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The restriction homomorphism Res%: Wheg(X) — Whi(X)

for G a compact Lie group

Dedicated to Professor Akio Hattori on his sixtieth birthday

By Séren ILLMAN

Let G be a compact Lie group and H a closed subgroup of G. A
main objective of this paper is to prove the following result.

THEOREM I. Given a finite G-CW complex X there exist a finite
H-CW complex RyX and an H-homotopy equivalence

(1) 7: X — RyX

such that this construction is unique up to stmple H-homotopy type; i.e.,
if 7' : X>RiX 1is another choice then

(2) 0y =777 : RgX —> RpX
is a stmple H-homotopy equivalence. Furthermore we have that
(8) dim(Rz X )¥1i=dim X

for each closed subgroup H, of H, and the H-isotropy types occurring in
Rz X are exactly the same ones as in the H-space X.

Here 7~ denotes an H-homotopy inverse of » and dim denotes top-
ological dimension. The notion of equivariant simple-homotopy equivalence
is as defined in [3]. In order to put the above result into its right
perspective one should recall the following two facts. First, when
restricting the given action of G on X to the closed subgroup H, the
H-space X does not in general inherit an induced structure of an H-CW
complex, at least not in any natural way, see [8, Section 2]. This means
that we cannot expect to find a finite H-CW complex RyX that is H-
homeomorphic to the H-space X. Secondly, we recall that equivariant
Whitehead torsion is mot an equivariant topological invariant; i.e., there
exist H-homeomorphisms between finite H-CW complexes, that are not
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simple H-homotopy equivalences. In other words; we can have two finite
H-CW complex structures Y, and Y, on the same H-space Y such that
the identity map idy:Y,—Y, is not a simple H-homotopy equivalence be-
tween the finite H-CW complexes Y, and Y,. In the light of these facts
we see that Theorem I gives as precise information as one can expect.

We call such an H-homotopy equivalence 7: X—RyX as in Theorem
1 a preferred H-reduction of X. The existence of such a class of pre-
ferred H-reductions of X is proved in Section 6, where we also establish
relative versions of Theorem I. In particular we show that if (V, X)
is a finite G-CW pair and 0: X—R,X is a preferred H-reduction of X
then 6 can be extended to a preferred H-reduction »: V—RzV of V,
such that R;V contains RyX as an H-subcomplex. Furthermore, any
G-map f:X—W between finite G-CW complexes induces an H-map
Ryf: Ry X—>RyW between finite H-CW complexes, and Ryf is an H-
homotopy equivalence if f is a G-homotopy equivalence.

In Section 8 we define the H-equivariant Whitehead group Wh,(X)
of a finite G-CW complex X. We also show that if f: X—W is a G-
homotopy equivalence then the induced H-homotopy equivalence Ryf:
RyX—RyW has a well-defined H-equivariant Whitehead torsion
t(Ruyf) € Whg(X), in the group Why(X). Then we go on to prove in
Section 9 that the preferred H-reduction operation Ry respects equivariant
simple-homotopy type in the sense that it takes formal G-deformations
into formal H-deformations, see Corollary 9.2. This last- mentioned fact
leads directly to the existence of a well-defined restriction homomorphism

Res§: Whe(X) — Why(X).

In the last section of this paper, Section 10, we prove that if f:X
—W is a G-homotopy equivalence between finite G-CW complexes and
Ruf:RaX—>RzW is the H-homotopy equivalence induced by f, then

Resfi(z(f)) =t(Raf) € Wha(X).

In particular we see that if f: X— W is a simple G-homotopy equivalence
then Ry f:RyX—R;W is a simple H-homotopy equivalence.

The proof of the fact that the construction given in Theorem I is
unique up to a simple H-homotopy equivalence easily becomes involved
and messy. We have tried to make the argument clear by formalizing
some parts of it. The notions k-equivalence and A-map, and the technical
results concerning these notions, established in Section 8, serve this
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purpose. In Section 4 we prove three basic results concerning equivariant
simple homotopy type of adjunction spaces, and combined into one theo-
rem these results give Theorem 4.5. It is in fact essentially this result,
Theorem 4.5, that lies behind the uniqueness up to a simple H-homotopy
equivalence in Theorem I. In Section 5 we combine Theorem 4.5 with
the technical results from Section 3 into one result, which is in a form
that is convenient to use in the proof of the main result in Section 6.

