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The Fourier-Sato transformation of pure sheaves

By Syoiti NINOMIYA

§0. Introduction.

Kashiwara-Schapira introduced the notion of pure sheaves in [4] in
order to calculate the shifts which appear when contact transformations
are applied to sheaves. The purity of a sheaf describes the obstruction
for the prolongment of its sections across critical points of Morse funec-
tions and played an important role in studying R-constructible sheaves and,
in particular, their index theorems (see M. Kashiwara [3] and P. Schapira
and N. Tose [7]). Under the assumption of purity, the obstruction is
expressed as cohomology groups, which can be calculated with two mi-
crolocal data, the Lagrangian variety associated to the Morse function
and that of the micro-support of the sheaf. Then we use the inertia
index of three Lagrangian planes. Kashiwara-Schapira studied the
functorial properties of pure sheaves by several fundamental operators
in [4]. The Fourier-Sato transformation is a geometric counterpart of
Fourier transformation, which is introduced by Sato et al. [6] when they
constructed the sheaf of microfunctions. The Fourier-Sato transforma-
tion of a conic sheaf on a real vector bundle E is a conic object on the
dual bundle E*. In the category of F, this transformation is closely
related with the Gauss sum, etec.

In this paper, the author calculates the Fourier-Sato transformation
of pure sheaves. In §4 we have the result and the proof. In §5 as
a corollary of this result, we obtain another proof of the proposition by
Kashiwara-Schapira [56] which asserts that the Fourier-Sato transform
of a perverse sheaf is also perverse. J. L. Brylinski proved analogous
propositions in the algebraic category [1, corollaire 7.23] and in the
category of F, [1, corollaire 9.11]. The important point of the present
paper is that we use only techniques purely in the real domain. Thus
the proof is independent of the monodromy structure of perverse
sheaves.

The author would like to express his sincere thanks to Prof. T. Oshima for his warm
guidance, to Prof. N. Tose for his advice on the direction of study and to Dr. N. Honda
for his advice and encouragement.



186 Syoiti NINOMIYA

§1. Notation and conventions.
The following notation is taken from [4].

1.0. Throughout this paper, let A be a commutative unitary ring with
finite global dimension, Sh(X) the abelian category of sheaves of A-
modules on a topological space X, D(X) the derived category of Sh(X).
We denote by D*(X) the full subcategory of D(X) consisting of com-
plexes with cohomology bounded from below and by D!X) the full
subcategory of D(X) consisting of complexes with bounded cohomology.
For an object & of D(X), we denote by [k] the object obtained by
k-shifts; that is to say H/(F[k])=H"**(F) and di,,=(—1)*ds**. Sheaves
on X are identified with complexes of D(X) which are concentrated in
degree 0. We use usual notation of derived categories and sheaf coho-
mology. Refer to [4] for functors, Hom(-, ), -@-, fy4 [\ fu f'\ Iz
B+, () Tz(-, -), Ty(-), orientation sheaf ory, relative orientation sheaf
ory;x and constant sheaf M.

1.1. TX, T*X, TyX, TiX, TX, T*X, T,X, T1X.

For a C=-real manifold X, TX (resp. T*X) denotes the tangent
(resp. cotangent) bundle to X. If Y is a submanifold of X, TyX (resp.
T%X) takes for the normal (resp. conormal) bundle to Y. 7X, 7*X, Ty X
and T%X are defined by

TX=TX\TxX, T*X=T*X\T%X
T X=TyX\T,Y, TEX=TEX\T%Y.
1.2. @, p,.

For a C®-map between C~-real manifolds f: Y—X, @, and p, are
defined by
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1.3. a.

For a vector bundle E—Z, a is an antipodal map in E. If G is a
subset of E, G is the image of G by this map.

1.4. Micro-support.
We recall the definition of micro-support for sheaves.

DEFINITION ([4]). Let X be a C=-real manifold and & an object of
D*(X). Then the micro-support of &F, denoted SS(), is a subset of
T*X defined as follows.

