, f;, k ete. all exactly as in (3.2)-(3.10).
The functions
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ﬁf:fjﬁ'*‘ﬂ'ﬁ

must satisfy the equation (8.11) in S,. Since the f; satisfy (3.12) in S,
the Tsuji characteristics T\(r, f;) are bounded by a power of r as r—oo,
using Lemmas 1 and 4. Also from (§)*=f/F and h=(—¢'|$)§ we obtain

Ty(r, §)+ Ti(r, B)=O(T\(r, f'| f)+log ) n.e.

where as usual “n.e.” denotes “outside a set of finite measure”. There-
fore for some positive m,,

T\(r, 0;)=0(Ty(r, f']f)+7rm) n.e.
But then Lemma 6 gives
T.(r, A)=0(log* T\(r, f'| f)+log r) n.e.

Since by (3.10) and the assumption of case 2 f7/f is a rational function
of the A; a,, their derivatives and B,_,, this gives T\(r, f’/f)=0(log r).
It follows that the number =,(r) of poles of f’/f in Re(¢’z)=R,, |2|<T,
|arg(eez)|<x/4 satisfies n,(r)=O(rlog r). Applying this reasoning for dif-
ferent values of a« we conclude that N(r, f’/f), the standard Nevanlinna
counting function, has finite order. Therefore by Lemma 9 f//f has finite
order of growth in |2|=R,, and so have ¢* and h*. Therefore in any
half-plane of form S, the solutions ¥, have finite order of growth, and
the A; have at most a pole at infinity, by Lemma 5. But then f’/f has
at most a pole at infinity, again since f’/f is a rational function of the
A;, a;, their derivatives and B,_,.

Case 3, in which h/g=—¢'/¢ is a rational function of the f; and
their derivatives.

Here we first use a transformation to enable us to apply the Tsuji
characteristicc. We take a small positive ¢, and define a branch of 2°+¢
on Re(z)>0, defined to be positive on the positive real axis. It is clear
that the function ¢(z)=¢'(2*"¢)/p(2**¢) is meromorphic on Re(z) >0, |z|>R,,
say. The functions w,(z)=f;(z**), y,(z)=f%(2**) are initially defined on
|z|>R,, |argz|<=/(2+¢). But we can use the solutions f* of (3.12)
which were defined on S* to analytically continue w; and y; to all of
Re(z)>0, |z2|>R, and by (1.5), (1.6), (3.4), (3.6) and Lemmas 4 and 5,
we have

log* |w;(2)[+log™* |y;(2)|=0(z"*** +log |2])



The Tsuji characteristic 315

as z—co in this region. It follows using Lemma 1 that in the half-plane
Re(2)=R,+1, we have the estimate

T,(r, w,)+ Ty(r, y;) =0 (r*®*+2 "+ log 7) (3.19)

for the Tsuji characteristics of w; and y;. But by the identity theorem,
¢ is a rational function of the w, and y; in Re(z)=R,+1, so that (3.19)
leads to

Ty(r, §) =0+ 4 log 7). (3.20)

Therefore for any positive 4,, the number u,(r) of poles of ¢ in
|z—R,—1|<r, |arg(z —R,—1)|<(x/2)—0,, satisfies, using (2.4),

Ny(1) = O (129 41 log 7). (3.21)

But if J, is small enough then for any large pole { of f, which is in
turn a pole of ¢’/$, the function ¢ has a pole at a point z with
larg(z—R,—1)|<(x/2)—0d,, and with 2***={. Therefore by (3.21),

N(r, f)=N(r, f'] ) =0(r*+ 1'% log 7). (3.22)

If 2=1/2, then (1.7) follows from (3.22) and Lemma 9.

If 2<1/2, we show that f’/f has at most a pole at infinity as follows.
We first observe that by (3.22) and Lemma 9 the functions f’/f and f/F
both have order of growth less than 1/2. Now the function H=jf"%*g**-1
is analytic in |z|>R, and every pole of f is a zero of H. If H has only
finitely many zeros then the conclusion of the theorem follows at once
from Lemma 9. To complete the proof therefore we need only show
that the assumption that H has infinitely many zeros in |z|=R,41, say,
leads to a contradiction.

