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On polarized Calabi-Yau 3-folds

By Keiji OcuUiso

Introduction.

In this paper, by a Calabi-Yau 3-fold, we mean a 3-dimensional non-
singular projective variety whose canonical bundle and irregularity are
both trivial. This is a 3-dimensional analogue of a K3 surface. In what
follows, the ground field is assumed to be the complex number field C.
Recently, many mathematicians begin to study Calabi-Yau 3-folds from
various viewpoints (ef. [W]). In this paper, we will study Calabi-Yau
3-folds as polarized manifolds. By definition, a pair (X, L) consisting of
a non-singular projective variety X and an ample line bundle L on it is
called a polarized manifold. A polarized Calabi-Yau 3-fold is in some
sense a 3-dimensional analogue of a canonically polarized surface (S, Kj).
For a given polarized manifold (X, L), the following questions naturally
arise:

QUESTION (B). When is @,,,, (:=the rational map defined by |nL|)
birational?

QUESTION (F). When is nL free?
QuEesTioN (E). When is @,,,, an embedding?

It is interesting to estimate n in question from below by an explicit
value (cf. [Ka3], [Rel]). Such estimates were found for a polarized K3
surface ([SD]), a canonically polarized surface ([Bo]) and a canonically
polarized 3-fold ([Bel], [Be2], [Ma]), but there are no such estimates for
a polarized Calabi-Yau 3-fold (cf. the following table).

The first purpose of this paper is to give such estimates for a
polarized Calabi-Yau 3-fold. The result is:

MAIN THEOREM I (cf. Th. (1.1), (2.1), Cor. (3.3), (3.5)). Let (X, L) be
a polarized Calabi-Yau 3-fold. Then,
(1) @, 1s birational for all n>5,
(2) mL s free for all n>20,
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(8)(a) mL s very ample for all n>60,

(b) mL s simply generated (in particular, very ample) for all n>2
if L 1s free and @, is birational.
Moreover, the estimates in (1), (3)(b) are best possible.

Table.
Answer  polaried | Stonially canonially
surface 3-fold
(B) *n>3 ([SD])  *n>=5 ([Bo]) n>T7 ([Ma],[Be2])
(F) *n>2 (ibid.) *n>4 (ibid.) nm>34 ([Bel))
(E) *n>3 (ibid.) *n>5 (ibid.) n>4-34-33 (ibid.)

(Here, the symbol * means that the estimate is best possible.)

The author was very much inspired by the previous works [Bel, 2], [Ma]
for proof. In (1.1) and (3.7), we construct examples which indicate that
the estimates in (1) and (3)(b) are best possible. We notice that for a
polarized K3 surface (X, L), nL is simply generated for all n>1 under
the assumption of (3)(b) (cf. [SDJ).

In this paper, we put not a little stress on a weighted complete
intersection (WCI) in a weighted projective space (WPS). This is fairly
natural because any polarized manifold (X, L) is regarded as a polarized
subvariety of a suitable WPS via the graded ring R=@H*X,nL) and
WCI is a simple one among such subvarieties. In this viewpoint, we
determine all the polarized Calabi-Yau 3-folds arising as general WCI
(cf. §4) under the assumption h°(L)>2. Moreover, we consider some
converse problems via the theory of 4-genus ([Ful]). This is the second
purpose of this paper. The result is:

MAIN THEOREM II (cf. Th. (4.1), (5.1)). (1) Any polarized Calabi-
Yau 3-fold (X, L) with h'(L)>2 arising as a general WCI is one of the
following:

[1] (10)cP(1%2,5) [2] (8)cP(l%4) [3] (4,6)cP(1%2%,3)
[4] (6)cP(1,2) [5] 4,4)CP(14,2) [6] (3,4)CP(,2)
[7] (2, 6CP(I3) [8] @2222cP [9] 223)cP
[10] (2,4)CP* [11] (3.8)cCP* [12] (5)cP*
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[13] (6,6)cP(1% 2% 3%). (As for nmotation, see §4.)
(2) Amny polarized Calabi-Yau 3-fold with 4-genus <2 s essentially the
same as one of the above. In particular, these are WCI of codimension
<2 in WPS. (For more details, see §5.)

These 13 examples not only offer simple examples of graded ring struc-
tures of polarized Calabi-Yau 3-folds, but also play important roles as
inevitable examples in the proof of Main Theorem I (ef. (0.13), (1.1)(3),
(1.4), and (8.7)). The result (2) is a supplement to a series of splendid
works of T. Fujita and E. Horikawa (cf. [Fu4, 5, 6, 8, 9], [Hol, 2, 3]) from
a viewpoint of graded ring structure. We notice that (X, L) is not
necessarily WCI if 4>3.

The outline of the proof is as follows. As for the birationality of
®,..., we treat the following 3 cases separately: dim @,,,(X)>2, dim @, =1,
dim®,;,,=0. When dim®,,,(X)>2, we first take an embedded resolution
of a general member of the movable part of |L|. Next, we reduce our
problem to the birationality of an adjoint map of the resolved surface
T. In this step, Lemma (1.3) in §1, which is a clarification of the idea
used in [Be2], [Ma], is essential. Finally, we apply to T Reider’s criterion
on the birationality of an adjoint map of a non-singular surface ([Rdr]).
We cannot reach the sharpest bound in Main Theorem I (1) if we start
from a resolution of indeterminacy of |L| nor if we make use of more
classical Bombieri’s method in stead of Reider’s one (ef. [Be2], [Ma]).
When dim@,,,(X)<1, the method above does not work well if we take
a resolution of the member of |L| We first study a polarized Calabi-
Yau 3-fold (X, L) such that dim@,,; (X)=1 for some 7 more closely.
As a result, we see that n=1 and |L|=(dim|L|)-|S|+ B, where any general
member of |S|is irreducible reduced (cf. (0.4)). By this, when dim @,,,(X)
=1 (resp. dim @, (X)=0), we take an embedded resolution of a general
member of |S| (resp. |2L|) in stead of |L| and apply the same method
as above to the resolved surface. In the course of the proof, some
polarized Calabi-Yau 3-folds of type WCI arise as exceptional cases (cf.
(1.4)). The analysis of these are also important to complete the proof.

As for freeness of nL, we make use of the Benveniste’s version
([Bel]) of Kawamata’s technique ([Ka2]) directly. First, we take a res-
olution of indeterminacy of |mL| say =: Y——X, and consider the two
divisors: the fixed part of [z*mL| and K,. These are written as > u.E,,
S p:E; respectively, where Y} E, is the simple normal crossing divisor
arising from the base locus of |mL| The next is crucial for the proof.
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KEY FORMULA (cf. Step 7 in §2). If m>10, then i <1 for
O;
,0,;:0, 1.

By this formula, any general member S, of |mL| (m>10) is irreducible
normal so that we can apply to S, the freeness criterion of an adjoint
linear system on a normal Gorenstein surface ([Bel, Th. 1-0]) and com-
plete the proof (cf. Steps 8-10). We prove the key formula by selecting
U;+¢
PH‘]—
making use of Benveniste’s lemma (2.2) (cf. Steps 2, 7). The method of
the proof here is almost identical to [Bel] for a canonically polarized
3-fold (X, Kx) except that a little more careful treatment of K, is needed
(cf. the end of Step 2). The author does not have any good idea to
sharpen the estimate.

We will explain very ampleness and simply generatedness of nL.
We say that nL is birationally very ample if nL is free and @,,,, is
birational. Very ampleness is closely related to birationally very ample-
ness. In fact, we prove:

a single component E; of maximal modified multiplicity and

THEOREM III (ef. Th. (3.1)). Let (X, L) be a polarized Calabi-Yau
3-fold such that mL is birationally very ample for all m>f. Then, (1)
nfL s simply generated for all n>2, (2) nL s very ample for all
n>3f.

From this and Theorem I (1), (2), Theorem I (3) follows. The idea of
the proof of Theorem III is as follows. First we take a curve C obtained
as general twice cutting by |fL| and examine the graded ring of (C, L|¢)
by making use of vanishing theorem and classical Castelnuovo’s theorem
(ef. (8.9), [ACGH], [Fu6]). Next we recover some information of the
graded ring R=@PR, of (X,L) from the one of (C, L|;) by the ladder
method. Theorem III is a refinement of the famous m-regularity theorem
due to Mumford ([Mu]).