Let U be an open subset of T*X. Then

UnSS(F) =@

{ for any real C*-function ¢ on X,
(x,;d(x,)) € U implies (RP(¢(r)g¢(zl))(g))11:O-

1.5. D*(X;0Q).

Consider the same situation as above. Let £ be a subset of T*X.
Then S(R2) is the set of arrows in D*(X), given as follows. f:%—G
belongs to S(Q2) if there exists a distinguished triangle

I
Effg

SS(H)YNR=y.

The set S(2) is a multiplicative system of D*(X). Then D¥(X;Q) is
defined as the localization of D*(X) with respect to S(Q2).

which satisfies

§2. The Fourier-Sato transformation.

2.1. We recall the definition of the Fourier-Sato transformation from
[4]. The notion of Fourier-Sato transformation is due to Sato-Kashiwara-

Kawai ([6]) although they defined it for sphere bundles. Let E5Z be
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a real vector bundle with finite fibre dimension over a locally compact
topological space Z and D},.(E) be the full subcategory of D*(E) con-
sisting of complexes whose cohomology groups are locally constant on

any half-line of E. Let E*5Z be a dual vector bundle of E. Set

D+= {(x, y) € ExE*|(x, y>go},
V4

D-={(s,4) € Bx E*|<z, yy=0}.

Consider the diagram

EXE*
z
AN
E* D* E.

For an object F of D},.(E), we define the Fourier-Sato transform &
of & by

G =R RTp+(07'F) =R (07'F) o~

2.2. Micro-support of <.

Let (2) be a coordinate system of Z, (z,x) that of E and (z,2; ¢, &)
the associated coordinate system of T*E. Let (2,%) be a coordinate
system of E* and (2,y; {,») the associated coordinate system of T*E*
for which the canonical pairing between E and E* is given by

@Y= vy
and for which the canonical 1-forms of T*E and T*E* are given respec-
tively by

wp=<{, dz)+<§, dx)
and

wg.=<{, dz)>+<7, dy).
Then the canonical isomorphism
O, : T*E —» T*E*
is defined by
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(2,25 C, &) —> (2,€; €, —2).
Under the above situation, we have
THEOREM 2.2.1 ([4, Theorem 5.1.4)).
SS(FA) =0 (SS(F)).

2.3. Another proposition from [4].

PrOPOSITION 2.8.1. Let Y be a real C>-manifold and E a real vector
space with finite dimension. Let G be a closed convex cone (not necessarily
proper) in E with 0€G. Set X=YXE and X;=YXE;. Here E; 1s
the space E endowed with G-topology (see [4] for definition). Let ¢ be
the natural continuous map

é: X —> X

Then following claims hold.

(a) For FcOb(D*(X)), SS(¥F) is contained in T*Y X (EXG°") if
and only if the morphism ¢ 'ReF—F is an isomorphism.

(b) For & cOb(D*(X)), we have

"R, F=F in D*(X; T*Y X (ExInt G°)).

§ 3. Pure sheaves.

We recall the definition of pure sheaves from [4].

3.1. Inertia index 7(4;, 4;, 4s).

Let (E,0) be a real symplectic finite dimensional vector space; i.e.
¢ is a non-degenerate skew symmetric bilinear form on the finite dimen-
sional R-vector space E. Let p be a linear subspace of E. Set

pt={xcE| o(x,y)=0 for Vycp}

Then p is called Lagrangian if pot=p, involutive if p‘cCp and isotropic
if ptDp.

DEFINITION 3.1.1 ([4]). Let A4, 4, 4, be Lagrangian planes of E.
Here the quadratic form @ on A,PA.PA; is defined by

Q(21, Tz, T3) =0(%y, L) +0(2, Xs) + 0 (%5, 1),
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for (x,, 2, ;) € 2,PPA,. Then the index 75z(4y, 4, 4,) is defined as the
signature of @, that is the difference of the number of positive eigen-
values and that of negative eigenvalues of Q.

3.2. Properties of the inertia index.

In the following part of this paper, we write = for z; if there is
no fear of confusion. Let p be an isotropic subspace of E and 2 a sub-
set of E. Then 4 is defined by

F#=((2Np*)+p)/p.