Now (3.10) and (3.13) give

(H'[H)+(9'[9)(H |H)=2B,_1(¢’/9) +2B;_, —2b; _,. (3.23)
We first estimate the coefficient b,_,, noting that
B, 1(2)=0(1/|z]) and Bji_,(z)=0(1/|z[) (3.24)

as z—oco. Now by Lemma 8 we can assume that ¢ satisfies, in S, an
equation
g®+C,g” +Clgl+ Cog =0 (3.25)

where the coefficients C; are analytic in |2|>R, each with at most a
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pole at infinity. Since all poles of F/f have multiplicity k, we can write
g(z)=2"(1+0(1/|2]))g:(2)  as z—>co, (3.26)

where m, is real (possibly fractional) and g, is a transcendental entire
function, which in turn satisfies an equation of type (3.25). Applying
Lemma 7 and using (3.26) we see that for any positive ¢, since g, has
order less than 1/2,

27 < g/ (2) g (2) <[ [0 (8:27)

for |z| lying outside a set of finite logarithmic measure. (Here we note
that ¢’/g is meromorphic in |2|>R,) Since H'/H has order less than 1/2
we can apply Theorem 3 of [5] to write (3.23) in the form

2by_o+O(|2|>~2) I |H=0(|z|"5*+1) (3.28)

for some positive e,. (3.28) holds for all z with |2| outside a set of finite
logarithmic measure. To estimate b,_, from (8.28) we require an estimate
for H'//H. We can write

flz)=2"(1+0(1/|z])) Fi(z)~ (3.29)

where m, is an integer and F) is an entire function. Denoting by v,(7)
the central index of F), (3.29) and Lemma 3 imply that if z is a maximum
modulus point of F) and |z| lies outside a set of finite logarithmic measure,
then

SO2)[ f(2)~(—1) (n(2])/2)’ (3.30)

for j=1, ---,k. But f/F has order less than 1/2 so that for r lying in
a set of positive lower logarithmic density we have F(2)/f(z)=0(r"%*) on
|z|=r. This follows from the coszp theorem. Substituting (3.30) into
the formula for F|f we deduce that for r in a set of positive lower
logarithmie density we have

vy (1) =0(r). (3.31)

Now (3.27), (3.30) and (3.31) imply that we can find arbitrarily large z
such that (3.28) holds with

H(2)[H(z) =0(|z[7 42| **=),
so that
be_2(2)=0(2]? as z—oo. (3.32)
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We are now in a position to obtain a contradiction to the assump-
tion that H has infinitely many zeros in |z2|=R,+1. We can write

H(z)=2"(1+0(1/|2)) Hi(2),

where m, is an integer and H, is a transcendental entire function. Since
(3.31) holds on a set of positive lower logarithmic density we deduce
that F,, f and H, have finite order. Denoting by v,(r) the central index
of H,, it follows from Lemma 3 that if 2z is a maximum modulus point
of H, with |z| lying outside a set of finite logarithmic measure, we have

H'(2)|H(z)~vu(|2]) [z, (H'[H)'(z) =0(w(|z[)]2]"7*) (3.33)

and we can assume that (3.27) still holds. Substituting (3.33) into (3.23)
and using (3.27) and (3.32) we obtain, for such z,

(v2(121)/2)(g[9) (1 +0(1)) =O(lz[~***1)

and v,(|z)=0(|2[1). Since ¢, may be chosen arbitrarily small, this implies
that T'(r, H,) has order zero, and therefore so have N(r, f) and T(r, f/F).
But this in turn implies that for any ¢,>0,

9'(2)/g(2)=0(lz[>™") (3.34)

for all z with |z| lying outside a set of finite logarithmic measure, using
Theorem 3 of [5] again. But (3.34) contradicts (3.27), and the proof is
complete.
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