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Generalized ground states for quasilinear elliptic equations

By Naoyuki ISHIMURA

Abstract. We discuss the existence of generalized ground states. This
notion was introduced in the recent work of Atkinson, Peletier and Serrin [2],
where they considered the preseribed mean curvature problem and observed
its multi-valued nature. We extend their results for more general quasilinear
elliptic equations. In the course of the proof we exploit the Pohozaev type
identity for u-variable.

1. In this note we shall discuss the existence of positive radial
solutions of the problem

div[A(|Du|)Dul+f(u)=0 in R, (1)
{u(x)—»O as r—oo.

ty

where Du denotes the gradient of u. The functions A(p), f(u) will be
assumed to satisfy the following hypotheses:

Al) A€C0, ),
A2) A'(p)<0, E(p)=A'(p)p+A(p)>0,
A3) lim p*E(p)=1,
F1) feC'M0, ),
F2) f(0)=0, flu)>0 for >0,
)

uf’(u)2n+2f(u) for u>0.
n—2

Normalization to “1” in (A3) does not involve a loss of generality. (Al)-
(A3) are satisfied, for example, in the case

Alp)=mp* (147"

if m>1.

Our study was motivated by recent work of F.V. Atkinson, L. A.
Peletier and J. Serrin [2]. They considered the question of existence
and nonexistence of ground states for the prescribed mean curvature
equation in R", that is, the problem (I) with A(p)=(1+p* "% The typical
feature for this problem is the occurrence of a vertical point in the graph



138 Naoyuki ISHIMURA

of solution; for large values of u,=u(0) there exists a finite B such that
a unique C? solution u(r) exists over the interval 0<r<R and has the
property

|w/ (1r)| —>o0 as r—R.

They sought ways of continuing the solution beyond a vertical point.
Regarding u as an independent variable, they proved that » is a well-
defined function of u with a sequence of maxima and minima, and that
under the hypotheses (F1)-(F3) there exists a solution in this generalized
sense, called the generalized ground states, for every u,>0. This solu-
tion, which is possibly multi-valued as a function of », is a natural one
from the viewpoint of the prescribed mean curvature problem; the prob-
lem may be seen as seeking for a C®embedded surface in R*XR* whose
mean curvature H at each point (x,u) is given by H(z,u)=—n"f(u),
and which is asymptotic to the hyperplane u=0 as x—co.

Our aim is to extend these procedures to more general quasilinear
elliptic equations. Solutions of our problem generally have vertical points
for u, large (see, Lemma 1, below). Although there seems to be no
clear geometrical meaning in the general case, we intend to continue
the solution beyond the vertical point. Following [2] we regard  as an
independent variable and rewrite the problem as follows:

E<l>q"3r"—n——1—A<l>l+f(u):O for 0<u<<u,, (2)
q r a’/q
(I1) r(u)>0 for 0<u <uy,

7(U) =0, 7 (U)—> — oo as uU—u,,

7(u)—>c0 as u—0,

where g=|r"(u)|. Note that if w'<0 (1) is equivalent to (2) and that
(A3) ensures the continuability of solutions of (II) beyond each local
maxima and minima, where ¢=0.

We now state our

MAIN RESULT. We assume (Al)-(A3) and (F1)-(F8). For every u,>0
there exists a solution r(u) of (II) such that the inverse function wu(r)
satisfies either

(A ')+ 17 () =0

or
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(Ao |Jw) =7 () =0
according to whether v’ <0 or v >0, respectively.

We remark here that in our main result the change of sign for the
equation (1) is natural. To see this we consider the prescribed mean
curvature equation A(p)=(1+p® "Y* and its geometrical meaning. In
order to define the sign of the mean curvature we must attach a con-
tinuous normal direction to the surface of solution. If this direction points
downward we have

. Du _
dw(mvv) — () =0.

Although the notion of normal direction is ambiguous in our general
case, we legitimately define the sign so that it is consistent with the
prescribed mean curvature problem.

To prove our main result we exploit the following Pohozaev type iden-
tity for w-variable. Many authors develop the ordinary 7»-variable
Pohozaev type identity (see, for instance, [6,7,8]). But it seems to be
new that the explicit formulation for general u-variable identity is given.

PROPOSITION. Let r(u) be a solution to (II). We define the functional

H(u) :T”Su E<l>q‘3r” (w)du —n;2fr’“1uA<—1—)l +n;2r"uf(u),
g q 2 q/q 2n
where we denote q=|r"(u)|.
Then there holds the identity:
oo 1/q
1) =ne{ (7 + 1)) | Elw)pdp—a| " Bwypdp+ L a (L)1)
0 0 2 q/q

n—2 [ o n+2

The proof goes on an easy calculation. So we omit the details.