ProrosiTION 8.2.1 ([4, Proposition 7.1.2]). Let 2, be Lagrangian
planes of E. Then we have following statements.
(i) For all s€ &,

T(41, Az, 45) =SEN(8)7 (A1), Asys Auisy)
holds.
(ii) If p is a subspace and satisfies
PC (AN A)+ (2N A) + (2N 4y),

then we have
TE(ZI’ 22» 23) :TE”(M, 8, 25)

In particular if

AN (A4 25) C (AN A) 4+ (AN A)
holds, we have
‘L'(Zl, 22, 23) :0.

3.3. Definition of pure sheaves.

Let X be a C=-real manifold, = the projection T*X—X, 4 a
Lagrangian submanifold of T*X, ¢ a real function on X and Y;=
{(x,dd(x)); x€ X}. For any point p in T*X, T,T*X has a canonical
structure of symplectic vector space. Then three Lagrangian planes in
T, T*X are defined by

A(p)=T,(z="'x(p)),

2,1 (p) = TpA
and
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2(0)=T,Y,.

DEFINITION 3.3.1. Under the above situation, we say that ¢ is
transversal to A at p if ¢(z(p))=0 and if Y, and A intersect transver-
sally at p.

LEMMA 3.832. Let A be a Lagrangian submanifold of T*X, p a
point of A and &F an object of D*(X). Assume that in a neighborhood
of », SS(F)c A holds. Let ¢ be a real function on X and transversal
to A at p. Let j be a number which satisfies

jz%(dim X+dim(2(p) N 24(p))) mod Z.

Then the cohomology group
Hi+(ll2)r¢(p)(g) ”
z(p

(x(z) 20}

does mot depend on ¢ where

74(D) =7(4(D), A4(D), A4(D)).

After these preparations, we can define pure sheaves.

DErFINITION 3.3.3 ([4]). Let A be a Lagrangian submanifold of T*X,
peA, and S €Ob(D*(X)). We assume SS(¥)cA4 in a neighborhood
of p. If we have, for a real function ¢ transversal to 4 at p and A-module
M,

. M, for jz—d—{—l dim X+lr¢(p);
Hiwlmx)gm(g)n(m: 2 2

0, otherwise

with 74(p) =7(2,(p), 2,(p), 44(p)), then we say that &F is pure of type M
with shift d along A at p. :

3.4. Properties of pure sheaves.

We recall properties of pure sheaves from [4].

ProrosiTION 3.4.1 ([4, Proposition 7.2.8, 7.2.9]). (i) Let 4 be a
Lagrangian submanifold of T*X, p a point of A and F an object of
D'X). Assume that F 1is pure of type M with shift d along A at p
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and that Exti(M, A)=0 (j#0). Then RHom(¥, Ay) is pure of type
Hom(M, A) with shift —d along A* at p°.

(ii) Let A; be a Lagrangian submanifold of T*X,, p; a point of
A; and F; an object of D*(X;). Assume that F; is pure of type M; with
shift d; along A; at p; (=1,2). Let q; be the j-th projection on X;XX,.

(a) If Tor;(M,, M,)=0 for Yj+0, then q;‘fflé)qz‘lffz 18 pure of type
M,QM, with shift d,+d, along A, X A, at (P, 0.).

(b) If Ext/(M,, M})=0 for Y50, then R Hom(q'F,, ¢7'F,) is pure
of type Hom(M,, M,) with shift d,—d, along A;X A, at (pf, p,).

Let f: Y—>X be a C°-map between C=-manifolds.

THEOREM 3.4.2 ([4, Theorem 7.3.1])). Let A be a Lagrangian sub-
manifold of T*Y, p a point of Y X T*X and G an object of D*(Y). Assume:
X

(i) f 1s proper over supp(Q),

(ii) ps 1s transversal to A at p and @p;'(A4) is isomorphic to a
submanifold A, of T*X,

(i) 7' (SS(Q)) Nw;'w,(p)C{p},

(iv) G is pure of type M with shift d along A at ps(p).

Then A, is a Lagrangian submanifold and R fi(G) ts pure of type
M with shift d’ along A4, at @,(p) where

d'—d=§(dim X—dim Y) —%r(zo(mp)), Aalps(D)), 0557 (Ao(@ (D).

