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On maximal versions of the Large Sieve

By P.D.T.A. ELLIOTT*

1. In the present paper I consider maximal variants of the Large Sieve.
The following new result is typical.

THEOREM 1. Let ¢>0. Then

q x : .
S max Za,,x(n)c,(n)’ <<(x+Q2(logx)“‘>Exla,,|~

(qq’rﬁgl ¢(q7‘) x(mod ¢) y<z ln<y

where * denotes that y runs through the primaitive Dirichlet characters
(mod q), and c.(n) is the Ramanujan sum

c.(n)= ZT exp(2ribn/r).
bim=1
The inequality is uniform in Q>1, x>2, and complex numbers a,.

COROLLARY.

*

max
¢<Q x(mod ¢) y<z

o) | <(LE+Q) Tlayl
P<v log x p<s

where p denotes a prime number.

These appear to be the first inequalities of Large Sieve type in
which the presence of the maxima under the character summation does
not degrade the leading term in the upper bound by introducing an
extraneous logarithmic factor, or increase the term @* to @. In certain
applications to the theory of arithmetic functions such a refinement is
important.

In two sections following the proof of Theorem 1 I discuss related
results, their applications, and problems.

For convenience of exposition I shall formally denote the triple
summation

T Partially supported on NSF contract DMS-8722913.
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N\
qr<Q x(mod q) by E’
(g,7)=1
and
Slaf by al
LEMMA 1.
/\| M+N 9 L - M+N -
2| 2 ay(ne.(n)| K(N+Q) 3 |a.|”
n=M+1 ] n=M+1

ProoF. This now standard inequality may be‘ found as Théoréme
TA, p. 27 of Bombieri [1]. Lemma 1 is due to Selberg [20].

LEMMA 2. If T>1
N\(T
]

-T

S auy(n)e, | dt< Tla.fn+@T).

n<y

ProorF. This result may be derived from Théoréme 10, p.30 of
Bombieri [1], if the Théoréme 7 that is applied there is replaced by
Théoréme 7A. Results in the style of Lemma 2 are obtained by the
method of Gallagher [16].

For a more elaborate discussion of the Large Sieve and some of its
ramifications in Analytic Number Theory see Motohashi [19].

LEMMA 3. If s=o+it, o=Re(s) denotes a complex variable

1
I
uniformly for K>2, 6>0. The integrand is defined to be log K when
o=0=t. “ S ,

K'—1 |dtg4Kv(1‘+1oglog K)
S .

" PrROOF. On the one hand, for s=+0
3]0gK

K3—1=S e‘dz,

0

the integral being taken along the straight line joining the origin to the
point slog K. Hence

|K*—1|<|s|log K exp(c log K).
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On the other hand, for t+0
|sTH K —1)| <[t (K +1).

Applying these estimates for the ranges [t|<(log K)™, (log K)'<
|t|<1 respectively of the integral in the statement of Lemma 3, we
readily obtain the asserted bound.

It is not difficult to show that for ¢=0 the integral considered in
Lemma 3 exceeds a multiple of loglog K.

LEMMA 4. Let ¢>0. Then

Tmax| ¥ agme )| < @+@(logz)*)|al*(1+loglog K)*

0<y<z | y/K<n<y

uniformly for 2< K<z, Q>1, a.

Proor. Let w be half an odd positive integer, %—gngx, and n a

positive integer not exceeding x. Then for o=(logx)™*

1 S"““’(Ey_d_s_:{l if n<w,
2r1 n/ s 0 if n>w.

g—ico

If T>1, then an integration by parts shows that the contribution to
the integral arising from the range |[t|>T is < (w/n)’|slogw/n|'Kx/T,

since
(n+3)| (—3)
n+5 n——
Ilogﬂ‘ > min (log 2 log 2 )2L
n n n 2n
Hence, if y,y/K are half odd integers,
o+iT 8 __ ]
aglnle,m) == 2 aume,mm-(L=YHE) Yag
y/K<n<y 271 Jo—iT n<e s

+0( Zladlxm)e. )T ).

After several applications of the Cauchy-Schwarz inequality we see that
the sum which we wish to estimate does not exceed a multiple of

A
E=%

a—4iT
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where

AQY) =2 axm)e.(n)n.

n<zr
For each integer m, an application of Lemma 1 shows that

N\
2lxn)e. ()|’ With T=x* the second of the terms in E is therefore
<L27'QP|al?, well within the asserted bound.

