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Application of interpolation spaces with a function
parameter to the eigenvalue distribution
of compact operators

By Yoichi M1YAZAKI

0. Introduction.

The theory of interpolation spaces (X, X,),,, with a function param-
eter ¢(t) is the extension of the theory of interpolation spaces (X,, Xi)s.»
(with a numerical parameter ) which originates from Lions and Peetre
[7]. (X, Xi)s,, coincides with (X,, X,),,, when ¢(t)=t"".

In this paper we apply the theory of interpolation spaces with a
function parameter to the eigenvalue distribution of the compaect opera-
tors including the integral operators with the logarithmic kernel. We
shall show quantitatively how the singularity of the integral kernel effects
the compactness of the integral operator.

For example, the integral operator in L,(2) defined by

Tf@)={ -yl fidy,  0=(e R |al<1)

has the range R(T) contained in the Sobolev space H?*(2). Since we
know the s-numbers of the imbedding mapping from HZ*2) into L.({2),
we can evaluate the absolute values of the eigenvalues of T from above.
We note that H?*2) is the smallest Sobolev space which includes R(T).
On the other hand, when we consider the integral operator defined by

Sf@)=|, lo—yI " logla—y)/(w)dy,

where p is a positive integer, there is not the smallest Sobolev space
which includes the range R(S), although we have R(S)cC HY2) for any
A<2. But appealing to the Fourier transform we can find the space
which is the most suitable for the range R(S). It is the interpolation
space (L,(Q), H"(2)),. with a function parameter. That’s why we need
the theory of interpolation spaces with a function parameter to obtain
the estimates of the eigenvalues of the operators including S.
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The plan of this paper is as follows. In Section 1 we review the
theory of interpolation spaces with a function parameter. Our useful
tools to estimate the eigenvalues of the compact operators are the mean
space S(2, ¢, X3; 2, ¢,, X;), the abstract Besov space D¢(A), the Sobolev
space with a function parameter H*(R"), ete.

In Section 2 we consider the eigenvalues of the compact operator
with the range contained in the interpolation space with a function
parameter. Our result is the extension of the result on the operator
with the range contained in the usual Sobolev space H™(Q).

In Section 3 we treat the integral operator with the kernel which
has the singularity at the diagonal set, and whose Fourier transform
has a certain property. We show that the range of the integral op-
erator is contained in the interpolation space with a function parameter,
and apply the result of Section 2 to obtain the estimate of the eigen-
values. We also gain the characterization of the Sobolev space with a
function parameter H*(R") by the Fourier transform.

In Section 4 we give an example of the integral operator with the
logarithmic kernel which satisfies the condition of Section 3.

1. Interpolation spaces.

In this section we will review the interpolation theory with a func-
tion parameter. The details can be found in Muramatu [10].

Weight functions on R.. Let ¢ be a weight function on R,=(0, o),
that is, a measurable function from R, onto R,. We define the simi-
larity ratio function ¢ of ¢ by

@(t) =ess. supf_(ﬁ_
>0 o(s)

Throughout this paper we assume that ¢(t) is finite for any ¢>0, and
that the left and the right indexes of ¢ coincide:

which we denote by ind¢. The following properties of ind¢ will be
often used.
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LEMMA 1.1. Let ¢ be a weight function on R..
(i) For any s>0 and t>0 we have

()< o(ts)

<&(t).
) <(¢)

(ii) Let a=indg. For any >0 there exists C>0 such that
C et <o(t) <Ctoe when 0<t<1,
C 't <p(t) <Ctte when 1<¢t.

The above inequalities also hold when we replace ¢ with @.
(iii) Let 2#0. Then ¢(t') and ¢(t)* are also wetght functions on
R., and we have

ind ¢(t*) =ind p(t)*=21ind ¢(t).
In particular we have
ind p(t7!)"'=ind ¢(t).