THEOREM 3.4.3 ([4, Theorem 7.3.3]). f, X, Y are the same as those
of Theorem 38.4.2. Let A be a Lagrangian submanifold of T*X, p a
point of YXA and F an object of D*(X). Assume:
X

(i) f 1s non-characteristic for F,

(ii) @, ts transversal to A at p and p,@;(A) s isomorphic to a
submanifold A, of T*Y,

(i) @7 (SS(F) N oo, (p) p),

(iv) & 1is pure of type M with shift d along A at w,(p).

Then A, is a Lagrangian submanifold and f(F) is pure of type
M with shift d along A, at ps(p).

THEOREM 3.4.4 ([4, Corollary 7.3.4]). Let X and Y be C*-real mani-
folds, q, and q, the projections from XXY to X and Y respectively and
p and p, the projections from T*(XXY)=T*XXT*Y to T*X and T*Y

C L e
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respectively. Set pi=p;oa (j=1,2). Let A be a Lagrangian submanifold
of T*(XXY), Ay a Lagrangian submanifold of T*Y and p a point of
A, Set py=py(p) and pyx=pi(p). Let K be an object of D' XXY) and
F am object of D*(Y). Assume:

(1) D4 18 tramsversal to Ay at p and p;'(Ay) N4 ts isomorphic to
a submanifold Ay of T*X by pi,

(ii) K s pure of type M with shift d along A at p,

(iii) & is pure of type N with shift d' along Ay at py,

(iv) q is proper over supp(X)N g:'(supp(SF)),

(v) (9" (p.) NSS(K)c{p},

(vi) (SS(JC)TgysS(EF)) N(TEXXT*Y)C TEX X TEY holds in a meigh-
borhood of mx(px).

(vii) Ext/(M, N)=0 for Vj+0.

Then R iR Hom(K, ¢:* F) is pure of type Hom(M, N) with shift d”
along Ay at px where

=& —d—L dim v+ L1c
2 2

and

=7(4(p), 24(P), A(PX) X 24,(Dy))
=7(A(pr), P(24(P) N (1) HA(Px))), A4, (Dx)).

This proposition describes the contact transformation of pure sheaves.

3.5. Microlocal uniqueness of pure sheaves.

The following fact is important. ([4]) Let < and G be objects of
D+(X). Assume & is pure of type M with shift d along 4 at p. Then
G is pure of type M with shift d along 4 at p if and only if

9=¢ in D*(X;{p)
holds.

§4. The Fourier-Sato transformation of pure sheaves.
4.1. The Main Theorem.

THEOREM 4.1.1. Let E—Z be an R-vector bundle with finite fibre
dimension n over a locally compact topological space Z and A a Lagrangian
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submanifold of T*E. Let & cOb(D},.(E)) and p€ A. Assume F is pure
of type M with shift d along A at p. Then the Fourter-Sato transform
GN of F is pure of type M with shift d’ along A* at p* where

p*=0x(p),
A*=Py(A),

and

d’:d——g+%f(lo(p)y D5 (3,(p*)), 14(p)).

Proor. Identify Z with the zero sections of E and E*. Set
E=E\Z, E*=E~Z,
S=E/R*, S*=E*R*
Ds={(@,v) € B B*| <@,y 20},
V4
Dgz{(x,y)EExE*I@, y>=0},
zZ 1

Dy={(z,v) € S S*| <@, )20,

Dgz=Dy X (E* ><157>,
E‘;E z

DsE:Ds X (S*XE>.
SXS* z

XS
Z
First we give three lemmas.

LEMMA 4.1.2. Consider the following diagram.
Then for an arbitrary object F of D:..(E), we have

Fre =F (R fi)™).

Here for F € Ob(D4...(E)) and G € Ob(D*(S)), F*° and G"S are defined by
I =R pux RTp ' F
G =R pyy RTpps'G.
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1
E * § E D D;
li/ D11
E* E
81 83
1
D21
f2 'l:z
S * >z< E D) .Ds B
P22
S * Sz S 84
Daz DPs1

/ .
S*x8 '« ",
4

Proor oF LEMMA 4.1.2. Since RI‘DS(-):R'L'Q*'@'Q(-), we have

(4.1.2.1) SR [1x)"S) =17 RDsoye RTp ' Rf1sF
=f: Ry Ris*iépil Rfl*g

From the fact that s, is a topological submersion of codimension 1, we
get, by Poincaré-Verdier duality theorem,

(4.1.2.2) p;ll Rf]*ﬁ’@ﬁ(st;g”(skés)[l]:RSZ* Si piﬁlRfl*g.