Main Theorem II is also proved by the same principle (the ladder
method) as Theorem III. In addition to this principle, we make use of
Reid’s result [Rd2] on a half canonical divisor on an irreducible Gorenstein
curve (cf. [Rd2], (4.3) in §4). The curve C obtained as general twice
cutting by |L| is actually irreducible Gorenstein and L], is a half canoni-
cal bundle of C (i.e., 2L|;=K,) in both cases. Thus we can apply [Rd2]
to (C, L|;) so that the degree of both generators and relations of the
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graded ring R of (X, L) is bounded. By this, we can reduce our problem
to some combinatorial caleulation and get the results.

We will summarize the context of this paper briefly. Section 0 is
a preliminary section. After recalling the Riemann-Roch theorem ((0.2))
and basic restriction maps ((0.3)), we study a polarized Calabi-Yau 3-fold
(X, L) such that dim@,,,,(X)=1 ((0.4)). We get n=1 as mentioned above.
As for the dimension N :=dim|L| of the ambient projective space, two
different phenomena arise: if |L| has no fixed components, N=1; other-
wise, N becomes arbitrarily large. In (0.13) and (0.14) we demonstrate
examples of these two. Sections 1,2, 3 are devoted to the proof of Main
Theorem I. We prove Main Theorem II in Sections 4 and 5.

The author would like to express his hearty gratitude to Professor
Y. Kawamata for his warm encouragement and valuable advice. The
author would like to thank Professors T. Shioda, M. Reid, N. Nakayama
for their stimulating conversations. Especially Professor M. Reid intro-
duced his beautiful work [Rd2] to the author. He also would like to
thank Professor T. Fujita who pointed out a mistake in the first version
of this paper and improved the estimate in (0.14) in §0.

§0. Preliminaries.

Throughout this paper, we assume that the ground field is the com-
plex number field C.

DEFINITION (0.1). (1) A non-singular projective 3-fold X is called a
Calabi-Yau 3-fold if it’s canonical bundle Ky is 0 and it’s irregularity
q:=h'Ox) is 0.

(2) A pair (X, L) consisting of a Calabi-Yau 3-fold X and an ample line
bundle L on it is called a polarized Calabi-Yau 3-fold.

The following lemma is an easy consequence of Riemann-Roch, Serre
duality, Kodaira vanishing, and the fact that L.c,(X)>0 ([Mi]).

LEMMA (0.2). Let (X, L) be a polarized Calabi-Yau 3-fold. Then,
(1) for all n>1 and 1>1,

hS(X, nL)= ”;Ls + "L'f;(X) - ”6_” L 4nk(X, L)>1, hi(X, nL)=0;

2) if i=1,2, then K (X, mL)=0 for all me Z. []
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LEMMA (0.3). Let (X, L) be a polarized Calabi-Yau 3-fold. Let S€|nL|
(resp. C€|nLls|) be a surface (resp. a curve). Then, the natural restric-
tion maps 7s: H(X, mL)—H*(S, mLls), 7¢: H(S, mL|s)—H*(C, mL|c)
are surjective for all me Z.

Proor. By the exact sequence 0—>(m—n)L—>mL—rs—>les—>0,
and (0.2)(2), rs: HY(X, mL)— H*(S, mL|s) is surjective and H'(S, mL]|s)
=0 for all me Z Hence by the exact sequence 0——(m—n)L|s—>

mL]sLmLIC—QO, the restriction map 7, is also surjective. []

PROPOSITION (0.4). Let (X, L) be a polarized Calabi-Y au 3-fold. Assume
that dim@,,,,(X)=1 for some n>0. Then,
1) n=L
(2) |L|=N|S|+ B where B is the fixed part of |L|, N=dim|L|, dim|S|=1
and any general member of |S| ts trreducible reduced,
B) Im®,,(X) is a rational normal curve, t.e., a mon-singular rational
curve embedded into PY by the complete linear system |O.(N)|.

Proor. First we prove:

CrAim (0.5). |nL|=N|S|+B where B is the fixed part of |nL]|,
N=dim|nL|, dim|S|=1 and any general member of |S| is irreducible
reduced. Moreover Im@,,;,(X) is a rational normal curve.

ProoF. Put |nL|=|M|+B where B is the fixed part of [nL|. Let
7: X—>X be a resolution of the indeterminacy of @ :=9,,,, =@y ob-
tained by a successive blow up along a non-singular center in the base
locus (of codim>2):

[//]

X >W —Im(l)],,u(X)CPN

,rI Dir P)

X V :=the Stein factorization of @y,
[

where |z*nL|=|F|+ B, |F| is free and B is the fixed part of |z*nLl|.
Since dim Alb(X)=hr'(Oz)=h'(Oy)=0, V is a smooth rational curve. Let T
be a general fiber of ¢, i.e., T€|p*Oy(1)]. Then F=0y(abT) and |F|=ab|T|
where o:=degree of W and b:=degree of p. Then, by kX, Oz(mT))
=h(V,0Oy(m))=m+1 for m>0 and our choice of =, we get:
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(0.6) N=ab;
(0.7) codim W+1=N=ab>a=deg W,
(0.8) |z*nL|=N|T|+B, i.e., |[nL|=N|S|+ B, where S=r,T.

On the other hand, since codim W+1<deg W because W is not contained
in any hyperplane in P¥, the inequality in (0.7) must be an equality,
i.e.,, a=N, b=1. Thus W is a rational normal curve. []

In order to complete our proof, it is enough to show:
CLAamM (0.9). n=1.

Proor. By (0.8), nL~NS+B. We treat the following two cases
separately: Case 1. B=(, Case 2. B+{.

Case 1. Since S is ample in this case, the following equality holds
by (0.2)(1):

N+1=h'(nL)=h"(O(NS)) :EE—N—S%Nh"(@X(S))zzN.

Thus N=1. So by (0.2)(1) again, we get:
2=’%°(%L)=&6_3L3+nh°(L)2 n'—n n’+6n

+n= Hence n=1.

Case 2. Multiplying nL~NS+B by L? we have:
nLi=NSL:+BL*>N+1=h"(nL)= “36'”L3+nh°(L>, ie. 6L*>(m?—1)L’

+6h°(L)>(n*—1)L°. Hence m=1 or 2. Assume that n=2. Then we
have:

(0.10). 2L~NS+B and N=h'(2L)—1=d+2h—1, where we put d:=L°
and h:=h'(L).

Cramv (0.11). S.L*=1.

Proor. Assume that S.L?*>2. Then multiplying (0.10) by L% we
get: 20>2N+BL*>2(d+2h—1)>2d. But this is absurd. []

CrAaiM (0.12). S:L=0, especially |S]| is free.

Proor. By (0.10), we have:
4d=@2L):.L=(NS+B)*.L=N*S®.L+ NS.B.L+2B.L" Assume SLL>0.
Note that S.B.L>0 because NS+ B¢|2L| is connected by the ampleness
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of L. Hence we get the next from the above equality:
4d>N?*+ N+2=(d+2h—1)*+d+2h—1+2>4d. But this is impossible. []

By (0.12), any general member S of |S| is smooth (irreducible) and

Ks~Os. Then by Riemann-Roch and (0.11), X(L|S)—x(@s):(L2‘s>‘:%,
which is obviously absurd. Hence n=1. Q.E.D.

REMARK-EXAMPLE (0.13). Let (X, L) be same as in (0.4). As was seen
in the proof of (0.4) (Case 1), if |L| has no fixed components, then
N :=dim|L|=1, i.e, Im®,,,(X) is a rational curve of degree 1. Such a
polarized Calabi-Yau 3-fold actually exists. In fact, a general weighted
complete intersection X = (6, 6)CP(1,1,2,2,3,3) with polarization L=0(1)
is a polarized Calabi-Yau 3-fold (cf. §4) with h°(L)=2. Note that |L|
has no fixed components because Pic(X)=ZL (cf. (4.2)). But, in general,
N becomes arbitrarily large under the condition (0.4) as will be seen in
the next (0.14).

PROPOSITION-EXAMPLE (0.14). Let ¢,: S,—P' (t=1, 2) be a relatively
minimal rational elliptic surface satisfying that:
(a) ¢; has no reducible fibers;
(b) for any te P, either ¢;'(t) or ¢;'(t) is smooth;
() ¢, has a section C; for each 1=1, 2.
Put X:=S1>§SZ. Then X is a Calabi-Yau 3-fold (cf. [Se]). Note the
P

following natural diagram:

S X—0—8,
yg! D2
2N %2
\ v

Put F:= a general fiber of ¢ (an abelian surface), Sl::pé‘szslxlCz,
P
S. ::p;"Cl———CleSz. By this identification, we will consider S;cX. Then,
P

(1) L:=S,+8,+kF (k>3) is ample on X,
(2) |L|=k|F|+(S;+S.) and A'(L)=k+1. In particular, @ ,(X) is a
rational normal curve of degree k in P*.