Mean spaces. For a weight function ¢, a Banach space X, and p
with 1<p<oco, we denote by L¥(X) the space of all X-valued measur-
able functions f(¢) on R, such that

£ =(] 170134 <o

Let {X,, X} be a compatible couple of Banach spaces. Let ¢, and ¢, be
weight funetions on R, which satisfy ind ¢,>0>ind ¢, or ind ¢,<0<ind ¢,.
We define the mean space with a function parameter S(2,¢,, Xy 2, ¢, Xi)
as the space of means

a:Fu(t) —‘%3

0

with ¢,(t)u(t) € L¥(X,) and ¢,(t)u(t) € L¥(X,). The mean space S(2, ¢, Xy
2,¢,, X,) is a Banach space with the norm

lelsu,%,xo;z,%,xl):inf maX{”%“HL;(xon luuall Lyexp}

where the infinimum is taken over all u(t) such that a—_—ru(t)dt/t. In
0

particular, when ¢,(t)=¢(t) and ¢,(t)=tp(t) for some weight function ¢
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on R, with —1<ind¢<0, we denote S(2,¢, X2, ¢, X;) simply by
(Xo, X1)¢,25

(X0, X1)2=S(2, o(t), Xo; 2, to(t), Xi).

Moreover when ¢(t)=t" for some 6 with 0<#<1, we get the mean
space (X,, Xi)s,» which Lions and Peetre [7] originally defined:

(Xm Xl)o,z—_- (Xm Xl)t—ﬂ,z:S(Z, t_gy X 2, e, X1)-

THEOREM 1.2. For any real number A with A+0, the mean space
S(2, @o(t), Xo; 2, 1(t), X)) remains the same even if we replace ¢;(t)
(7=0,1) with ¢;(t*) (7=0,1). That is, we have

S(2, @o(t), Xo5 2, (), X)) =S(2, eo(t), Xo; 2, ¢u(t), X,),

with the equivalent nmorms.

THEOREM 1.3. Let ¢, and ¢, be weight functions on R, which satisfy
ind ,>0>ind ¢; or ind,<0<ind¢, Let {X,, X} and {Y,, Y} be com-
patible couples of Bamach spaces. Let T be a compatible bounded linear
operator from {X,, X,} wnto {Y,, Y\}. Then T maps S(2, ¢y X2, ¢:, Xi)
mto S(2,¢,, Y, 2,01, Y,) and this mapping is continuous.

Complex interpolation spaces. Let 0<0<1. We denote by [X,, Xi],
the complex interpolation space (Calderon [3]).

THEOREM 1.4. Let A be a positive self-adjoint operator in a Hilbert
space X. Then we have for any 6 with 0<0<1,

[X, D(A)]l,=D(A?).
Here we donote by D(A) the domain of definition of A.

Abstract Besov spaces. A is called a mnon-negative operator in a
Banach space X, if A is a closed linear operator in X with the resolvent
set containing the negative real ray (—oo,0) and {t(t+A4)™% 0<t<oo} is
bounded.

Let ¢ be a weight function on R, with 0<ind ¢ <m for some integer
m. Let A be a non-negative operator in a Banach space X. We define
the abstract Besov space Dj(A) as the space of all € X such that

o) A™(t+A)™"x € L (X)
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with the norm
Il ogca =l x+ () A™(E+ A) "] 25 cxs-
THEOREM 1.5. Under the above situation we have
D5(A)=S8(2, ¢(t), X; 2, t™"p(t), D(A™)).
In particular, for 6 with 0<0<1 we have
(X, D(A™),,.=D5’(A).
Sobolev spaces in R*. Let ¢ be a weight function on R, with
0<ind p<m for some integer m. We define the Sobolev space with a

Sfunction parameter H*(R") as the space of all functions f¢€ L,(R") such
that

iy = ([ g SR dmdy )" <oo

with the norm
”f”w(k") = ”f”LZ(R")+ |flaow )

where ATf(x) is the difference of m-th order:

m [m . .
ssso1=5( 7 )i=vriria .
In particular, when ¢(t)=t’ for >0, we get the usual Sobolev space
H(R™):
Hﬂ(Rn):HtO(Rn).