Now we remark that the following part of the diagram in Lemma 4.1.2
is a Cartesian diagram.

S*XE(’L_Z Dsg;
Z

S

S*xS 2 D
V4

From (4.1.2.1), (4.1.2.2) and this fact, we deduce
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(4.1.2.8) fz_l((fo*g)As)@ﬂ(s*gmus*;sll]
=f2"' RDyy Riay 15 Reoy 8:05" R4S
=13 RDss Riay Rsyy isipa! Rf1xF
=f:" RDus Rox Riny tisi0si" Rf1TF
=f2" RDus Riay s:p5" Rf1F.

Since py is a topological submersion of codimension (n—1),
(4.1.2.4) pat Rf1*g®g"_‘_<s*>z<sus[n—1]:17;1 Rfl*g-
Remarking that s, is a topological submersion and that the diagram

S*XE—pm—>E
z

b

S*x S, 8

is a Cartesian diagram, we have, by (4.1.2.3) and (4.1.2.4),

(4.1.2.5) fz—l((Rfmg)AS)@@(S*éE)/S[n]
=f7" Rpuy Riag 128100 Rf15F
=f2" RDuzs Riny 1385 R8oypnF
=f3"' Ripass Riz*iépéxg(@%(s‘ém/<S~ES)[1]-

Now s, is a topological submersion of codimension 1 and the diagram
EXE* <« D,
V4
Sll 83l
S* XE (L DsE
z

is Cartesian. Thus we have from (4.1.2.5),

S (R AT) ) Dor o sln]
=f3" RDsx Rioyts RSl*Sipélg
=f2_1 Ry Riz* RSa*iiSipéx
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:fz_l Rppes Ry Ril*":isiphg
=/7" Rfox ROuzs Risgiisivh
=Rpux Ril*ﬁpilg: (*).

Since py; is a topological submersion of codimension 7, we have, more-
over,

(*) :Rplz* Ril*iipl_llg;'@%“g.)élh,t[n]

=Rpzs RTp i F Qor
=Fr°Qor

—(BE*X E)/E[n]'
Z

(E*xE)/E[n]
z

Then we have

F (Rfu)S) =7, |

LEMMA 4.1.3. Consider the diagram

Exxh D D,
z

(R
P12 N ‘P11
E* i E is
2 N
g1
D21
g: E*XE 25 Des
z
y : N
¥
E* iz E iy
X Ps1
E*XE > D,
V4

Then for an arbitrary object F of Df..(E),
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g lg)/\o

7 N

9:'¢:? qu*RI‘Zg — 9z (

1s a distinguished triangle where q, 1s the natural projection E BLLENY

and q, the natural projection B2,z

Proor or LEMMA 4.1.3. Remark that if ¢ is an open inclusion, ¢'
coincides with 77t Now ¢, ¢., 1%, %, 1; and 7, are open inclusions. Taking
into account of the fact that diagrams

ExxE <2 D,
z

{

E*XEoe—'h—DEE-
z

Ex 2 BrxE

p

g
E* < prxE

and ’
ExxE D

izi | ml

E*xXE <2 _ D,
Z

are Cartesian diagrams, we have by Poincaré-Verdier duality theorem

(4.1.3.1) (97'F)N° =Rproge RI‘DEpﬁ‘gflff
=Rpux Riwdivn'er'F
=RPuex Riwdiir pa'or’F
=RPux Rintidipa'er'd
=Rpuyii Riasdipa'gr’T
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=g: RDux Riuwdipa'gr'S

=g; RPay Rjz*jéiz_lps_l]g

=g: RDay Ri.sditipn'