The main result of this paper, Theorem 6.1, which proves the ex-
istence of preferred H-reductions, was announced in [7, Theorem C]. The
corresponding restriction homomorphism Res§: Whe(X)—>Why(X) is dis-
cussed in [7, Section 2]. (In [7] we denoted Ry X by esh,(X).)

A different approach to the restriction homomorphism between equiv-
ariant Whitehead groups is given in W. Lick [9].

We shall in a later paper prove that if X is a finite G-CW complex
and K<H<G, then the K-CW complexes R¢(RzX) and RxX have the
same simple K-homotopy type. Curiously enough this transitivity prop-
erty is a non-trivial fact.

A preliminary version of this paper was written while the author
was visiting the Max-Planck-Institut fiir Mathematik in Bonn (see MPI-
preprint nr. 89, 1989). The author wishes to thank the Max-Planck-
Institut fiir Mathematik for its generous hospitality.

1. Preliminaries

Let G be a compact Lie group. We will consider the basic properties
of G-CW complexes as well-known and use them without further refer-
ence. For example the equivariant skeletal approximation theorem, also
in its relative form, and the fact that a G-CW pair (X, X,) has the
G-homotopy extension property, are facts that are used freely in this
paper. The following result concerning different choices of characteristic
G-maps for a G-cell ¢ does perhaps not appear in the literature, so we
give it here since we have explicit use of it in this paper.

LEMMA 1.1. Suppose that & : (D" X G/P, S** X G| P)—(c, ¢)— (X", X*Y)
and & : (D"XG[P', S*'XG|P)—>(c, ¢)=> (X", X*') are two characteristic
G-maps for some G-cell ¢ of X. Then there exist an isometry f: R*—R"
and an element g, € G such that the maps &, &'o(fX g,): (D"XG/P, S**XG/P)
—(X, X,) are G-homotopic.
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In Lemma 1.1 one may always choose f:R"—>R"* to be either the
identity map or the isometry given by S@y, o )= (%, -0, Ty, — ).
These two choices give a map from S*' to itself of degree 1 or of
degree —1, respectively. The map g,: G/P—G/P’, given by gPs>gg,P’
for every gP € G/P, is a real analytic G-isomorphism between real analytic
G-manifolds. The proof of Lemma 1.1 is easy and left to the reader.

For the notion of simple G-homotopy type and other facts from
equivariant simple-homotopy theory we refer to [3]. In particular the
basic notions of an elementary G-expansion and an elementary G-collapse,
see [3, Definition II.1.1], are important. The notions G-expansion, G-
collapse, formal G-deformation, and simple G-homotopy equivalence are
defined in [3, Section II.1]l. For the definition of the equivariant
Whitehead group Whe(X) of a finite G-CW complex X we refer to [3,
Section I1.2].

Let us now change the notation so that we let H denote an arbitrary
compact Lie group. (In most cases H will be a closed subgroup of a
given compact Lie group G.) In [10] Matumoto and Shiota show that
one can associate to any compact smooth H-manifold a well-defined simple
H-homotopy type. In this paper we only use a very special case of this
result, namely the following one. Let H be a closed subgroup of G and
consider the standard action of H, by multiplication from the left, on a
homogeneous space G/P, where P is a closed subgroup of G.

The compact H-manifold G/P can be given a well-defined simple
H-homotopy type in the following way. By a well-known theorem, due
independently to Mostow [11] and Palais [12], there exist a linear rep-
resentation space R"(p) for G (where p:G—O(n)) and a point x € R*(p)
such that G,=P. Then the G-orbit Gx through the point 2 is a real
analytic G-submanifold of R*(p) and Gz is G-isomorphic to G/P. We now
consider R"(p) as a linear representation space for H; i.e., we consider
the linear representation space R"(p|H). By a well-known result the
orbit space R*(o|H)/H can be considered as a closed semi-algebraic subset
of some euclidean space R*. Since the H-manifold G/P is a real analytic
H-submanifold of R"(o|H) it follows that the orbit space (G/P)/H, where
(G/P)|HCR*(p|H)|HCR*, is a compact subanalytic subset of R*.