Since |y'—(y/K)*|<2e uniformly for Re(s)=0, 0<y <, an application
of the Cauchy-Schwarz inequality gives

.LSIHST A(X)<_yi__(;l—/@)ds

: dt 2 (log(24[s]))**
<de Lmsr |s|(log(2+Isl))l“glsmsr 2l Is] ds.

2

The first of these two integrals is bounded above, uniformly for T>1.
We cover the range of the second by the intervals 2°<|¢|<2**' with
0<v<log T/log 2, and apply Lemma 2 to each of these intervals, with
a, replaced by a,n=°. The corresponding contribution to the first of the
terms in E is then

D1+e

F> SIAQ)dt

> 2u S-2D<I1IS2»+1
1+

< Zladl'(n+@(log T)*),

€

which is also within the asserted upper bound.
For the range |t|<1 we apply the Cauchy-Schwarz inequality dif-
ferently, taking one power of the kernel |s~'(y’—(y/K)")| into each integral

e e e
sezjl_l

this last step again since |y’|<e uniformly for 0<y<x. The first of
these two integrals is by Lemma 3« 1+loglog K. We apply Lemma 1
to estimate the sum involving A(x), and complete the proof of the
present lemma by a further appeal to Lemma 3.

¥ —(y/K)* ldt
S

dtS‘_l|A(x)|2[ 1‘SK_” ldt

1-K
8
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The above argument assumed that the y,y/K which appear under
the maxima have only half odd integer values. If they do not, we may
change them to a nearest such value at the expense of introducing an

N\
error O(|a|’>1). Since every character to a modulus not exceeding @
is induced by a primitive character to a modulus not exceeding @

1<y ¥ o1<@

9<Q x(mod q)
The extra error lies within the asserted bound.

REMARK. This same argument also allows us to replace the maxima
over y/K<n<y by maxima over y/K<n<y.

ProOOF OF THEOREM 1. Define the integer k by 2*<(logx):<2**'. If

T(y)= X a.x(n)e.(n)

n<y
then we decompose the range 1<n<y into intervals, to give

T)=TE*+> 5 agmle).

»=0 uz—”_‘<ngyz_”
Since the series 3. 27*% converges, applications of the Cauchy-Schwarz
inequality show that
2

max|T(y)’< max |T@w)+> 2" max | & agn)em)

y<z w<z(log z) ¢ v=0 w<22™Y | w/2<n<w

We estimate

L= max |Tw)’

w<z(log =) ¢

by Lemma 4, bearing in mind the remark made at the end of its proof,
replacing * and K there by xz(logx)~*. Hence

L« (x(log x) ¢+ Q*(log x)**</*) |a|*(1 4+ log log x)?,

which is within the asserted bound in the statement of Theorem 1.
For each sum corresponding to a value of v, 0<v<k, we apply
Lemma 4 with K=2, x replaced by x2->. Then

Sreermax| ¥ axmlen) | <22+ (log ) al?

w<e2 V| wiz<ngw
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and since
k
E 2»/2<<2k/2<< (log x)s/z,
v=0

the proof of Theorem 1 is complete.

Proor oF THE COROLLARY. We may assume that 0<e<1/6. If
1<r<zf then the primes p in the interval z*<p<x do not divide r.
For such primes c,(p)=pg(r). Replacing @ in Theorem 1 by Qz* we see
that

4 20 5 max| ¥ ayp)| <@+@a(logx))alt

¢ ¢(T) z(mod ¢) y<z | 26<p<y

Bearing in mind that

£(r) o $(q)log w
(,%:z, é(r) > q

uniformly for w>1 (see, for example, Halberstam and Richert [17],
Lemma (3.1), p.102), we see that

*
max
¢<Q x(modgq) y<=

% aln)| <(5 2 +@w* (g 5)lal
2E<p<y log X

The condition z*<p may be removed by a further appeal to Theorem 1,
and the proof of the corollary may be completed by considering separately
the cases @<z, Q>x'°

2. Further results.

The following result widens the uniformity in Theorem 1 at the
expense of replacing @Q*(log x)*** by @*(log @)**.

THEOREM 2. If ¢>0, then

5 max| ¥ a.c.(n)y(n) 2<<(1:1'+Q“(10gQ)“”)"§ @],

(qu)Ql ¢(q7‘) 2(mod ¢) v—u<H |u<n<o =—oo
q,7)=

uniformly for H>Q>2, and all square summable sequences of complex
numbers a..

The logarithmic factor may be reduced a little.
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COROLLARY.

*
max
D<Q x(mod D) v—u<H

£ el <(Hg e gt

uniformly for H>2, Q>2.