=¢; Rpus RJ z*iij‘épzﬁlg

= 97" Rpuyts Risedivn'd

=95 Ryl R]‘DEp;llg

= 07" Rpys Rioyts RTp 00T

=g:' Rpus RT,, RT i
z

Apply the functor g;'Rpys RI'p, to the distinguished triangle

o p”\

RT E'xw)pm 1F — ps:

Then combining this with (4.1.3.1), we get the distinguished triangle

(gr'F)ne
+,1/ \
g:'¢:" Rgyx RIS —_— g;‘(ff’\). ]

LEMMA 4.1.4. Let (2) be a coordinate system of Z, (x) that of S and
(y) that of S*. Define two inclusions 1, : S* X S—S*X S and ,: Ds—S* XS
zZ

as they embed Z into the diagonal set of ZXZ; t.e.

S*XS3(z;2,Y)

4

> ((25 %), (2;¥) €S*XS

De3(2:my) — ((2:2), (2: 1)) € S*XS.

Consider the diagram
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S*x S “ - Dg
zZ
52 .
Gl 7:2 51
Sk P S¥xS n S.

Then for am arbitrary object F of D*(S), we have

Rﬁz* RPDSpflg®g(saés)/(s«xs)[‘—dim Z]
=Rp.s RTp 07T
(.e. g/\s®cﬁ(5*§3)l<s~xs>[_dim Z]=Rp.4 RPDspf]g)-

Proor orF LEMMA 4.1.4. Remark that #; is a topological submersion
of codimension (n—1) and that p, a topological submersion of codimen-
sion (n—14dim Z). Then by Poincaré-Verdier duality theorem, we get

RﬁZ*RI‘DSﬁflg®_OI(S*;S)/S[n —1]
=Rp,RTp BT
=R RisisiipiF
:Rﬁz*Ria*iéﬁpx_lgi‘-@ﬂ'(s*xS)/s[n —1+dim Z].
From this, we deduce
Rzy RPDsﬁl_lg@ﬂ'(s*ésms*xS)[_dim Z]
=Ry R’L'a*’iéiipflg
=RPus Ry RiggtiprF
=R Riz*iz!pflg
=Rp,x R 1. |

Now we enter into the Proof of Theorem 4.1.1.

1. Proof in the case that pe ANT*E.
Since p* ¢ SS(g:' Rgyx RT,YF) in this case, we have an isomorphism

(4.1.1.1) (g7 F)N =g (FN) in DHE: {p*))

by Lemma 4.1.8.
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Define

D=0y, 07/ (D)
As=w, 07/(4),

using the notation in Lemma 4.1.2. It is known by [4, Proposition 5.1.1],
that an object F of D*(E) belongs to Ob(Dj,.(E)) if and only if SS(F)
is contained in S; where S; is the characteristic variety of the Euler
vector field on E; ie. Sp={(?,x;( & € T*E| {x,&>=0} where (z,2) is
a coordinate system of E with the fibre coordinate system (x) and its
dual coordinate system ({,£). Then we may regard 4 as a Lagrangian
submanifold of T*S, and this coincides with As. Since p is in T*E, &
coincides with g% in a neighborhood of 7(p). Consequently gi'%F is
pure with shift d along 4 at p.

CLAIM 1. Rfiw9i'F is pure of type M with shift d along As at ps.

Proor oF CLAIM 1. Let G€Ob(D*(S)), and assume f7'§ is pure with
shift d along 4 at p. We have an isomorphism
filG=gr*F in DHE;{p).
Then by Proposition 2.3.1 we have an isomorphism
G=Rfix97'F in D*(S; {ps}).
Remark that pure sheaves are micro-locally unique (see 3.5). Therefore
it is enough to show that if GeOb(D*(S)) is pure with shift d along

As at pg, f7'G is pure with shift d along 4 at p. Since E’LS is a
projection, f; is non-characteristic for G. Now since @, is smooth, @,
is transversal to p7/(4) at the point p,=p;'(p). Remark that p, is an
injection and @, (p,)=ps. Now we have

Pf,affll(/ls) =4
and
@71 (38(Q)) N o704, (10) C {10}

Then it follows from Theorem 3.4.3 (the theorem of inverse image of
pure sheaves) that f7'G is pure with shift d along 4 at p. M

CramM 2. If GeOb(D*(S)) is pure of type M with shift d along As
at ps, then G"S 1s pure of type M with shift d’ along A¥ at p¥ where
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pE=0s(ps)
Ag‘ ’—‘@s(/ls)
and

d'zd_l;_+%r<zo<p>, S (A(0%)), A4(P)).