DEFINITION 1.2. A distinguished H-triangulation of the H-manifold
G|P consists of a finite H-CW complex F' such that the orbit space F/H
is a finite simplicial complex and an H-homeomorphism
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u:F—>GP
such that the induced homeomorphism %: F/H—(G/P)/H is subanalytic.

THEOREM 1.3. Let G be a compact Lie group and let H and P be
closed subgroups of G. Let H act on the homogeneous space G/P by mul-
tiplication from the left. Then there exists a distinguished H-triangula-
tion w: F—G/P of the H-manifold G/P. If w:F—G/P and w' : F'-G|P
are distinguished H-triangulations of G/P the map (w)*ou: F—F' is a
stmple H-homotopy equivalence.

Proor. It follows from the results concerning existence of sub-
analytic triangulations of subanalytic sets, due to Hironaka [2] and Hardt
[1], that there exists a subanalytic triangulation t:L—(G/P)/H of the
subanalytic set (G/P)/H such that each open simplex of the triangulation
lies completely within one isotropy type. It now follows by the lifting
procedure of Ililman and Matumoto, see [4], that there exists a finite
H-CW complex F, with F/[H=L, and an H-homeomorphism u:F—G/P
which covers t.

The uniqueness part of Theorem 1.3 follows from the fact that two
subanalytic triangulations of a subanalytic set have a common subanalytic
subdivision, see Hironaka [2] and Hardt [1], and the fact that an arbitrary
H-equivariant subdivision map of finite H-CW complexes is a simple
H-homotopy equivalence, see Illman [6, Theorem 12.2]. []

LEMMA 14. Suppose that u: F—G|P is a distinguished H-triangula-
tton of G/P. Let P’ be a closed subgroup of G that is conjugate to P
and let g,: G/P—G|P’ be the G-map given by gP—gg,P for all gP€ G/P.
Then geou: F—G|P’ is a distinguished H-triangulation of G|P’.

Proor. The map g,:G/P—G/P’ is a real analytic G-isomorphism
between real analytic G-manifolds, and hence the induced map g,: (G/P)/H
—(G|P’)|H, between the orbit spaces, is subanalytic. []

We shall in this paper use the following terminology. An H-map
(4 (Y! YO) E— (Z» ZO)

between finite H-CW pairs is a simple H-homotopy equivalence if both
0:Y—Z and ¢|: Y,—Z, are simple H-homotopy equivalences. The follow-
ing definition will be used throughout the paper.
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DEFINITION 1.5. Let (U, U,) be an arbitrary H-pair and let £, : (U, U,)
—(Y,Y,) and f;: (U, U)—(Z, Z,) be H-maps, where (Y, Y,) and (Z, Z,) are
finite H-CW pairs. We say that the H-maps f; and f, are s-equivalent
if there exists a simple H-homotopy equivalence ¢: (Y, Y,)—(Z, Z,) such
that the maps oof), fi: (U, U))—(Z, Z,) are H-homotopic. If Y,=Z, and
we in addition can choose ¢ such that ¢|Y,=id we say that f, and f, are
s-equivalent rel Y,.

We will have use of the following result.

LEMMA 1.6. Suppose o:Y—>Z 1s a simple H-homotopy equivalence
between finite H-CW complexes and that f: K—L is a simple homotopy
equivalence between ordinary CW complexes. Then fXo: KXY—LXZ is
a simple H-homotopy equivalence.

Proor. This is a direct consequence of the produet formula for
equivariant Whitehead torsion, see Illman [5, Section 3]. []

Furthermore we will also use the following result.

LEMMA 1.7. Suppose that (L, L,) is a finite CW-pair such that L
collapses to L, by a finite sequence of elementary collapses. Let F be a
finite H-CW complex. Then LXF collapses to L,X F by a finite sequence
of elementary H-collapses.