The proof of Theorem 2 is an exercise in duality. It depends upon
the following result.

LEMMA 5. (i) If the positive integers r; are prime to D, j=1,2,
and y is a mom-principal character (mod D), then

1/2 (7'1"'2)2
Z ool <DV D g Sy

uniformly in y.
(ii) With the same restrictions upon the r,, and 1T FETs,

o(D (1-1/,-2)
& el B

uniformly in y, where o(D) denotes the number of distinct prime divisors

of D.
(iii) For positive integers r and D, with (r, D)=1,

Sle.(m)P=yg(r )9‘( D) | 0(2(r)?)

n<y
uniformly in y.

Proor. These results are readily obtained by employing the rep-

resentation
c.(n) ( >d
d |r d|n

and applying the Pélya-Vinogradov inequality.

Proor OF THEOREM 2. Define

) :__—C'(n) _q_ e
pim = (5i) 1o
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one function ¢; for each pair (r,y), with y a primitive character (mod g),
and 7, ¢ coprime integers satisfying ¢qr<@. There are therefore at most
@’ such functions. It follows directly from Lemma 5 that for j=k

M) T ¢,mduln) <Qlog Q)+
uniformly in ¥. Moreover

(2) Zld:m) =y +0(@Q).

Choosing a pair of reals u,, v;, for each j, to satisfy v;—u;<H, we
see that the inequality of the theorem asserts that

Y

J

> agm)| <(H+QUog @) 5 |af

uj<ngvj

It will be enough to establish the dual inequality

z

n

> en| <(H+@(og Q)T

uj<ng1rj

for all complex ¢;,, The sum to be here estimated is an Hermitian form
in the variables ¢,, and does not exceed 23" |c;|> where 2 is the largest
eigenvalue of the associated matrix. In particular 2 lies in one of the
Gershgorin dises

= T pml|<z| = amdm)|.

Appeal to the inequalities (2) and (1) completes the proof.
It has been known for some time that from an inequality of Large
Sieve type, say,

*

% aqn)| <@+@)Za.l

n<y

D<Q x(n%d D)
one may derive a maximal variant

*
max
D<Q x(mod D) y<=

= an)| < @+@) £ a. log2+))"

n<y

An example is stated in Montgomery [18] p.807. An earlier example
for quadratic character sums, using Fourier analysis in the complex
plane, may be found in Elliott [3]. Indeed, for Fourier analysis on finite
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fields results of this type go back at least to I.M. Vinogradov’s work
on power residues.

Improving on a result of Uchiyama [21], Montgomery [18] proved
that for points z; (mod 1) which satisfy |z;,—=;||>0>0 whenever i#j

Mtk . 2 M+N
(3) S max| Y a, exp(27rm,-n)l KN+ X la.l?
7 k<N |n=M n=M
and deduced the corollary
X M+-k 2 M+N
@ > max > % aqm)| <N+Q) L [af
D>Q k<N yx(mod D)|n=M n=

These inequalities may be compared with

2 ©
(5) > max | X a,.exp(erix,—n)l <(H+07'logo™) ¥ la.)®
i v—u<H | u<n<y n=—co
and
E3 2 o
) > omax > |5 agn)| <(H+6@'logQ) ¥ |a.f
D<Q v—u<H y(modD)|u<n<v n=—co

of Elliott [8], valid for all square-summable sequences of complex num-
bers a,. In applications to the study of arithmetic functions the uni-
formity of (5) over all intervals (u,v] plays an important role. I after-
wards realized that a result of this type may be deduced from
Montgomery’s inequality (3). Each pair of reals u,v with v—u<H must
belong to one of the intervals (rH, (r+2)H] where r=0, =1, +2, .- -.
The sum in (5) does not exceed

43 S max| ¥ acexp@rizn)| < (HA5Y) S ad

r=—c0 j k<2H |rH<n<rH+k n=—co

since

2 > la.’=2 X |a.|*
r=—oc0 rH<n<(r+2)H n=—co

The upper bound factor H+d'logd™' in (5) has been replaced by

O(H+07"). This improvement has been bought at a rather high price,

however. The proof which I gave of (5) is quite elementary. The

mainspring of Montgomery’s proof of the maximal inequality (3) is Hunt’s

quantitative development
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i a, exp(2rian) 2da<< % |a.|?
n=1

1
S max
r=1

0 k<N

from Carlson’s proof of the almost sure convergence of the Fourier
series of functions of the class L*0,1). Similar remarks can be made
concerning inequalities (4) and (6).

In applications to the study of character sums over primes, the
extra factor log@ in (6) is not particularly significant.