We have the following theorems with respect to the interpolation
spaces of the Sobolev spaces.

THEOREM 1.6. Let ¢ be a weight function with 0<indo<m for
some tnteger m. Put ¢(t)=¢(t ™). Then we have

(Ls(R™), H™R™))g,=H?(R").
In particular, for 8 with 0<0<1 we have
(Ly(R™), H™(R"))g,:=H™(R").



324 Yoichi MIYAZAKI

THEOREM 1.7. Let 2 be a bounded domain in R™ with the restricted
cone property (¢f. Agmon [1]). Let m be a positive integer, and let
0<6<1. Then we have

[L.(2), H™(2)],=H"™(2).

2. Compactness of compact operators.

Let 2 be a bounded domain in R* with the restricted cone property.
It is known that the bounded linear operator T from L,(2) into L,(2)
with the range R(T)c H™() for some positive integer m is compact,
and that its eigenvalues {4;(T)}2, are estimated for some C>0 by

(2.1) 14(T)|<C5—m (§=1,2,--).

We shall generalize this fact when the range R(T) is contained in the
interpolation space with a function parameter.

Here and in what follows we denote by 2,(T') (j=1,2, ---) the eigen-
values of a compact operator T which have been arranged in decreasing
order with respect to the absolute values:

[A(T)| = 2(T)| > - - - >0,

and we denote by s;(T) (j=1,2,---) the s-numbers of T, that is, the
eigenvalues of (T*T)"2. Contrary we denote by 2,(4) (7=1,2,---) the
eigenvalues of an unbounded positive self-adjoint operator A with the
compact resolvents which have been arranged in inereasing order:

0<2(A) <A A) < - - -

No confusion may occur.

First we consider the case when the range R(T) is contained in the
domain of definition D(A) of the self-adjoint operator A with the com-
pact resolvents.

LEMMA 2.1 (Pham The Lai [11]). Let X be a Hilbert space. Let A
be a positive self-adjoint operator in X with the compact resolvents. Let
I be the inclusion mapping from D(A) into X. Then I is compact and
we have

(2.2) s(H=4(4)"  (=12,--).
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LEMMA 2.2. Let X be a Hilbert space. Let A be a positive self-
adjoint operator in X with the compact resolvents. Let T be a bounded
linear operator in X with R(T)CD(A). Then T s compact and it
follows that

si(T)<ITI2(A)"  (G=1,2,-++)
where T is the operator from X into D(A) such that Tx=Tx for z€ X,

and | T| is the operator morm of T.

PrROOF. From the closed graph theorem it follows that T is a
bounded operator. Let I be the inclusion mapping from D(A) into X.
Then we have

T=1IT.

Since I is compact, T is compact. From the well known property of
the s-numbers and Lemma 2.1 it follows that

s;(T) < I T(ls;(1) < | T 2,(4)
which is the desired formula. q.ed.

The next lemma is a generalization of Lemma 2.2.

LEMMA 23. Let X be a Hilbert space. Let A be a positive self-
adjoint operator in X with the compact resolvents. Let ¢ be a measur-
able function from R, into R, which satisfies ¢(t)—>co as t—>co. Let T
be a bounded linear operator in X with R(T)CD(p(A)). Here o(A) is

the self-adjoint operator defined by using the spectral resolution of A.
Then T s compact and there exists C>0 such that

(2.3) s;(TV<Cl(p(A) (i=1,2,---).

If ¢ 1is increasing in the interval [c,, 0o) for some ¢,>0 in addition, we
hawve

(2.4) s;(T)<Co(2;(4))™"  (1=1,2,--").