This claim is essential. The proof depends on the fact that con-
sidered on S, Fourier-Sato transformation is a contact transformation.
This claim is proved by use of Theorem 3.4.4 (the Theorem of contact
transformation of pure sheaves).

Proor or CrLAIM 2. Consider the following diagram and that of
Lemma 4.1.4.

T*(S* % S)

YA

fesx  Ag=T5(S*xS)  T*S

Here Ds is embedded into S*X S in the same way as Lemma 4.14; i.e.
the base space Z of Dy is embedded into the diagonal of ZX Z in S* X S.
Set

Ds={(z,y) € S* X8| <z, y>=0}.

Here (x) is the fibre coordinate system of S and (y) its dual coordinate
system. Remark that

Tgs(s*xS)zT;S(s*xS)

and
Rp.« RTp G =Rp,s R HOm(Af,S, pi'g).

In the following part, we show that the conditions in Proposition 3.4.4
are satisfied. Let (2) be a coordinate system of Z, (z,{) its associated
coordinate system of T*Z, (z,x) a homogeneous coordinate system of S,
(z,2;C &) its associated homogeneous coordinate system of T*S, (z,y)
the dual of (2,%) and (2,v;¢,») the dual of (2,2;(,&). We have

(2,2;C,8) €T*S & |x|=1, |0, {z,£)=0
(z,9;C ) €T*S* = |y|=1, |9|#0, <y, nd>=0
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and
(zlr zZv x, '.l/ 5 Cls CZ) 67 7]) € Tgs(S*XS)_—-AK
' { %1=2,, lxl———lyl———l, i+¢.=0,
3t e R\{0} s.t. &=ty p=tx.

Since Claim 2 is a local statement, we may take a neighborhood £ of
ps in T*S and may restrict Ag to Qs A¥ to D5(Qs) and Ax to Ps(Q5)* X Q5.
From now on, we work in the situation under this restriction. Thus we
have the equivalence

(zlc z?.* T, y N Cl’ sz E’ 77) e AK
zi=2, 2| =y|=1, §+E=0,

{HteR“ s.t. &=ty p=tx.

Then
7‘1|AK N AK — QS
is a diffeomorphism. In fact

Tila (22,2958 —C ty, ta) = (2, % ; C, ty)

and

(i) (225 €. 8) =(2.2. 3, l% 16 —C8 lele)
The map
i 4y + Ax —> D5(25)

is also diffeomorphic. Let pss=(r|s,)'(ps). Then 7|, is transversal
to As at pgs since 74|, and 73|, are diffeomorphic. Moreover we have

"'{élAK(("'liAK)hl(As))Z@s(/ls)
and A, is pure with shift %codim sxsDs along Agx. It is clear that »,

is proper on supp(dsy) N77'(supp(4)). Thus we can apply Proposition
344 to this situation. Then Rp.« R Hom(A4;,, pr'G) is pure with shift
d” along A% at p¥ where

d”:d—% codim g ﬁs—% dim S+ —;—r
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:d—%n—dim Z—I—%r
and
t=1(A(ps), D5 (A(PF)), A45(Ps))-
By Proposition 3.2.1 (ii), we have
t=1(A(p), P&'(4(P*)), 24(p)).
Now, from Lemma 4.1.4, we deduce

GMN[ —dim Z]=Rp.x RI‘DSpflg
=Rp.« R Hom(4,, pi'G).

Finally we have Claim 2. [
From Claim 1 and Claim 2 we get the following claim.
(Rf1597'F)"S is pure of type M with shift

d’:d—%—i—%r(lo(p), D7 (A(p%)), 24(p))

along A¥ at p¥.
From Lemma 4.1.2 we have

(gl_lg)/\o :fEI(Rfl*gflg)As.