We end this section with a few comments. First, the ordinary
ground state problem for quasilinear equations has been considered by
several authors under various assumptions (see, for instance, [5,6,7,8, 9],
and references therein). They all discuss the r-variable single-valued
function, however, and do not mention the multi-valued case. Second,
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the multi-valued nature of the problem was first observed in the case
of capillary. For more physical backgrounds and more informations about
this problem, see the remarkable paper of P. Concus and R. Finn [3] or
the recent monograph of R. Finn [4]. Finally, the occurrence of a verti-
cal point for various equations was investigated extensively in the recent
paper of F.V. Atkinson and L. A. Peletier [1]. Their assumptions are
less stringent than ours, of course. But they do not discuss the con-
tinuability of solutions beyond vertical points.
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2. We want to prove our main result. Our proof proceeds along
the same line as in [2]. Let

M= lim A(p)p,

p—co

N= S:opE(p)dp.

We see from (A2) (A3) that M, N are well-defined and finite. Note that
(A2) and N finite suffice to produce a vertical point (see [1]).
First we consider the initial value problem

{ (r"’lA(lu’|)u’)'+’r'”"lf(u) =0 for >0, ( 3 )
u(0) =uy, %’(0) =0.

For every u,>0 this problem has a unique C* solution u(r)=wu(r;u,) in
a neighbourhood of =0, and
w(1r) <y, w (r) <0

as long as it exists.
We put

r,=sup{r | C* solution u(s;u,) exists for 0<s<r},
Uy =U(T).

If r,<oco, we call r, the first vertical point.

LEMMA 1. Suppose for all sufficiently large values of u there holds
An NS (u) <f(u):. Then for u, sufficiently large the first vertical point
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(ry, w,) exists on the graph of solution u(r), with

2n n
Uy— ———— N <ty <Upy— —— IV,
" flu) )
n 2n
T ML, <=
fluo) T f )
The imverse function r(u) satisfies r’(ul):O,r”(ul)<—fgs) .

PROOF. Although the proof of Lemma 1 is a slight modification of
that of Theorem 2.1 in [2], we do it for completeness.

We introduce the inverse function @ of A(p)p, which is possible by
(A2). We also set

G(r) :rl‘"S:s"“f(u(s))ds.

Then we obtain
w(r)=—Q(G(r)) (4)

on an integration of (3).

We first prove by contradiction the lower bound for u for u, suffi-
ciently large. Suppose there exists a point 7 in the interval (0, r,)
2n

S (o)

satisfying u(%)=u,— N, and choose 7 to be the least of such values.

Then we have
G/r) = latr)) —(n—1)r| s (u(e))ds
> (2N ) =2 fu)

S (o) n
1 2n 1 2
Z;f(uo) —ﬂTO)NWf(uo)
1
—%f (o).

Here we have used the assumption 4n’N-.f’(u)<f(u,)* over the interval
(0,7). Hence, integrating (4), we obtain a contradiction:

2n
S (o)

N:S:Q(G(s))ds
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_[en dt
_50 Qe G'(s)
2n (¥
< j Q(t)dt
_ 2n
S (o)

With this lower bound, we get the upper bound for r immediately,
namely,

M>G(r) :S;G’(s)ds>%’r.

In other words, a vertical point (r,, ,) must appear with

2n 2n
Uy > Uy——-—N, 17.<
T flu) flu)

For the remaining bounds we use

=2 futr)+ 2| s e ws)ds

<L flu),
n
which follows on an integration by parts. This yields

™ dt

uo—ul——S0 Q(t)G’—(s)

n (¥ n
> § Qydt=—""_N,
Sluy) Jo S (o)

by integration of (4), and

I(_@,,.1>S” G (r)dr=G(r) =M.
n 0

Since it is clear that 7/(u,)=0, we only have to estimate r”(u,).
This follows from (2) in view of the lower bound for r, and u,. That is,

7 () ==L M flu)

7
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<=L flug)—flu)
n

1 1 2
< _—’);f(MO) + (uo u/l) AN f(uo)
_ 1
=T on Suy)

This completes the proof. W

We want to continue the trajectory beyond the point (r,,u,). To do
that, we consider the inverse function 7r(u), which is a solution of the
initial value problem (II). Note that local existence and uniqueness of
a solution r(u) is assured by that of u(r). We then have

LEMMA 2. The solution r(u) of (II) exists over the interval 0<u<u,.