ProOF. The operator 4 admits the representation

Au=3 (A)(u, e)e;  for wue D(A),
Jj=1
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where {e¢;}7, is an orthonormal system of eigenvectors of 4. Then ¢(A)
has the bounded inverse ¢(A4)~' which admits the representation

o(A)"u=x (4;(4)Hu, e)e;  for wue Dip(4)).
Since ¢(2;(4))'—>0 as j—oo, ¢(4)~' is a compact operator. Applying
Lemma 2.2 for ¢(4), we conclude that 7T is compact and that (2.3) holds.
Next we shall show the latter part of the lemma. We note that
the eigenvalues of ¢(A) are ¢(2,(4)) (j=1,2, ---) but that the sequence
{p(2;(4))} may not increase as j grows. If ¢ is increasing in [c,, o),
there exists a positive integer j, such that

Alp(A)=¢(,(4))  for j>jo

Combining this equality and (2.3), we get (2.4) for j>j,. If we take
C>0 large enough, (2.4) holds for any j>1. g.ed.

Next we consider the case when R(T) is contained in the interpola-
tion space with a function parameter of L,(2) and H™(2). To do so,
we prepare several lemmas.

LEMMA 2.4. Let A be a positive self-adjoint operator in a Hilbert
space X. Let ¢ be a weight function on R, with indp>0. Then we
have

Dz (A)=D(¢(A4))
with the equivalent norms.

ProorF. Let m be a positive integer such that 0<indp<m. Let
{E,} be the spectral resolution of A:

A:SmtdE,.
0

Changing the order of integration and changing the variable, we have
for z € X,

[t n(t-+ 2)-rali 2L

= [T a Bl tplt)sm e+ -2
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[ plopdl Bl (LY g1y
= otralmalsf (£05) 415
From Lemma 1.1 it follows that

* ~ —1\ — -2 dt *® (tS) 2 -2 dt
t2t1"‘—gg¢ t+1)-m 20
[, ooy Sl [0S 1)+ G

£Sw¢(t)2(t+1)‘z"‘%.

0

Both of the first and the third integrand of the above inequalities are
integrable by virtue of 0<indp<m and Lemma 1.1. Taking the posi-
tivity of 4 into account, we conclude that x€ D§(4) is equivalent to
x € D(p(A)) and that the norms are equivalent. q.e.d.

Generally, for two sequences {a;}3, and {b;}=, we denote by
a,;=b; as j—oo,
if there exists C>0 and a positive integer j, such that
Cb;<a,;<Ch; (7=>70).
LEMMA 2.5. Let 2 be a bounded domain in R" with the restricted

cone property. Let m be a positive integer. Then there exists a positive
self-adjoint operator A, in L,(2) which satisfies

(2.5) D(A3)=H'(Q) (7=0,1, - -+, m),
and
(2.6) 2i(An) =g as jJ—oo.

ProOF. We consider the integro-differential sesquilinear form

a[u,v]:S > D*u(x) D*v(x)dx

Qlajgm

on H"(2). Let A be the self-adjoint operator associated with the vari-
ational triple {a, H™(2), L,(2)}. Then it is known that

2.7) D(A")=H™(2)
(cf. Tanabe [12]) and that
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(2.8) 2(A)=g"r  as j—oo

(cf. Maruo and Tanabe [8]). Now let us put A,=AY". Then (2.6)
follows from (2.8). (2.5) is clear if j=0 or m. From Theorem 1.4, (2.7)
and Theorem 1.7 it follows that for j=1,2, ..., m—1,

D(43) =D(A?"*™) =[Ly(R2), D(A"") ]/
=[L(Q), H(2)];n=H(2)

which is the desired formula. g.e.d.

LEMMA 2.6. Let ¢ be a weight function on R, with 0<indp<m for
some integer m. Put ¢(t)=¢(t'™)". Let A, be as defined in Lemma
2.5. Then we have

(Le(R2), H™(2))g.2=D((431) 7).