PROOF. First note that L=p*(C+ (k—2)F\) +p¥(C,+2F;) ({i, 5}=1{1,2}),
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where F'; (resp. F};) is a general fiber of ¢; (resp. ¢;). For any irreduci-
ble eurve CcX, C.L=[C:p,(C)](p:(C).(C;+(k—2)F)+[C: p;(C)]X
(p;(C).(C,;+2F})) by projection formula. Since k—2>1, C;+(k—2)F; (resp.
C;+2F,) is nef on S; (resp. ample on S;) under the assumption (a). Thus
C.L>0 because either p,(C) or p,(C) must be a curve. Hence (0.14)(1)
holds by Kleiman’s criterion.

Next we will prove (0.14)(2). First we will show the following

CLAIM (0.15). (1) S!=F*=S.F=8.F*=0 for i=1,2.

(2) S.LS,=8.Si=—1.

(3) S.S,.F=1.

(4)  Sieo(X)=Sncs(X)=12.
(5) Fl.eo(X)=0.

Proor. (1) is trivial because S,=p¥C, S,=p¥C, F=p}F,
(2) Let us put C=S,NS,. Then C is a section of both ¢,. Hence S:.S,
=(C|s,)’=—1. Similarly we have S,.S;=—1.
(8) S1.8.F=(S,|s)).(Fls,)=C.Fy=1 because C is a section.
(4) By the exact sequence 0—— T's,— T'x|s,—Nx;s,—>0, and (0.15)(1),
we get:

c2(X).Si=c,(S)) +01(Si)'cl(NX/Si) =12+ (— KSi)-(SiISi)

(5) Since F' is a fiber and an abelian surface, ¢,(X).F=c¢,(F)=0. []
Since L=S,+S;+kF (k>3) is ample,

W(L) = (Sl+Sz+kF)3+ (Si+S:+EF).c(X) — k1
©.2)(1) 6 12 ©.16) :

Hence (0.14)(2) holds because |kF|=k|F| and h*(kF)=k-+1. Q.E.D.

§1. Birationality of @,,,.
The purpose of this section is to prove:

THEOREM (1.1). Let (X, L) be a polarized Calabi-Yau 3-fold. Let @,,;,
be the rational map associated to the complete linear system |nL| (n>1).
Then,
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(1) @y, is birational (onto it’s tmage) for n>5;
(2) @y s birational except for the following two cases:
(a) X=(10)cP(1,1,1,2,5) with L=0x(1),
(b) A(X,L)=1,;
(8) for any polarized Calabi-Yau 3-fold (X,L) wn (2)(a), @ s mot
birational. In particular, the estimate in (1) is best possible.

First we prepare some lemmas.

LEMMA (1.2) ([Rdr, Cor. 2.]). Let T be a non-stngular projective sur-
face and P be a nef divisor on T. Then the rational map @pix, 18
birational if the following two conditions are satisfied;

(i) P*>10, (i) P.Z+#1, 2 for any effective divisor Z on T. []

The next lemma which is implicitly mentioned in [Ma], [Be2] is useful.

LEMMA (1.3). Let Y be a mon-singular complex projective variety.
Assume that a linear system |F| with dim|F|>1 and an effective divisor
D on Y are given. Then, @p.p 1is birational if so is the restriction
D rip||r for general T €|F)|.

ProorF. Assume contrary. Since the characteristic of the ground field
is zero, there is a non-empty Zariski open set U on Y such that:
(1) UN(DUBsYF|) =0,
(2) @:=®p.p, is a morphism on U,
(8) for any point xz € U, there is another point yc U satisfying that
y#x and O(y)=90(x).
Note that under the condition (1), the last condition in (3) implies that:
(4) there is a non-zero constant a satisfying that ¢(y)=a¢p(x) for any
pe H(Y, F).
Take general T'¢|F|. Then TNU+# since dim|F|>1. Thus for any
point x€ TNU, the point y taken in (3) would be a point on TNU by
(4). But this contradicts our assumption that @|; is birational for general
Te|F|. [

LEMMA (1.4). Let (X, L) be a polarized Calabi-Yau 3-fold. Assume
that |L|=m|S|+ B where m>1, dim|S|>1 and any general member of
|S| is irreducible reduced.

If LAS=1, then |L|=|S|, L*=1 and (X, L) is one of the following two:
(i) X=(10)cP(1,1,1,2,5), L=0k(1);
(i) X=(6,6)cP(1,1,2,2,3,38), L=0(1).
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ProOF. First remark that any member of |L| is connected because
L is ample. Then, by 1=L.S=L.(mS+ B).S=mL.S*+ L.S.B, either (a)
m=1, L.8*=1, L.S.B=0 or (b) L.8*=0, L.S.B=1 holds. We treat these
two cases separately.

Case (a). Since B=0 by the remark above, we have |L|=|S|. Then
I*=1. Since the delta genus 4(X,L):=L*+3—h'(L)>1, we see that
h(L)=2 or 3. (Note that h°(L)>2 by our assumption.) Thus we get
the desired assertion by [Fu8] (See also §5 in this paper.) in Case (a).

Case (b). Note that SNS'= @ for general S, S’ €|S| because L.S*=0.
In particular, |S| is free and Og(S)=0;. Thus any general member S of
|S| is smooth with K;=0. Since S*=0, we have 1=L.S.B=(mS+ B).S.B

—B*S=(B|s)>. Thus by Riemann-Roch, X(Bls)_x(@s):ﬂs(B_lg—_K_sL
= B;'S z—;—. But this is absurd. Hence Case (b) does not occur. []

Proor or (1.1) (1), (2). Let usput W,:=Im@®,,,, and W.=W,. We
will treat the following 3 cases separately:
Case 1. dim W>2; Case 2. dim W=1; Case 3. dim W=0.

Case 1. Put |L|=|M|+ B, where B is the fixed part of |L|. Note
that any general member of |M| is irreducible reduced because dim W>2.
Let us denote an embedded resolution of the singularities of any general
member S of |M| by 7: X——X. Note that Sing Sc Bs|M| by Bertini’s
theorem. Since z can be obtained by a successive blow up only along
a non-singular center at which general S is singular (in each step),
|7*M| is written as |#*M|=|T|+ > a;E;, where T is a proper transform
of S, E; is the total transform of the center of the i-th blow up, and
a; is an integer. Note that ¢,>2 by our choice of z. Since K;= a;E;
with a;=1 or 2, we get:
t*L=n*M+z*B=T+ Ky +7*B+3 (a;—a,)E;. In particular,

(1.5) #*L=T+ K;+ (some effective divisor).

CLAmM (1.6). Put R:==*L|;. For a positive integer k, @ 41, 1S
birational if so is @ x,,.z for general T'c|T)|.

PROOF. First note that if @ r,x,isme is birational then so is @4y,
by (1.5). Moreover, if @ik 4siep|r is birational for general T'€|T| then
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80 18 Diryxpuz) by (1.3). On the other hand, from the exact sequence

t
0—> Ktk LE5 T4 Ky kL ""5 K+ kR—0, We get Dirxppsenslr
=@k, 41 because H'(X, Kz+kn*L)=0 by Kawamata-Viehweg vanishing
theorem. Hence (1.6) is proved. []

Now in order to prove (1.1)(1)(2) it is enough to show the following
claim.

CLAIM (1.7). For general T€|T|, @ x,..z is birational in the following
two cases:
(1) k>4
(2) k>3 and (X, L) is different from the one in (i) in (1.4).

Proor. Note that any general member of |T| is irreducible smooth.
Then it is enough to check the condition (i), (ii) in (1.2) for P=EkR.
Since the condition (ii) is obviously satisfied because £>3. Let us check
the condition (i). Since P*=FK’R*=k*(z*L).T=kL?.S and L:.S>1, we
have P?>10 if either £>3 and L®S+1, or k>4 holds. Since |L|=|S|+ B
and R°(L)>3 by our assumption, we can see at once from (1.4) that
L:S+1 unless (X, L) is same as the one in (i) in (1.4). [

Case 2. In this case |L|=N|S|+ B, where dim|S|=1 and any general
member S of |S| is irreducible reduced by (0.4). Then, by considering
an embedded resolution of S, we can see that @ ,,, is birational for n>4
unless (X, L) is same as the one in (ii) in (1.4) by the same manner as
in Case 1. So, in order to complete our proof, it is enough to show the
following:

CraiM (1.8). Let (X, L) be a polarized Calabi-Yau 3-fold such that
X=(6,6)CcP:=P1,1,2,2,3,3) and L=0(1). Then @,,,, is birational for
n>3.

n—2

PROOF. Since H'(nL) (n>3) contains monomials z,xi™", 2} ~%, @i
x 202, x.xr~%, where x, are the weighted homogeneous coordinates of P
in order, @,,,, is one to one on the non-empty Zariski open set (x,#0)
nNX. [

Case 3. Since |L| consists of the single member, say S, we start
from |2L| instead of |L| in order to make use of (1.3). Let us put
|2L|=|M|+B. Since dim W,>2 by (0.4), any general member S of |M|
is irreducible reduced. By considering an embedded resolution 7 : X—X
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of S as before, we can see that @ ,,,, is birational if so is @k iz
(R:=n*L|;) for a proper transform T of general S. Again by the same
manner as in case 1, we can also see that @y, is birational for k>3
unless L2M=1. Thus in order to complete the proof, it is sufficient to
show:

CLAIM (1.9). L:M+#1.