The inequality (6) suggests that the term @°(log @)'*¢ in Theorem 2
should be replaced by something more near to @ Improvements of this
kind in the study of the Large Sieve are generally effected by moving
to additive characters. With the maxima under the summation over the
primitive characters to a given modulus that procedure seems no longer
viable.

Disregarding this difficulty, in order to lower @*+* in the Corollary
to Theorem 2 to @*** a natural approach would be to investigate the
analogue of the inequality (3) when the innermost variable n is restricted
to prime values. Suppose that for some c¢>1

/ q

(7) > 2 | X a,exp(2ripbg™

9<Q b=1 | p<s
(b,q)=1

2
<(32-+@)Z Jal
log p<s
where ’ indicates that ¢ runs over a selection of the positive integers
not exceeding @. The innersums over the b in (7) have the alternative
expression
q d 2
(st s 4)
h=1\d|q d p<z
p=h(mod qgd™ ")
Since no prime in the range @<p<x will satisfy p=q (modqd) with
d<g<@Q,

Z’ £*(q)
7<Q q

2 a,

Q<p<x

The choice a,=1 shows that for Q< (x/logx)"s, the sum > /p*(q)q™! is
bounded uniformly in x. This is a severe restriction upon the moduli q.
An improvement of the following result would therefore seem to require
a severe reformulation.

THEOREM 3. Let ¢>0. Let x;,,5=1,---,J be real numbers (mod 1)
that satisfy |m(x;,—x;)|=0>0 for i#j and 1<m<M. Then



Large Sieve 159

2 o

3 max| ¥ a,,exp(Zn'inx,-)l <<<HH (1—l>+Msa-llog5—1 S |a?

=1 v—u<LH | ungv p|P p n=—co
(n,P)=1 p<M (n,P)=1

uniformly for H>1, M>1, integers P, and square-summable sequences
of complex numbers ..

Proor. For each j choose real numbers u;, v,, with v;—u;<H, and
define

exp(2rix;n) if u,<n<wv,,
tj n) == .
0 otherwise.

Consider the dual inequality

-

o 2 J
8 s= ¥ |Ztme| <o Zle,
(n,P)=1

1

]

J

required to be valid for all complex ¢;. If o¢(n) is real, >1 whenever
(n, P)=1, and is non-negative otherwise, then

©)

Since |c;6| <(lc|*+|ckl?)/2 we see that a permissible value for p is

(10) max( £ omtmi+X| £ otntm)am l)

1<k<T\ n=—co j
J

Adobting the sieve device of Selberg, we replace o(n) by

(za)

where the real numbers 4, vanish unless d<z and d is made up only of
powers of the primes which divide P. Then for j+#k a typical innermost
sum at (10) has the form

!
> Auda, > exp(2ri(x; —x,)n)

dl,dZSZ n=0(mod d;),i=1,2.

where the innersum is taken over the intersection of the intervals (u;, v;]
and (u,,v,]. Since the terms of this sum are in a geometrie progression,
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it does not exceed (Sinz|(z;—=)[d,,d.]l)'< (2| (x;—x)[ds, d,]|)~* in ab-
solute value. The final (multiple sum) in (10) is

J
X N Z Nl (@ —mi)[dy, o)~
dy,do<z ;:’t

If z<M'* the hypothesis concerning the points x; ensures that the in-
nersum here is at most
2., (s0)7' <367 log o7

8<8™

The sum involving |f,(n)|* arises from a diagonal term in the natural

matrix representation of the operator underlying the inequality (9). It
does not exceed

om)= 2 Aida, 2 1.

up<n<up+H dy,dy<z up<n<up+H
n=0(mod d;),i=1,2

An elementary argument gives for the innersum an estimate H[d,, d,]"'+
0O(1). Thus

p=H ¥, tulu_

1 1
dy,dg<z [dl, z] +0<6 10g6 Z ‘2d12d21>

is possible.