Proor. We have only to combine the results which have been
stated. Let us put A=/, for simplicity. It follows that

(La(2), H™(2))s.2= (Lo(RQ), D(A™))g,  (Lemma 2.5)
=5(2. ¢(t), La(Q); 2, 8¢ (), D(A™))
=82, ¢(t™™), Ly(2); 2,t"¢p(t™™), D(4™))  (Theorem 1.2)

—S(2 so(t )7 Ly(R); 2, tme(t7) 7, D(A™))
=D 7 A) (Theorem 1.5)
=D(p(A47")™) (Lemma 2.4)

which is the desired formula. q.e.d.

Now we are ready to give the main result of this section concern-
ing the operator whose range is contained in the interpolation space with
a function parameter of L,(2) and H™(9).

THEOREM 2.7. Let ¢ be a weight function on R, with 0<indp<m
for some integer m. Put ¢(t)=¢(t'")". Let T be a bounded linear
operator in L,(Q) with the range R(T)C(Ly(R), H™(2))s.. Let A, be as
defined in Lemma 2.5. Then T 1s compact and we have for some C>0,

(2.9) s;(T)<Cijlp(Az)™)™"  (1=1,2,---).

If ¢ is tncreasing in the interval (0,c,] in addition, we have
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(2.10) s;(T)<Cop(3~")  (1=1,2,--).
Proor. From Lemma 2.6 we have
R(T)c D(e(Az1)7).
Put a=ind ¢>0. From Lemma 1.1 we have
et '>e(1) @t ) =>C (1)t for t2>1,

from which it follows that ¢(t~!)*—co as t—oco. Applying Lemma 2.3
for ¢(t™!)~', we conclude that 7' is compact and that (2.9) holds.
If ¢ is increasing in (0,¢,], Lemma 2.3 gives

(2.11) 8(T) <Col2;(4.)7).
From Lemma 2.5 there exists ¢,>0 such that
(2.12) e tin < 2;(A,) <ey gt (1=1,2,---).

Let us fix a positive integer j, satisfying c¢,7;""<¢,. From (2.11), (2.12)
and Lemma 1.1 it follows that for j>7,,

5;(T) gCSD(Z,-(Am)_l) SCSD(CJ'_I/") £C¢(C1)§D(j_1/"),

which implies (2.10) for j>j,. If we take C>0 large enough, (2.10) is
valid for any j>1. This completes the proof. q.ed.

REMARK. In Lemma 2.2, Lemma 2.3 and Theorem 2.7 if T is a self-
adjoint operator in addition, s;(T") can be replaced with |2,;(T)|.

3. Integral operators.

In order to apply Theorem 2.7 to the integral operator we first give
the characterization of the Sobolev space H*(R®) by the Fourier trans-
form. This characterization is the extension of that of the usual Sobolev
space. Let S=&(R") be the space of rapidly decreasing functions and
let &’ be the dual space of S. The Fourier transform is defined by the
formula

Ife)=F@)=| s tor feSw).

THEOREM 38.1. Let ¢ be a weight function on R, with ind¢>0.
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Then we have

H*(R")={f € S'(R"); (1+¢(1&]7")7") (&) € Lo(R")}.

PrROOF. Let m be a positive integer such that 0<indp<m. Let
S € L,R"). By Plancherel’s formula we have

= ) w,(€)170) e,
where
3.1 = Jer=1pm,
. )= e

Let us divide the integral of (3.1) into two parts:

3.2) we=| L +| _ =rne+re.
ly|>e ly1<e
From Lemma 1.1 (ii) and 0<ind ¢ it follows that
(3.3) () 322“§ R/
wi>et o(|y|)*y["

Changing the variable and denoting by y, the first component of y, we
have

B o ‘fl Ie iy 1|Zm
L(§)=o(§17) §|u|<e_liél< (1§17 yl) > v

From Lemma 1.1 and 0<ind o<m it follows that

e | etun T ay<oerne it et
lvi<e ‘yl

and

—iy1_1|2m

5 ol 1<, 1 2 <o for any ge R

Noting ¢(|&]~")"*—0 as |£|—0, and combining (3.2)-(3.5), we conclude that
there exists C>0 such that for any £ R

C(1+o(1817) ) <14 w,(§) <C(1+9(1517)77),
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from which the theorem is easily verified. q.e.d.