PRrROOF. Assume contrary. Then every member of |M] is irreducible
and reduced. In particular, some irreducible component @ of S, must
be contained in |M| since 2S,€|2L| But this is absurd because S, (in
particular, @) cannot move. []

Finally we will show (1.1)(3).

Let us denote the weighted homogeneous coordinates of P(1,1,1,2,5) by
X, Ty, X3 X4, X5 in order. By changing the coordinates if necessary, we
may assume that the defining equation of X is written as follows:
Zi+ g (X1, To, %5, £,) =0 where g+0. Remark that no elements of H°(4L)
contain the variable z; in their polynomial expression of x;’s. Take a
non-empty Zariski open set U:=XN(x,#0)N(g+0) of X. Consider @,
on U. By definition of U we may put z,(x)=1 for all x€U. Then
@,y 18 given by the following diagram:

X- - _ —-)W:_—'Im¢|4L[CPdimHL|
U U
U——V :=Im® |y, 2—>(1, 25(x), T5(x), To(®), - - ).

Take w=(1,a,b,¢,---)€V. Then @, (x)=w for xeU if and only if
Ta(x)=a, x,(x)=b, x,(x)=c and xi(x)+g(1,a,b,¢c)=0 by the above remark.
Thus the inverse image of we& V consists of two points. Hence @, is
not birational. Q.E.D.

82. Freeness of nL.

In this section we will prove the following theorem by making use
of the Benveniste’s method ([Bel]) directly.

THEOREM (2.1). Let (X, L) be a polarized Calabi-Yau 3-fold. Then,
(1) |nL]| has no fixed components if n>5;
(2) any general member of |nL| is normal if n>10;
(3) mL 1s free if n>20.
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The following lemma due to Benveniste is essential for proof.

LEMMA (2.2) ([Bel, Prop. 2-1]). Let Y be a non-singular projective
3-fold. Let I be a finite index set including 0. Assume that there are
iwntegral divisors P, {E},c; and G on Y such that:

(a) PeDiv(Y) s nef and big,
(b) ;1 E; is a simple normal crossing divisor,

() G=I[A] (:=the round up of A)=A+ Y ¢.E; for some ample Q-divisor
iE0

A.
Set D:=mP+Y m;E; where m 1is a positive integer and m; (1€ I\{0})

1#0
are mon-negative integers.
Then E, is not contained in the fixed part of |D| if Ky+ P+ E,+G¢|D).

[

Proor oF (2.1). In what follows, we assume that |mL| is not free
for some m>2.

Step 1. There exist a resolution n: Y—X, a divisor with simple
normal crossings 3 E; on Y, and non-negative constants wu;, u:(2), u.(3),
i€l
0i, a;, B; such that
(1) |mP|=]F|+§ w. K, ]2P|:|F2|+;I u;(2)E;, |3P|:|F3|+;Iui(3)Ei for

P:=z*L, where |F|, |F,| and |F,| are free, u;, u,(2), 4,(8) are non-nega-

tive integers, and at least one u, is positive;

(ii) Ky=Y p.E;, where p, are non-negative integers and p; is positive
i€l

if and only if E; is exceptional for r;
(iii) @ ::P—thiE,-eDiv(Y)@Q is ample for any ¢, € Q with «,<t;<g..
i€

Proor. This is well-known. []

Step 2. Wi « ™ _ for every icl.
P pi+1~m—1 y i€

Proor. Set a(r):=Max{(u,+7rt)/(o;+1)i€l} and da(r):={el]
Yo,

Pat1

and the middle term

(u;+17t)/(oi+1)=a(r)} for reQ, r>0. Assume contrary that

m . " m
for some awcI. Since a(r)>—2 >

m—1 ) Pat1" m—1

is independent on r, by changing 7 smaller if necessary, we may assume
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that a(r)> m+r, ie, m—1— mtr >0, and w,#0 for every t€d(r).
m—1 a(r)

Moreover, by changing t;’s slightly if necessary, we may also assume
that d(r) consists of only one element, say, 0. Then, we have:

U+ 1ty - W rt,
23) a(r)=—"""2, ie., pp+1=—A—+ ,
(23) atr) o+1 o a(r)  a(r)

(2.4) a(r)>w ie., p;—w>—1 for 7+£0.

pit+1l’ a(r)
Set m,-:z[(p,-—%ﬂ for 1+#0. These are non-negative integers by
(24). Put D:=mP+ mE.
Then we get, v

D—Ky—E,—P=(m—1)P+3 (m;—p;) E;— (0, +1)E,

10

=(m—1)P+ i;()(mi_pi)Ei_< a??;‘) +(:(—?)>E"

(by eliminating E,)

- a:‘r) (P—%t,ﬂ)-%ﬁ mP_éuiEi)

D L L O e

a(r) a(r)

Set A := a?r) (P— z tiEL) +~d(17)<mP— %uiE)—i— <m —1 J’;?;;" )P. Then,

A is ample by the choice of r and step 1;

[Al=A+Y {mi—<pi—%>}a by the choice of m,; D=Ky+ P+ Ey-+TAl.
i%0 a(r

Hence E, is not contained in the fixed part of |D| by (2.2). On the

other hand, since %,>0 and p,>m; (¢+0) by our choice of u, m, the

following inequality holds:

E<mP<D=mP+ mE;<mP+K,. Note that h°'(mP—E,)=h"(mP)

10

because E, is a fixed component of mP. Hence h'(mP)=h'(mP—E,)

<k (mP+K,—E)<h(mP+Ky) because K, and E, are effective. But,

since mP=zn*mL and n,Ky=K;=0, we have h'(mP)=h'(mL)

=h’(mP+ Ky) by projection formula. Thus k'(mP+ Ky — E,)=h"(mP+ Ky),

i.e., E, is a fixed component of mP+ K,. Then E, must be contained in

the fixed part of |D|. But this contradicts the above. Therefore the
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inequality —%“ _<_ "™ _ must hold for e € 1.
q y ol m—1 or every 1€ |

Step 3. If u;>1, then either u;(2)>1 or w,(3)>1 holds.

PrOOF. Since m>2, there are non-negative integers a, b such that
m=2a+3b. Thus u,<au,;2)+bu,3) so that our assertion holds. []

Step 4. Assume that m>4. Then ﬁlgl for every 4 such that
Qi
0:€{0,1}.
PROOF. By step 2 and m>4, Lgﬂg1+_1—. Hence —% <1
oi+1 m—1 3 oi+1
Let us put
e.(s) 1= Max {ci(s) ::M)—} ic I},
pit1
b.(r,s) :=Max { Ui+ 78+ 8% () =Ci(s)+—ﬁi—l 1€ I}.
pit+1 pit+1

where n€{2,3}, r>0, s>0, and r,s€Q.

Step 5. Assume that m>10. Moreover assume that there is acl
such that —%_—1 and p,€{0,1}.
P € {0, 1}
Then, for suitable >0, s>>0, and n € {2, 8}, the following (i) and (ii) hold:
(i) m—1—TETT+N8 4.
b,(r, s)
(ii) there is an element 0 ¢ I such that

Uy + 10+ Suo(’n)

b,(r,s)= , U, #0,

) e 0

b.(r, s)>u,-+rt¢+su,-(n) for 7£0.
P«;+1

Proor. By step 4, either u,(2)>1 or u,(3)>1 holds. Take n such

that u.(n) =Max {ua(2), ua(3)}. Since b,(r, s)>c.(s)> Yo+ SUa(1)

= 1 >1,in order
Oc
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to prove our claim, it is sufficient to show the existence of s>0 satisfy-
ing that:

(1) m—1—"0E" S0 and
b,(r,s)

@) if cfs)=-4F5%M)  then w40,
pi+1

For this, by definition of b,(r,s) and c¢,(s), it is enough to prove the
existence of s which satisfies the following three inequalities:
3) s>0,
4) m—1—leatl)(mtns) -,

Uo+SUg(m)  —
5 Ue~+ SUL(N) > su;(n)
) o.+1 oi+1
Noting that p,+1=u, by assumption, we can readily see that (4) (resp.
(5)) is equivalent to the following (6) (resp. (7)) under (3):
O {1t alon1, @ 1> vt
) {( )pa—l-l @ {[Oi+1 Pat1
Hence there exists s satisfying (3), (4), (5) if the following (8) and (9)

hold: (8) (m—1)%") _p~o0,

for all ze€l.