Proor. We use the idea of [2].
Let r(u) be the solution of (II) as long as it exists. We introduce
the functional

F(u) :r"“A<%>% ——;;f(u)r”.
By (2) we have
F'(w)= —%f’(u)r"<0,

and hence

This implies
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nM
Sfu)

from which we conclude that r(u) is bounded on any interval [#@, u,] with
0<u#<u,. Moreover, since F(u)>F(u,) we have

>r(u),

A IS L rwyr>o
q/7q9q n
in the right neighbourhood of #. This implies that |»/(u)| is bounded
above on the same neighbourhood. Finally we note that there exists no
u* in the interval (0, u,) such that

lim »(u) =0.

U} u*
This can be seen once we observe that in such case we have 0=F(u*)>
F(u,) =0, a contradiction. Hence the result. W

Next we want to prove that lim,_,r(u) exists, which is possibly infi-
nite, even in the case that r(u) has vertical points. Let r(u) be such a
solution. We define inductively the sequence of minima and maxima of
r(u) as follows:

Ugm =Inf{0<uU <Uy,_,| 70 on the interval (u, Usm_.1)},
Ugmyr =IiNF{0<U<U,,| <0 on the interval (u, Us,)} m=1,2,--.
re="7(u) k=1,2,8,-.-

Then we have

LEMMA 8. (i) 7p<——(n—1)M, Pymoy > n—1)M,
S P ltan) 2 i)
(li) TZ'm+Z> /era TZM+1>TZm—1-

ProoF. (i) is a straight consequence of (2). To prove (ii) we consider
two successive maxima 7u,_; and 7Ty, We Set & ="Ugpn_1, b="1Usn, C=Usms1,
for simplicity. On intervals (c,b) and (b, a), we can define inverses u=(r)
and u*(r), respectively. Then we find, integrating (2) over the interval
(w=(r), w*(r)), that

A AR e
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=[ ey — s enyeae

>0, (5)

for r satisfying r(b)<r<min{r(a),r(b)}. Here we put gq+=|r'(u*)| and
g =|r"(u")|. Therefore

|7 (w= ()| > |7 (w* ()],
from which we conclude by increasing r that
r(a) <r{c).

If r(a)=r(c) then (5) implies a contradiction. This is the desired result.
The case of minima proceeds in a similar fashion. i

REMARK. We can also prove the fact:
1. rflu)<nM.
2. 7, is bounded above by a constant independent of wu,.

After these preliminaries we can prove
LEMMA 4. lim,_,r(u) exists (finite or infinite).

Proor. The only case we have to discuss is that there is a decreas-
ing sequence {u,} of critical points of r(u) convergent to 0.

An integration of (2) from u to u, yields

— S“" E(%)q““r” du=sgn(r') Sm E(p)pdp

u 1/q

= — (- 1)5?%;1%)%% +S:"f (s)ds. (6)

By Lemma 3 (ii) we see that r(u) is bounded away from zero for 0<
u<u, uniformly in k. Thus (6) implies

s:qE(p)pdpsC(uk—u),

where constant C does not depend on k. Letting k—oo this yields

lim 7/(u) =0,

u—0

from which we conclude that lim,_r(u) exists. W
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REMARK. We can actually prove that 7/(u)<0 for all w sufficiently
near zero. This can be seen as in Lemma 2.7 in [2].

In order to complete the proof of our main result we only have to

show that
r(u)—>ro0 as u—0.

To prove this we use the identity formulated in the proposition: Let
r(u) be a solution of (II) and let us define the functional

H(u)= rnSu E’<l>q’37'” (w)du— =2 r"“uA<l>l + =2t ()
g q 2 q q 2"

where q=|7'(u)|. Then there holds the identity

1/t =nr {7+ 1) | Blo)pdn—a| " Bwipdp+5A() <)

n—=2 . o MF2
— r{wf ) mf(u)}-

In view of A’(p)<0 we have Sp E’(p)jodpg—;-A(p)go2 and
0

e /g

o +1)|” Ewpdp—q| " Bwipdp+ La(1)L

’ 0 q/4q

1 1\1,1 1\1

> / 4 _——A i el == 13\1

>+ r)N— (q)q+2A(q)q
>0.

It then follows by (F3) that H’(u)>0, and since H(u,) =0 we obtain
lim H(u) <0.

u—0

Suppose on the contrary that r.=lim, ,r(u)<<co. Because

_(n E(%)‘I’s” "du= S:o E(p)pdp+sgn(r')S:q E(p)pdp

>0’
we find

lim H imu{ — P2 (L)L n—2 .
s (u)zlfﬂ?u{ 2 A q q+ 2n rf(u)}

=0.
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This is a contradiction, and hence the main result is proved. [N

REMARK. Under the same assumptions but with (F2) replaced by

(F2) F(0)=0, and there exists a number a>0 such that
flu)<0 for 0<u<a, fu)>0 for u>a,

we can prove as in [2] that there exists no solution of (II).
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