We note that Theorem 3.1 shows that H¥(R*) is determined by the
behavior of ¢(t) in the neighbourhood of ¢=0.
Now we consider the integral operator of the form

3.6 7f(@) = Ke—vfw)dy

where K(x) is a locally integrable function on R", and 2 is a bounded
domain in R*. It is easily seen that the integral operator defined above
is a bounded operator from L,(2) into L,(2). We investigate the range
of T.

Generally we denote by

fle)=g(x)  as |z|—>oo

for f, g which are defined in {x;|x|>R} for some R>0, if there exists
C>0 and R,>R such that

Cg(x)<f(x)<Cg(x)  when |z|>R,.

LEMMA 3.2. Let ¢ be a weight function on R, with 0<ind p<m for
some positive integer m. Let K(x) satisfy the following conditions.
(i) K€Lyu(R)NnS,
(ii) K(&) is a measurable function in {& |&|>R} for some R>0,
and K(&)=¢(|&]™) as |&]—oo.
Take a function a € CP(R") such that a(x)=1 on {x; |x| <diam(RQ)}, where
diam(R2) denotes the diameter of Q. We put

Tf(w)= ale—v)Klo—v)7w)dy

which s considered as an operator from L,(2) into L,(R"). Then we
have

(3.7) Tf(x)=Tf(x) for fEL,Q) and =z€2,
and
(3.8) R(T)c H*(R").

Proor. (3.7) is clear. Let fe€CP(R". Using the formula
Flg+h]l=gh  for g8 and he S
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where g*h stands for the convolution (cf. [6]), we have

FITf1E)=(a=K)()F (&)

Take a function b(¢)€ C°(R") such that b(&)=1 in {|¢|<R}. We shall
evaluate

axK=axbK)+ax{(1—b)K}.

Since ¢€S and bK €&’ (the set of distributions of compaet support), it
follows that

(3.9) ax(bK)eS.

We put L(&)=(1—b(&))K (&) and note that

(3.10) L) =e(1§]7Y)  as [|&|—>oo,
and

(3.11) L{g)=0 in {§|§I<R}.
We have

axL(e)=L(e)| alr Lf@)’” dr.

If |€—»|>R, it follows from Lemma 1.1 and (3.10) that

i R e =

sc{1+(%)”}g c{1+(1+%)"’}.

If |6—9|<R, (3.11) gives

LE—n) |_
I L(n) l 0.
Hence we have

sgplsdwrééagfldvr<°°»

from which we get
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(3.12) la* L&) <C|L(&)| <Co(l&]7).
By (3.9), (3.11) and (3.12) we obtain
| K (£)] <Cmin{l, p(1&]7)},

from which it follows that

(3.13) (L+o(I&1 ) LI TFE) | <CIF )]
Noting that C in (3.13) is independent of fe C(2) and that CF(R2) is
dense in L,(R), and applying Theorem 3.1 we get (3.8). g.ed.

REMARK. It is not expected that R(T) is contained in the space
smaller than H¥(R"). In fact, if we take the function a(z) with a(€)>0,
it follows that there exist C>0 and R’>0 such that

(3.14) |FLTF1E) | =C (18171 /€)]  when [§|>R,

which is proved as follows. From Fatou’s lemma, (3.10) and Lemma 1.1
we have

3_15 1 d*L(G) A 1' L(E_V)

(8.15) =L > | aly) lim Lg
il g 1im 2UE=217)
>0[atn Jim £ Loy

zC*(@gb(t))—lSa(r])dn.
It is known that lim,,,3(t)<co (cf. [10]). Therefore (3.14) follows from
(3.9) and (3.15).

Now we are ready to give the estimate of the eigenvalues of the
integral operator.