Pat+1
@) (m—1)%al®) _pys Wln) U)o gy Yal) gy Wiln)
Oat1 o+l pat+1 Pat1 pit+1

We will find m which satisfies (8) and (9).
(8): Since (m—l)ﬂ@—nz(m—l)_;_—?, (because p. € {0,1}), (8) is satis-

Ot
fied if m>8.
—ui‘@—nzlm—Z and 22)
pa+1 2 Pt+1
2

<——_2 by step 2, (9) is satisfied if m>9. Assume n=38. In this

<31
Ua(3) —n> Lm—3 ang %l® )3—3—
Pat1 2 pi+1" 3—1

satisfied if m>10. This completes the proof. []

(9): Assume n=2. In this case, since m-

case, since m- = 3 by step 2, (9) is

Step 6. Assume that m>5. Moreover assume that there is ac [l
such that

uil‘ilzl and p,=0, i.e., u,=1 and p,=0. Then, for suitable
Oa
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r>0, s>0, and n¢ {2, 3}, the following (i) and (ii) hold:
(i) m—1—"ETENS <

(ii) there is an element 0¢ I such that

Uo+ 1+ 88Uy (1)

bn /r-, S)= ’ u’oioy

(r.5) Oo+1

b,(r, s)> Uit T8+ 8 (n) for ©=0.
Pi+1

ProorF. By the same argument as in step 5, it is enough to show
that the following (8)’, (9)’ hold for m>5 instead of (8) and (9) in step
5: (8) (m—1)us(n)—n>0, (9) mu.(n)—n>u;(n). Then again by the same
argument as in step 5, we complete the proof. []

Step 7. (i) Assume that m>10. Then :‘:‘1<1 if p;€{0,1}.
U;

(ii) Assume that m>5. Then
pit+1

<1 if ,Oi=0.

PRrOOF OF (i). Assume contrary. Then there is a €I such that

u_:1=1 and p.€{0,1} by step 4. So we can take =, r,s found in step

P

5. Put b:=b,(r,s) for these r,s,n. Consider the divisor D=mP+3 n.E,,
i#0

where ni:=[pi— ui—i—'r'til;l-sui(n)—l (t#0). Note that n; is a non-negative

integer by step 5 (ii). The divisor D—K,— P—E, can be calculated as
follows:

D—Ky—E,—P=(m—1)P+ 3 (n;—p,) E;— (0, +1) E, (step 5 (1))

%0

— (o v Wy Tty SU(n)
= (m—1)P+ 3 (n,— ) B Y4 T 4 260 ),

(by eliminating E,)
(P— tiEi> + —1—<mP— > uiEi)
ier b icr

bi<n13—ie17,4,.(n>Ei>+<m—1—MyD

+ <[=
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+@.Z*D{ni_<t""_ U+ 7t +sui(n) )}E,

b
Z%Q-F%F—F%F(n)+<m—1—____m+;’;+ns >P
+i§{ni—<pi_ﬂi%ﬂm>}lgi_

Since m—l—ﬂ%j'is—>0 by step 5 (i), the divisor %—Q+%F+§—F(n)

+<m—1——7i2t1£>P is ample. Then by the same argument as in
step 2, E, is not contained in the fixed part of |D|. On the other hand,
since #,#0 by step 5 (ii) and m;<p; by our choice of m; again by the
same argument as in the last part of step 2, E, must be contained in
the fixed part of |D|. But this is absurd. Hence (i) is proved.

ProoF OF (ii). Use step 6 instead of step 5. []

Step 8. (i) |mL| has no fixed components for m>5.
(i) General member of |mL| is irreducible normal for m>10.

Proor. (i) Assume contrary. Then, corresponding to a fixed com-
Ui

ponent, there exists ¢€I such that w,>1 and p;=0. Then 121.

But this contradicts step 7 (ii).

(ii) Since dim@®,,.(X)>2 by (0.4) and |mL| is free from the fixed part
by (i), any general member of |mL| is irreducible and reduced. In order
to prove normality, it is enough to show that any general member of
|mL| has only isolated singularities by the Serre’s eriterion. For this, it
is sufficient to prove that |mL| has no fixed curves of multiplicity >2
by Bertini’s theorem. Assume contrary. Then corresponding to the first
blow up of a fixed curve of multiplicity >2, there exists 1€ I such that
o;=1and w,>2. Then pi_;l—zl, which contradicts step 7(i). Thus (ii)
has been proved. []

Step 9. Assume that m>10. Let S be a general member of |mL|.
(Thus S is a normal Gorenstein surface.) Put R=L|;. Then |(a+m)R)|
is free on S for all a>3.
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Proor. Since h°((a+m)R)=h"((a+m)L)—h((aL))>4, step 9 follows
from [Bel, Th. 1-0]. []

Step 10. |nL| is free for every n>20.

Proor. First we assume that n is even. Put n=2m. Let S:=div(s)
be any general member of |mL| (s€ H(mL)). Put R=L|s. Note that

Ks;=mR. From the exact sequence O—H@X(mL)@»@X(ZmL)—r@S(ZmR)

—0, we get 0————>H°(@x(mL))——f—>H°(@x(2mL))—>H°(S, Os(2mR))—0.
Hence Bs|2mL|=Bs|2mR|. But the right hand side is empty by step 9.
Next we assume that » is odd. Put n=2m+1. Let S, (resp. S...) be
any general member of |mL| (resp. |(m+1)L|) corresponding to s, € H°(mL)
(resp. sp.. € H'((m+1)L)). Put R,=L|s (resp. R,..=L|s ). Note that
Ks =mR, and KSm+1:(m+1)Rm+l- From two exact sequences 00—

@x(mL)%OX((Zm—{—1)L)—>@Sm+1((2m+1)Rm+1)—>0, and 00—

Ox((m+1)L) ~2°2,0,((2m +1)L)—> O, (2m+1)R,)—0, we can see by
the same manner as in the previous case that:

Bs|(2m+1)L|C Bs|(2m+1)R,..| U Bs|(2m+1)R,|. But the right hand side
is empty by step 9. Thus Bs|@2m+1)L|=@. []

Now (2.1) has been proved. Q.E.D.

§3. Very ampleness and simply generatedness of nL.

Throughout this section (X, L) is a polarized Calabi-Yau 3-fold. Put
R,:=H'X,mL), R:=@R,. We say that fL (f>0) is birationally very

m>0
ample if fL is free and @, is birational. The purpose of this section

is to prove:

THEOREM (3.1). Assume that mL 1is birationally very ample for all
m>f. Then,
(1) the graded ring R 1is generated by some elements of degree <3f;
(2) mfL is simply generated (in particular, very ample) for all n>2;
(8) mL 1s very ample for all n>3f.

REMARK (3.2). A famous m-regularity theorem [Mu, Th. 3] says that
nfL is simply generated for all n>>4. Our theorem is a refinement of
this. []
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The next two corollaries are immediate consequences of (3.1), (2.1)
and (1.1).

COROLLARY (3.3). (1) The graded ring R 1is generated by some ele-
ments of degree <60,
(2) 40L s simply gemerated,
(8) mL s very ample for all n>60. []

REMARK (3.4). T. Fujita conjectured in [Fu7] that nL is free for all
n>4. If this conjecture is true, then except for the exceptional cases
in (1.1)(2),

(1) R is generated by some element of degree <12;
(2) 8L is simply generated;
(8) mL is very ample for all n>12. []

COROLLARY (3.5). Assume that L is birationally very ample. Then,
(1) R 1is generated by some elements of degree <2,
(2) mL s simply generated for all n>2. []

REMARK (3.6). As was seen by [SD], if (S, L) is a polarized K3 surface
such that L is birationally very ample, then nL is simply generated for
all n>1. But in Calabi-Yau case this is not true as will be seen in the
next (3.7). In this sense, the estimate in (3.5) is best possible.

PROPOSITION-EXAMPLE (3.7). Let X:=(3,4)cP:=P(1,1,1,1,1,2) be a
general weighted complete intersection. Put L:=(4(1). Then (X, L) is
a polarized Calabi-Yau 3-fold (cf. §4). This (X, L) satisfies the assump-
tion of (3.5) but L is not very ample (in particular, L is not simply
generated).