Since f, is a projection, we can apply Theorem 3.4.3. Then we find out

(97'F)r° is pure of type M with shift d’ along A* at p*.

Considering

the last statement, (4.1.1.1) and the microloeal uniqueness of pure sheaves
(see 3.5), we find g;'(F*) is pure of type M with shift d’ along A* at p*.
Now <7 coincides with g¢;'(%”) in a neighborhood of =z(p*) because
p* € T*E*. Therefore I~ is pure of type M with shift d’ along A* at
p*. Thus the proof of the theorem is finished in the case of pe T*E.

2. Proof in the case that pe€ T*ENT*E.
Define &4’ € Ob(D*(E X R?) as follows.
Z
G’ = gZ(O)@Zﬂ-
Remark
SS(F") =SS(F) X T% R X TER.
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Then, from Proposition 3.4.1 (ii), it follows that <’ is pure of type M
with shift d+% along Ax THRX TER at (p, (0:1), (1;0)). Now we can

apply the above result. Then we have $'* is pure with shift

A7 =dp L _nt2 L 1o ), Oslatlte®@™), 2, (0))
2 2 2 'z z

along A*X TERX TH R at (p*, (1;0), (0:1)) where
p'=(p, (0;1), (1,0)),
A =AXTHRXTER,
and
p'*=@E§R2(p')-
By Proposition 3.2.1 (ii), we have
Toxr(Ao(P'), Doxre(A(P™), A4 (P) =75((P), D5 (A0(D¥)), 24(D)).

Then

d"=d+§—"‘g2+%mzo(p), D5 (& (0*)), A4(0).

Since F'"=F" X ZzXZyl—1], it follows from Proposition 3.4.1 (ii) that
G~ is pure with shift

d—%-#-;—f(lo(l?), D5 (3(p¥)), 24(p))

along A* at p*. Thus the proof of Theorem 4.1.1 is completed. &

§5. Application.

As a corollary of Theorem 4.1.1, we prove that the Fourier-Sato
transformation of perverse sheaves with n-shifts are also perverse.

5.1. Perverse sheaves.

We do not recall here the definition of stratification, constructible
sheaves and perverse sheaves. Refer to [4] and [2] for these definitions.
We denote by D._.(X) the subcategory of D!(X) consisting of C-con-
structible complexes. For a complex manifold X, we denote by X&=,
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the real underlying manifold of X.

5.2. Perverse sheaves and pure sheaves.

First we have the following theorem from [4] which describes the
relation between perverse sheaves and pure sheaves.

THEOREM 5.2.1 ([4, Theorem 9.5.2]). Let X be a complex manifold,
G be an object of D% _.(X) and A=SS(F). Then the following conditions
are equivalent.

(a) < 1is a perverse sheaf.

(b) At any point of the mom-singular locus A, of A, F is pure
with shift 0.

5.3. Fourier-Sato transformation of perverse sheaves.

Let X be a complex vector bundle with finite fibre dimension n.
When we apply the Fourier-Sato transformation to objects of D*(X), we
regard X as XF and the objects as those of D+(X*%).

THEOREM 5.3.1. For an arbitrary object F of D'._.(X), F is perverse
if and only if FNn] is perverse.

This proposition was proved by Kashiwara-Schapira [5] and analogous
propositions in the algebraic category and in the category of F, were
proved by J.L. Brylinsky in [1, corollaire 7.28 and corollaire 9.11]. We
give a different proof by use of Theorem 4.1.1.

ProOF. Assume & is perverse. Sét A=SS(¥). Let p be a point
of 4,, By Theorem 52.1, & is pure with shift 0 along 4 at p. Since
¢ is perverse, we can regard A as T%X where Y is a smooth submani-
fold of X ([4]). Thus we deduce from Theorem 4.1.1 that &7 is pure
with shift d along A*=0xr(T3X) at p*=0@4r(p) where

2n , 1

d= _—2_'*'?‘[(20(1’)’ (D;;e(zo(p*))’ ZT*YX(p))‘

By Proposition 3.2.1 (ii), we have
7(4(D), @;R(X,,(p*)), A, x(p)) =0.

From Theorem 5.2.1 again, it follows that ~[n] is perverse. vice versa. [}
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