THEOREM 3.3. Let 2 be a bounded domain with the restricted come
property in R". Let ¢ be a weight function on R, with 0<ind p<m
for some positive integer m. Let K(x) satisfy the following conditions.

(i) KeLi(RNnS,

(ii) K(&) zls a measurable function in {€;|E|>R} for some R>O0,

and R(€)=p(|e]") as |¢|—>oo.
Then the integral operator

Tf(x)zj K(z—y)f(y)dy

Q
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18 a compact operator in L,(Q) and we have
$;(T)<Ca(p(471)) " (7=1,2,8,--+),

where A, s as defined in Lemma 2.5. In particular if ¢ is increasing
m the interval (0,c,] for some ¢, in addition, we have

s(T)<Co(i)  (j=1,2,8,---),

ProOF. Denoting by R the restriction from L,(R") into L.(Q), we
can write

T=RT

where T is the operator defined in Lemma 3.2. From Lemma 3.2, the
closed graph theorem and Theorem 1.6, the operator 7' can be considered
as a bounded linear operator from L,(2) into H*(R")=(L.(R"), H*(R")),.
where ¢(t)=¢(t'")"". R is a bounded linear operator from L,(R") into
L,(2) and also a bounded linear operator from H™(R") into H™(Q).
Hence Theorem 1.3 shows that R is a bounded linear operator from
H?(R")=(L,(R"), H™(R"))y,, into (L.(Q), H"(2))4..  Therefore it follows
that T is considered as a bounded linear operator from L,(2) into
(Lo(£2), H™(2))4..- Applying Theorem 2.7 we get the theorem. q.e.d.

Further, we consider the integral kernel which is a little more com-
plicated than that of Theorem 3.3.

THEOREM 3.4. Let 2, ¢, m and K(x) be as in Theorem 3.3. In ad-
dition, let K(x) satisfy
(iii) there exists a positive constant N>0 such that z*K(x)€ C™(R")
for a with |a|=N.
Let L(x,y) € C*(R*XR"). We define the integral operator T by

Tf(a) = |, Klo—v) Lo v)f W) dy.
Then we obtain the same conclusion as in Theorem 3.3.

Proor. We use Taylor’s expansion formula:

L y)= ¥ -E=Y Leny y)

<N a!

AN T Jﬁ:ﬂﬁ{(1—mN4LWWy+0w—yLyﬂﬁ

1
la|=N a! 0
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where L“%(y,y)=0,L(x, y)|..,, We can write
K(x—y)L(x, y)= Zﬁ Copr K (@ —1)y* Lap(y) + ‘G‘Z:Nca(x—y)“K(m—y)La(x, Y)

where C,; and C, are constants, and L.s(y) and L.(x, y) are C*-functions.
The mapping f(x)—x*L.s(x)f(x) is a bounded operator in L,(£2). From

the proof of Theorem 3.3 the mapping f(x)»—aSQK(x—y)f(y)dy is a

bounded operator from L,(Q) into (L.(2), H"(2))s. where ¢(t)=¢(t"™)".
From Theorem 1.8 it is easily seen that the mapping f(x)—a*f(x) is a
bounded operator in (L,(Q), H"(2))y.. Hence the integral operator with
the kernel x*K(x—v)y*L.s(y) has the range contained in (L,(2), H™(2)),.

From condition (iii) on K(x) it follows that the range of the integral
operator with the kernel (x—y)*K(x—vy)L.(x,y) is contained in H™(9).
Therefore we have

R(T)C(Le(2), H™(2))g,2-

Then the theorem follows from Theorem 2.7. q.e.d.