Proor. Let z,, x,, - - -, x5 2, be the weighted homogeneous coordinates
of P in order. Then, the defining equation of X is written as follows
(after suitable change of coordinate):

F.=xf1(xy, - - -, @)+ Sy, -+, 25)=0

G:=x2+fu(xy, -+, 25) =0,
where f; (¢=1,3,4) are not zero polynomials of degree 7. Note that

H'(X, L)=C{x,, - -+, 25y by definition. Then F](xi:O)ﬂ(G:O):@, In
i=1

particular, L is free. Moreover, we can readily see that @ ., is birational
by the shape of F. But @, :X—W:=Im®,,(X)CP* cannot be an
isomorphism because deg W=L*=6. []
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Proor or (3.1). Put M:=fL. Let s, t,uc H(X, M) be general ele-
ments. Put S:=div(s), C:=div(t|s), P:=div(u|s). Note that S (resp. C,
resp. P) is a smooth surface (resp. curve, resp. 0-dimensional scheme of
degree M?®). Put P=P+---+ Pys.

LEMMA (3.8). R.=R; R._; for all m>4f+1.

Proor. Let & be a positive integer. By the exact sequence

0—> (B3 f+k) L-Z5 (4f+ k) L5+ (4 + k) L|s—0 and (0.3), we get the
following commutative diagram of exact sequences:

H(M)QH (B +k)L)—>H'(M|s) QH'((3.f + k) L|s) —0

0—>H(3f+k) L)— > H'(4f + k) L)— — H*((4/ + k) L|s) ——0.

Hence the multiplication map m is surjective if so is mgs. By the exact
sequence 0—»(3f+k)L|sﬁ>(4f+k)LISL(4f+k)L|C——>0 and (0.3), we
get similarly the commutative diagram of exact sequences:

H'(M|s)QH"(Bf+k)Lls)——>H'(M|c)QH" (3 +k) L|c) —0

0——H'((3f+Fk)Ls)—> H'((4S + k) Lls) ——H'((4f + k) L c)] —0.

Hence the multiplication map mg is surjective if so is m¢. Note that
2fL|c=K; so that h'((2f+m)L|¢)=h*(—mL|¢)=0 for all m>0. Then, by
the exact sequences
Qu rp N
0—@Bf+k)Llc——(4f+k)Llc— (4f+Fk) L|p=PCr,—0
and

M3
0——> (2 +) Ll 31+ ) Llo—2>(3 f+k) L= BCr,—0,

we get again the commutative diagram of exact sequences:

H'(Mle)QH((3f +k) Llc)——H'(M|c) @ (DC, ) ——0

0—>H((3f+F) L|c)—>H'((4f + k) Lic) D C», 0.

Tp
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But m, is surjective because M|; is free. Thus m, is also surjective.
Hence the assertion holds. []

LEMMA (3.9). H'(2f+k)Llo)=H'@M|s)-H'(kL|s) if k>f.

ProOF. Since 2M|.=K; and kL|; is birationally very ample, the
equality holds by the Castelnuvo's theorem (cf. [ACGH, P.151], [Fu6,
Th. A7]). O

LEmMA (3.10). R.=R; R, ;+R:;;-R, ., if m>3f.

Proor. Let k be an integer such that £>f. By (3.9) and (0.3), we
have the following commutative diagram of exact sequences:

H*2M|s)QH((kL|s)——H"(2M|c) @ H"(k L|c)—>0
ms me

0—>H((f + k) Lls)—>H(2f + k) L|s)—— H*((2f + k) L|c) —0.

0

Thus H*((2f+k)L|s)=H'(2M|s)- H(kL|s)+ H*(M|s) - H*((f+k) L|s).
Hence we get the following commutative diagram of exact sequences:

H(M)QH'((f+k)L) s~ H(M|s)QH((f+k)L
DH 2M)QH" (kL) DH 2M|s)QH" (kL|s)

m mg

,S)__)O

0—HY((f+k) L)— H'((2f +k) L) —— H*((2f+k)L|s) ———0

0

Thus H((2f+k)L)=H'(M)-H'(f+k)L)+ H°2M)-H(kL), ie, R.=
Rf'.Rm_f"I"sz'Rm_gf if m23f. D

By (3.10), (3.1)(1) holds.

LEMMA (3.11). Ry.;=(R.,)* if n>2 and k>1.

ProoF. We will treat the following 3 cases separately:
Case 1. n=2; Case 2. n=3; Case 3. n>4.

Case 1. By (3.10),
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Boorrys=Ry- Raurny s+ By Ry,
=R; (B; Rus+ Ryp- Rou_rys) + Ry - Russ
=R} Rus+Roy Ry Riosys+ Ry Ry
=R,;- Ry for k>1.

Thus Eu;=(R.,)* by induction.

Case 2. By successive use of (3.8), we get:
Byprys =B Bgprnys =+ =(Rp)* % Ryy=(R;)** ' Ry;.

Note that R,,=(R,)* by case 1 and R,,=R,-R,, by (3.10). Thus
Raygerns=(B,)" 0 (R))*- (Bo)*=(B,)** " (Ry;)°.  Since (R;)* ™Ry, C Ry,
we get Ryuii)=Ra,-Rs;. Hence Ry,=(Rs)"* by induction.

Case 3 (cf. [Mu]). Since nf+1>4f+1 in this case, we get Ruii.,
:(Rf)kn'R”f by (3.8) Since (R/)MCR;‘";, we have R(k+1)nf:R/mf'R,,,f. Thus
Rknf:(Rnf)k' D

This completes the proof of (3.1)(2). Now (3.1)(3) is clear because 2fL
is very ample and mL is free for all m>f. Q.E.D.

§4. Polarized Calabi-Yau 3-folds arising as general weighted complete inter-
sections.

Recall that any polarized manifold (X, L) is isomorphic to (Proj R,
Orrojr(1)) where R=@H"(X,nL) and R is a quotient of some weighted
n>0

polynomial ring, say C[x,, - - -, %,] With a;:=deg x;, by some homogeneous
prime ideal I. Geometrically saying, (X, L) is a polarized subvariety of
the weighted projective space P:=P(a,, ---,a,) with the equations I and
polarization L=0(1). We call (X, L) a weighted complete intersection
(abbreviated by WCI) in P if I is generated by some 7 :=codim X homo-
geneous elements (fy, ---,f,). For simplicity, in this case we denote
(X, L) by (b, ---,b,)C P where b;,:=degf;,. Wecalla WCI (b, ---,b,)CP
general if each generator f; is chosen generally in H°(O:(b;))={homo-
geneous polynomials of degree b}. We refer the reader to [Mo], [Fu3],
[Do] for basic properties of WCI. Here we only mention that our defi-
nition is equivalent to the one of [Mo] (cf. [Mo], [Fu3]). In particular,
X does not meet the singular spectrum S ::kgz{xizo; k does not divide

a}.
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In this section, we determine every polarized Calabi-Yau 3-fold (X, L)
arising as a general WCI under the assumption that A°(L)>2. We call
such (X, L) of type GWCI. The result is:

THEOREM (4.1). Any polarized Calabi-Yau 3-fold (X, L) of type GWCI
18 one of the following:

[1] (10)cP(%2,5) [2] (8)cP(14) [3] (4,6)CP(1®23)
[4] (6)cPlY,2) [5] (4,4)cP(14,2) [6] (3,4)CP(2)
[7] (26)cP(l3) [8] (2,222 cP” [9] (22 )CP"
[10] (2,4)CP® [11] (3,3)CP® [12] (5)cP*

[13] (6,6)CP(1? 2, 3.

REMARK (4.2). These 13 types are actually polarized Calabi-Yau
3-folds. In fact, we can easily check the smoothness of X for generi-
cally chosen generators (by writing down the equations explicitely (cf.
[F1])) and the equalities Ky=0, ¢=0 (by the general theory of weighted
complete intersections). Moreover, in each case, Pic X=ZL and (h°(L), L?)
is calculated as follows.

Type [1] [2] [3] [4] [5] [6] [7] (8] [91 [10] [11] [12] [13]
Ly 3 4 3 4 4 5 5 8 T 6 6 5 2

L’ 1 2 2 3 4 6 4 16 12 8 9 5 1 [

Proor or (4.1). Put h:=h"(L), d:=L° Let C be a general twice cut
of X by elements of H°(Op(1)). Then C is also general weighted com-
plete intersection in P such that CNS=g because XNS=¢. Hence
we can apply the adjunction formula, so that C is an irreducible
Gorenstein curve with a half-canonical bundle L|;=0:(1). Recall the
following remarkable result due to M. Reid:

THEOREM (4.3) ([Rd2, Th. 34]). Let C be an irreducible Gorenstein
curve with arithemetic genus g(C)>2. Let D be a half-canonical divisor
on C, i.e., a Cartier divisor satisfying that 2D~K,.