The first bilinear form in the A, arises when the method of Selberg
is applied to estimate the number of integers, in a given interval, which
have no prime factor in common with P. An extensive account of the
theory of the Selberg sieve may be found in Halberstam and Richert
[17], and Motohashi [19]. Here it will suffice to employ the short account
given in Elliott [5], Chapter 2. We set z=M*? and choose for the 2,
those values which minimize the bilinear form when P is replaced by
the product of those primes ¢ which satisfy qugM°2,q|P. In the
notation of [5] we have r=M¢, and it will be enough to know that
|24 <1 for all d, and that if ¢ is fixed at a sufficiently small value, then

Ay Agy < 1 >

<3TII.(1—=)
dldzzs [dxy 2] psM‘Z P
Since

i 1——1—>:exp<— > l+O(M-‘2)>=exp(—2loge+0(1))
D

M Met<psu P
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we see that the inequality (8) holds for some

p<<H}|'[ <1———>+M‘ “tlog ot
<M

The assertion of the theorem now follows by duality.
As an application of Theorem 3, let p, ¢ denote primes. If ¢>0 then
q—1

> max
Qe<g<Q b=1 v—u<sH

+Q“E>Zlaplz

> a,exp(2ripbg~! >| <<(

u<lp<Ly

log

For any modulus D

2 D

D *

D & saaml< o Za,,exp(2m'an“)|2
¢(D) vmod D) | n<= oL, i<
so that
2+¢ 2
Zomex 3| 2 e (gt Slal

g prime

Combining this result with the corollary to Theorem 2 gives

THEOREM 4. Let ¢>0. Then

> max
9<Q v—u<H y(mod )
g prime

> a,x(p)

up<y

2
H AV
<<< log H +4 >E’z‘la”|

uniformly in Q>1, H>2 and complex numbers a,, one for each prime p.

For values of @ large in comparison with N, Wolke [22] showed
that for prime moduli the term @* in Lemma 1 may be decreased to

Q*(log @)+

3. Applications to arithmetic functions.
An inequality of the form

TS| T oa-—-T

1<Q p= r(mod ) ¢(q) p<z

(324D )T lo,P

where ¢ runs through prime moduli and D is an unspecified function of
@ may be found in Elliott [4], where it plays an essential rdle in the
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characterisation of those real additive functions f for which the second
moments

[w]“ﬂg |f(n+1)—f(n)[*
are uniformly bounded. Most important in that application is that the
leading term in the upper bound factor be z/logx, and not x.

In a subsequent paper [6] I gave a method which shows that (11)
certainly holds with @° in place of D. Because it employs reasonably
good estimates for the number of zeros of Dirichlet L-funections in the
critical strip, this method cannot be regarded as elementary. However
it will give also the uniform result

%

max
d<Q y(mod d) y<=

= aulp)| <(3 2 +@)E la,

p<y log X

Without the maxima the results of Bombieri and Davenport [2] (see for
example Elliott [7], Lemma (6.3)) enable Q°** to be replaced by @**.
These partial results for prime variables are now superseded by the
corollary to Theorem 1.

Maximal interval versions of the large sieve play an important role
in the derivation of the inequality

(12) S glg maxmax| ¥ f)——1- T S|
q<xl/2—¢ (r,q)=1 y<=z nzrzﬁ(u)d » ¢(q) (n’:qs)‘I:l .
K x (log Iog x)“ E M
log X 9<z q

for additive functions f, with prime-power moduli ¢q, Elliott [8]. In-
equalities of this last type may be applied to the study of the differences
of additive functions f;, j=1,2,

x! ; |fil@n+b)—f,(An+B)|*,  a>1, aB+Ab.

Maximal large sieves play an equally important réle in the deriva-
tion of analogues of the inequality (12) for multiplicative functions g,
especially those which are restricted only by |g(n)|<1 for all positive n,
Elliott [10], [11], [12], [13]. Here
2

(13) > p max max| » gn)——— X g(n)

1
4 1/2— (r,p)=1 y<z n<y n<y
(log m)4<p<sl/2—¢ . é(p) =
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xZ

(log x)?

is typical. If in Elliott [10] we apply the corollary to the present Theorem
1, rather than the Lemma 4 used there, then we may decrease the factor
(log log x)* in this upper bound to (loglog x)

The inequality (18) may be applied to the study of the correlations
of multiplicative functions

LK (log log z)*

'Y gi(an+b)g.(An+ B), aB+ Ab,
n<r
Elliott [9], [14], and these in turn to questions in Probabilistic Number
Theory concerning the characterisation of renormalized additive functions

8@ fantb) —a@).  aborab, fe)>0

with asymptotically measurable value distribution over long intervals
1<n<z of integers n, Elliott [9], [15].

It should be emphasized that for these applications a very important
feature of the inequalities (12) and (18) is their wide generality. Investi-
gations of the spectral radius of the underlying operator shows that for
(12) a factor z/log x would be best possible. It seems likely that for (13)
an upper bound < x*(logx)~? might be best possible. In particular, since
only one or two powers of logx are being saved over trivial bounds, it
is essential that any maximal Large Sieve inequalities applied during the
proofs do not have the traditional logarithmic factors.
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