4. An example.

In this section we shall give an example. Let us consider the integral
operator 7T defined in Theorem 3.3 or Theorem 3.4 with the function
K(x) given by

K(x)=|x|*(log|x|)”

where 2> —n and g is a non-negative integer.
It is easily seen that K€ L, ,.(R")NS’. To find the Fourier trans-
form of »*(log r)* (r=|x|), we begin with the property of the function

1. For ¢cS(R") we denote by S,(r) the mean of the values ¢(x) on
the sphere with radius 7:

S,(r)= *l&'(m:rgo(x)dsxz 1 Slwl:lgo("rw)dw

-1
o,.r" o,

where o,=z"?/I"(n/2+1) is the volume of the unit sphere in R*. 7% is
considered as a §’(R")-valued holomorphic function of A in the half
plane Re 2> —n by the formula
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{r, o) = Lnr‘go(x)dx=o,,fr“"—‘s¢(r)dr if Rei>-—mn,

where (,) stands for the duality between S and S’. Moreover 7 can
be extended to the meromorphic function in the whole plane C by the
formula

(4.1) (r, o) =0, ST?‘“”“ISq,(r)dqﬂ
to | re{sm—E Lsworldr
e S SE0)

& k=11 (At ntk—1)

if ReA>—n—m where m is any positive integer. Simple calculation
shows that

Sy (0)=0 if k is odd,

from which it follows that 7* has the poles of order one only at 1=
—n—2k (k=0,1,2, ---).
It is known that

42)  Fril=c@r+  if Reir-n—2k  (k=0,1,2,--.),

where
ﬂn1222+nl"< A+n )
o) = 2
r(-3)
2
We note that ¢(41) has the poles of order one at i=—n—2k (k=
0,1,2,---) and that c¢(2) has the zeroes of order one at A=2k (k=
0,1,2,---). Although »=* " has the singularities at =2t (k=0,1,2, .--),

¢(A)r~"* is holomorphic in Rea2>—mn. From (4.1) and (4.2) it follows
that if the support of ¢ is contained in R*\{0}, we have

(4.3) CEr T o) =Le@)r*", )
= SRnc(Z)r““"go(x)dx.

Differentiating both sides of (4.3) ¢ times, we get
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@tetosrr o= (4

)(log pypmkp=i=ne® (Ao (x)da
R =0\ k

for 2 with ReA2>—n. Noting the zeroes of ¢(4), we have as r—oo

(4.4) Fr*(log r)*]=c(A)r-*-"(log r~*)*
when 2> —n, 1#2k (k=0,1,2,---), #=0,1,2, ...,
(4.5) Gri(log r)*]=pc’ (A)r=*(log r~1)+~!

when =2k (£k=0,1,2,---), p=1,2,3, ---.
Now we put

t'(log t~1)~ 0<t<e™)

p(t)=o(t; 4, 1) ={ 2 <1,

which is an increasing function in R,. Simple calculation shows that

N t*(1+log ) 0<t<1)
sa(t)—{ p
(1<),

from which we get
ind g=2.
From (4.4) and (4.5) we have

|Fri(log r)“ 1l =@(1§] 75 2+n, 1) as  |§]>o0
when 2>—n, 1#2k, £=0,1,2, ---,

|F[r*(log r)*]| =¢(|€] 7, A4+n, p—1)  as  |&]—>oo
when 2=2k (k=0,1,2,---), #=1,2,3, ---. )

Applying Theorem 8.3 or Theorem 3.4 with the weight funection
o(t; 2+n, ¢) or ¢(t; A+n, #.—1), we get the following estimates.
(i) When 2>—mn, 2#+2k (k=0,1,2,---) and ¢£=0,1,2, ..., we have

IXJ(T” SCj—(l+n)/n(lOg j),u'
(ii) When 2=2k (k=0,1,2,---) and ¢=1,2,3, ---, we have
|4,(T)| <Cj=+1*(log 5)*.

For sake of completeness we mention the case of 1=2k (k=
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0,1,2,---) and #=0. In this case it is clear that T is an operator of
finite rank. Hence T has only finite eigenvalues different from zero.

REMARK. If we replace ¢(t; 4, #) with ¢*(|log t|+1)#, we get the same

result.
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