Then the graded ring R(C, D) is generated by some elements of degree
<3 and their relations are generated by some weighted polynomials of
degree <6, except for the following 4 cases;

(1) C is a hyperelliptic curve of g(C)+#2 and h*(D)=0;

(In this case R(C, D) is generated by degree <4 and relations generated
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by degree <8.)

(2) ¢(C)=2, D=P, where P is a Weierstrass point;

(In this case C=(10)CP(1,2,5).)

(8) g(C)=3, D=g; (hence, hyperelliptic),

(In this case C=(8)CP(1,1,4).)

(4) C 1s non-hyperelliptic with g(C)=3 and h'(D)=

(In this case R(C, D) has one more relation of degree =8.) [

Note that h’(L|;)=h—2. Thus, (X, L) is one of as follows:

In the case of h>3.

(10)cP(13,2,5), ie., [1] in (4.1),

(8)cP(1*,4), i.e., [2] in (4.1),

[ -5, 69cp1 2~ 3", [II] (37,45, 6°)CP(1* 2"),
[III] (2, 4,5 6°)cP(1* 3, [IV] (2,37, 45, 6)cpP;

In the case of h=2.

[i] (54 62,7° 8%)CP(1% 27, 3%, 47),
[ii] (3%, 54, 6% 7°, 8% CP(1% 27, 47),
[iii] (2%, 54, 65,7¢, 8P)C P(1%, 37, 47),
[iv] (4F, 54, 62,7°¢, 8°)cCP(1% 2%, 37),
[v] (2%, 37, 54,65 7° 87 CP(1%4),
[vi] (37, 4¢, 54, 6%, 7° 8P)CP(1% 27)
[vii] (2%, 4¢, 54, 6%, 7°,8%)C P(1% 3%);

where h>3, m,n, p, q, r are positive integers and the other letters are
non-negative integers.

We treat these cases separately.

CrAiM (4.4). If (X, L) is of type [1], then (X, L) is (4, 6)CP(1% 2% 3),
ie., of type [3] in (4.1).

PROOF. We can easily show by the following formulas:
4.5) a+b+c=h+m+n—4 (because dim X=3),
(4.6) 4a+5b+6¢c=h+2m+3n (because Ky=0),

411.56.60

(4.8) c¢>=mn, 2a+c>m (by (4.7)).
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In fact, by eliminating a from (4.5) and (4.6), we get;
3h+3n+2m+b+2(c—n)=16. Thus h=3 and n=1.

By eliminating & from (4.5) and (4.6), we have;
(2a+c—m)+2(c—n)+a+4b+2¢=4. Thus b=0 and c=1 because c>n=1.
Hence m=2 and a=1. []

By a similar elementary calculation based on the formulas of dim X=3,
Kx=0, and d=L° we get:

Craim (4.9). (X, L) of types [II], ---,[vii] is one of as follows:
(3,45 cP(1%, 2% or of types [4],[5].[6] in (4.1) if (X, L) is of type [II];
of type [7] in (4.1) if (X, L) is of type [III];
of types [8],[9],[10],[11],[12] in (4.1) if (X, L) is of type [IV];
(8)cP(1%, 2%, (4°)CP(1% 2%, or of type [13] in (4.1) if AY(L)=2. [

Thus in order to complete the proof of (4.1), it is enough to show the
following:

CrLAlM (4.10). (X, L) is not isomorphic to any one of below:
(3,4%) CP(1°, 2, (8)CP(1% 2%, (4% CP(1? 2.

PrOOF. Assume that (X, L) is isomorphic to (3,4%)cP(1?2")=:P.

Then, h°(L)=3 and L= i.-4224 =3. Hence h°(2L)=L*+2h°(L)=9 by (0.2).
On the other hand, by counting monomials of degree 2, we have h*(2L)
=<3;1>+4=10. This is absurd. By the same reason, (X, L) is not also
isomorphic to the others in (4.10). []

This completes the proof of (4.1). Q.E.D.

§5. Graded rings of polarized Calabi-Yau 3-folds with delta genus <2.

Let (X, L) be a polarized Calabi-Yau 3-fold. As before, put h:=h"L),
d:=L% As will be seen in (5.5), if the delta genus 4:=4(X, L) :=d+3—h
<2, then (k,d)=(3,1), 4,2), (2,1), (3,2), (4,8), (5,4). On the other hand,
by (4.2), a polarized Calabi-Yau 3-fold of type [1],[2].[13].[3].[4].[7] in
(4.1) takes the above value (h, d) respectively.

In this section, we will prove the converse:

THEOREM (5.1). Let (X, L) be a polarized Calabi-Yau 3-fold with delta
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genus <2. Then (X, L) is a weighted complete intersection of codimen-
ston <2 wn a suitable weighted projective space. More precisely, (X, L)
1s described as follows.

(I). Assume that 4(X,L)=1. Then (h,d)=(3,1) or (4,2), and,

(I-1). f (h,d)=(8,1), then X=(10)CP(1? 2, 5);

(I-2). 4f (h,d)=(4,2), then X=(8)CP(1* 4).

(II). Assume that 4(X,L)=2. Then (h,d)=(2,1), (3,2), 4,3) or (5,4),
and,

(II-1). 4f (h,d)=(2,1), then X=(6, 6)CP(1? 2% 3%);
(I1-2). %f (h,d)=(3,2), then X=(4,6)CP(1 2% 3);
(II-3). if (h,d)=(4,3), then X 1is either

(a) (6)CP(1%2) or (b) (3,6)CP(1*2,3) where the relation of degree 3 s
a polynomial mot containing the variable xs of degree 3;
(I1-4). 4f (h,d)=(5,4), then X=(2,6)CP(1%3).

COROLLARY (5.2). Let (X, L) be a polarized 3-fold with 4(X, L)<2.
Then the deformation type of (X, L) are uniquely determined by the pair

(h,d). []

REMARK (5.3). (I-1), (II-1) are already known by T. Fujita [Fu8] in
the course of his study on polarized manifolds of sectional genus two,
and (I-2), (II-4) are also known by T. Fujita [Fu6] by his theory of hy-
perelliptic polarized manifolds. For the remaining two cases the graded
ring structures (II-2) and (II-3) are new (cf. [Fu9, (10.10), (10.11)]).

The proof of us is based on the Reid’s analysis (4.3) and the following
theorem due to T. Fujita.

THEOREM (5.4) ([Fu4], [Fub], [Fu9]). Let (X, L) be a polarized mani-
fold of dimension m>3. Assume that 4<2 and d:=L">2. Then
dim Bs|L|<1 and any general member of |L| is smooth. [

Proor or (5.1).
LEMMA (5.5). (h,d)=(3,1), (4,2) of 4=1 and (h,d)=(2, 1), (3,2), (4, 3),
(5,4) of 4=2.

PrOOF. Assume d>2. By (5.4), general member of |L|, say S, is
smooth with ample K;=L|;. Hence S is a minimal surface of general
type. Note that p,(S)=h—1. Hence d=K3;>2p,(S)—4=2h—6 by the
Noether’s inequality. Combining this with 4=d+3—h, we get the
desired result. []
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Next we will determine the graded ring for each (h,d). We only dem-
onstrate the proof for the new cases:

Case 1. (h,d)=(3,2); Case 2. (h,d)=(4,3), while the verification here can
be also applied to the known cases.

Case 1. (h,d)=(3,2). Let us take a smooth general S¢|L|.

Cramm (5.6). (1) dim Bs|L|s|=0.
(2) any general C¢ |L|s| is a smooth irreducible curve of genus=3 with
2L|c=KC.

PRrROOF. (1) Assume contrary that Bs|L|s| contains a fixed curve B.
Put Lgs:=L|s and |Ls|=|M|+B. Then 2=L*=Li=M.Ls+ B.Ls. Hence
M.Lg=B.Lg=1 because Ly is ample. Moreover, 1=M.L;=M*+ M.B.
Since M.B>0 (by the ampleness of L) and M*>0 (because |M| has no
fixed curves), we get M*=0. Then 2p,(M)—2=M.(M+ K5)=M*+ M.K;
=M*+M.Ls=1. But this is absurd.

(2) Since dim Bs|Ls|=0 by (1), the assertion follows from the inequality
2=2<4 and g(C)=L'+1. []

Let us take a general Ce |L|s|. By (0.3), we can apply the ladder method
so that in order to complete the proof, it is enough to show the next
claim.

Cramm (5.7). R(C, L|¢) is written as follows:
R(C, L|¢) =C[xs, %4, %5, :1/(f, 9) where degux,=1, degx,=degx;=2, degux,
=3, degf=4, and deg g=©6.

PrOOF. As is easily seen (e.g. by Riemann-Roch), we know that
h(L|c)=1, g(C)=h"(2L|;)=38, and h’(tL|;)=2t—2 for t>3. In particular,
(C, L|¢) is not in the exceptional cases of (4.3). Let x; be a basis of
H'(L|¢). Then there are x,, x;€ H°(2L|;) such that {«3, z,, x;} is a basis of
H°2L|;). Since x3, xsx,, 255 € H(BL|;) are linearly independent, there is
2s€ H'(B3L|c;) such that {x}, wsx,, xs2s, 2} is a basis of H°8L|;). Then
R(C, L|;) is generated by four elements x;, x,, x;, x; by (4.3). We will
find the relations among them. Again by virture of (4.3), it is enough
to find the relations of x;’s of degree=4,5,6.
degree=4. There are 7 monomials of z’s in H°(4L|;). Then there is
one relation of degree 4, say f, because h°(4L|c)=6.
degree=>5. There are 9 monomials of ;s in H°(5L|;) while h°(5L|;)=8.
Then there is one relation among them. But this is nothing but z,f.
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degree=6. There are 14 monomials of z’s in H°(6L|;) while »°(6L|;)=10.
Then there are four linearly independent relations among them. But
there are exactly three linearly independent relations coming from f,
say xif, x.f, xsf. Hence there is one more relation among them. Hence
(6.7) has been proved. []

Case 2. (h,d)=(4,3). As before, let us take a smooth S¢|L|.

CrAim (5.8). (1) dim Bs|L|s|=0.
(2) any general C¢|L|s| is a smooth irreducible curve with 2L|;= KL,
h°(L|¢)=2, h°(2L|c)=h"(K;)=4, h°(tL|c)=3t—3 for t>3. In particular,
this (C, L|;) is not in the exceptional cases of (4.3).

ProoF. Similar to the one of (5.6). [
Let us take a general Ce |L||.

CrLAamM (5.9). (1) Bs|L|;|= or {P} (one point set).
(2) If Bs|L|¢|={P}, then |L|;|=|2P|+P.

Proor. Let us put |L|¢|=|M|+B. Since A (L|)=h—2=2 and
deg L|;=L*=3, we have deg M=3 or 2. If deg M=3, then B=0. As-
sume that deg M=2. Then B=P (a single point). Put P=div(z) where
2€ H°(B). Moreover, since @, is a morphism of degree 2 onto P' by
deg M=h'(M)=2, C must be a hyperelliptic curve (of genus 4). In
particular, we have the following commutative diagram:

C:o B - P!
Q)IK\C}"\\\ _ @wm(an

= PlcP:!

Let {¢,, ¢} be a basis of H(M)=H'O,1(1)). Note that ¢, ¢, are alge-
braically independent over C. Moreover, from the above diagram,
{05, P21, 0ogt, i} is a basis of H°(K;). On the other hand, H°(K;)
= H"2L|;) contains ¢f2* and ¢iz* because ¢z, ¢,z € H(L|c). Hence ¢i2?
o' are written as follows: ¢i2°*=Api+ Bojp,+ Coupi+ Dot, ¢iz°= E¢;
+ Foip,+Goupi+ Hpl, where A, ---, H are some constants. By eliminat-
ing 2z from these two equalities, we get:

(A@S+ Boip,+ Cowpi+ Do) pi= (Epi+ Folp, + Gowpt + He) ;.
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From this equality, we obtain the equality C=D=0 because ¢, and ¢,
were algebraically independent over C. Hence ¢i*=A¢;+ Bojp,, ie.,
2*=A¢p,+ By,. This means 2°¢c |M|, ie., |M|=[2P|. []

As before, we will calculate R(C, L|;) dividing into the two cases: Case
(i) Bs|L|c|=¢; Case (ii) Bs|L|c|={P}.

Case (i).

CLam (56.10). R(C, L|;) is written as follows:
R(C, L|s) =C[xs, %4, 5]/ (f) where deg x,=deg x,=1, deg x;=2, and deg f=6.

ProOF. Let {x;, 2, be a basis of H°(L|;)=H"(®,(1)). Since x; x,
are algebraically independent over C, there is x;€ H°(2L|;) such that
{a3, @524, X5, x5} is @ basis of H°(2L|¢). Then the monomials of x; (1=3, 4, 5)
contained in H°(@BL|;) are the following six:

T3, W5y, Xoki, X3, Lels, Ll

SuB-CLAIM (5.11). These six monomials are linearly independent in
H°(BL|;). In particular, these are the basis of H°(3L|.).

PRrROOF. Assume contrary. Then we have the following equality:
(axs+bxy)ws = axi+ Base, + yx.xi+0x; where (a,b)+(0,0), «, -++,6 are some
constants. From this we have: ¢,x;=¢.psp, Where ¢, are some non-zero
elements of H°(L|;). Put @<div(¢,). Then Q@<div(y;) for some 7€ {2, 3, 4},
say 1=2. If div(e,) #div(p,), then {¢,, ¢,} becomes a basis of H°(L|¢).
Thus Q€ Bs|L|¢|]. But this contradicts our assumption. Hence div(¢p,)
=div(¢p,). Thus x,=ce,p, for some constant c. In particular,
x5 € C{a8, x324, ¢y, But this contradicts our choice of x;. Hence the as-
sertion holds. []

By Sub-Claim (5.11) and (4.3), R(C, L|¢) is generated by three elements
X, %4 ;. Moreover, all relations among them are generated by one
polynomial of degree 6 by (4.3) and the following table (5.12).

Table (5.12).
dimension # (monomials of x;, x,, )
H°4L)|) 9 9
H'(5L],) 12 12
H'(6L|c) 15 16
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This completes the proof of (5.10). []

Case (ii). Let us take basis of H°(O(P)) and H(O:(2P)) as in the
following table (5.13).

Table (5.13).
dimension basis
H(Oc(P)) 1 z
H(O:(2P)) 2 Yi:=2% Y

(These two are algebraically
independent over C.)

We can easily see that basis of H°(L|;)=H"(O:3P)) and H°(2L|;) are
given by the next table (5.14).

Table (5.14).
dimension basis
H°(L|c) 2 Ty :=2"=2Y,, T,:=2Y;
H(2L|¢) 4 X2=25, X, =2"Y,,

Ti=2"Y5, T5:=Y;

We consider H°3L|;). Note that there are exactly 6 monomials of
X3, Xy Ts in H(BL|c): «, oiw,, xsxi, o} 225, 2,25. By rewriting these by
the variables z, y., we get the next:

CLAIM (5.15). These 6 monomials are related by f:=x}—x,x;=0 and
span the 5-dimensional subspace of H°(3L|;). Hence there is one new
generator x;. [ ]

Thus R(C, L|;) is generated by ., , x; and x;. On the other hand, we
can at once see the following table.

Table (5.16).
dimension number of the number of the
monomials of (independent) relations
Ty, * vy Lo coming from f
H(4L|c) 9 11 2 (=h(Llc))
H°(5L|¢) 12 15 3 (=h"2L|¢))

H'6L|) 15 22 6 (=h"(3L|c))
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Thus there is a new relation g of degree 6 and, again by (4.8), all the
relations among =z, - - -, 2; are generated by f and ¢g. In order to com-
plete the proof, it is enough to show the next

CLAmM (5.17). Let W :=C[w,, w,, w;] be a weighted polynomial ring
with deg w;,=deg w,=1 and degw;=2. Let h¢€ W be a general homo-
geneous element of degree 3. Then h is written as follows after a
suitable change of homogeneous coordinates w; : h=w;— w,w;.

Proor. First of all, any homogeneous element h of degree 3 is
written as h=awi+bwiw,+ cw,wi+dwi+ (ew,+fw,)w;, where a,b,c,d, e, f
are constants. By generality, we may assume that f-+0. Replace w; by
(ew,+fw,). Then, we may assume that h is written as h=awi+bwiw,
+cw,wi+dwi+w,w;. By generality again, we may assume that a+0.
Then, by taking suitable constants a0, B and replacing w, by a(w,+ fws),
we see that h is transformed into the following form:

h = w4 yw,wi -+ 0w3 + wyts = Wi+ ws (7 w,w; + Wi+ wy).
Thus we get the result by putting w;:= — (ywaw,+owi+w;). [
This completes the proof of (5.1). Q.E.D.
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