Proor. The proof is easy and left to the reader. []

We will also use a slight generalization of the notion of a skeletal
map, namely the following one.

DEerFINITION 1.8. Let (C, D) be a finite H-CW pair and let Y be a
finite H-CW complex. We say that an H-map ¢: D—Y is (C, D)-skeletal
if for every H-cell ¢, of say dimension m, in C—D we have ¢(¢)C Y™

Observe that if ¢: B—Y is a (C, D)-skeletal H-map then the adjunc-
tion space YUC is a finite H-CW complex.
¢

If »:X—Y is an H-homotopy equivalence we let = : Y—X denote
an H-homotopy inverse of 7, and the same convention holds for H-homo-
topy equivalences between H-pairs. If #,7,: X—Y are two H-maps we
sometimes denote the fact that 7, and », are H-homotopic by 7, =7, and
we also use this same notation in connection with H-maps between
H-pairs. When we speak of a pair. (C, D) we assume throughout the
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paper that D is closed in C.

2. Background information on equivariant homotopy type of adjunction spaces

Let H denote an arbitrary compact Lie group. (In this section and
in Section 3 the role of the transformation group H is completely formal,
and hence H could as well be any locally compact group.) By X and Y
we denote arbitrary H-spaces, and (4, B) and (C, D) denote H-pairs that
have the H-homotopy extension property.

Let ¢, ¢,: B—>X be two H-maps that are H-homotopic. Then the
adjunction spaces XUA and XUA have the same H-homotopy type.

? [
An H-homotopy equivoalence frole UA to XUA can be constructed as

follows. Let @: BxI—X be an Hipﬁomotopy%from ¢, to ¢,. The fact

that (A, B) has the H-homotopy extension property is equivalent to the

fact that AX{0}UBXI is a strong H-deformation retract of AXI. Let

%: AX{0}UBXI—>AXI denote the inclusion and let r:AXI—->AX{1}U

BXxI be an H-retraction. We now define k(@): XUA—->XUA to be the
%0 ?1

composite map

Xufyflxmqum}quzyﬁ+Xg(Axn

2 @
l;Xgmxmqun:;XuA
1

where the first map and the last map are natural H-homeomorphisms,
which we shall use as identifications. Since AX{0}UBXI and AX{1}U
BXI are strong H-deformation retracts of A X I it follows that both io
and 7, are H-homotopy equivalences. Hence k(@) is an H-homotopy
equivalence, and we also have k(®)|X=id,. Different choices of the
retraction r,: A X I—A X{1}U BXI give, strictly speaking, rise to different
maps k(®), but k(@) is uniquely determined up to an H-homotopy rel X
by the homotopy @. For the effect of different choices of H-homotopies
@ from ¢, to ¢, see Lemma 2.2 below. (A more detailed discussion of
the H-homotopy equivalence k(@) can be found in [8, Section 3].)

We will in this paper need the following additional observation con-
cerning the map k(®@). Suppose that B,C A is a closed subset of A4 such
that B,nB= and such that (4, B,UB) has the H-homotopy extension
property. Then AX{1}U(B,UB)xI is a strong H-deformation retract of
AXI, and hence there is-an H-retraction r,: AXI—>AX{1}UBXI such
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that 7,(b,¢)=(0", 1) for all (b, ¢)€ B,xI. With this choice of retraction
we obtain that

k(®)|B,= idso

where we consider B,.c XUA and B.cXUA in the obvious way.

[ 14
All results in this sec‘gion are well knt)wn and have easy proofs. We
shall simply state the results here, and leave the proofs to the reader.
(Proofs of Lemmas 2.4 and 2.5 are given in [8, Section 3].)

LEMMA 2.1. Suppose that the H-maps ¢,, ¢, : B—X are H-homotopic
and that @ : BXI—X is an H-homotopy from ¢, to ¢,. Then

k) XUA—XUA

(2] (21

is an H-homotopy equivalence. Furthermore k(®)|X=idy and k(@) is
an H-homotopy inverse of k(®) rel X. If in addition B, is a closed
subset of A such that B,NB=@ and (A, B,UB) has the H-homotopy
extension property, we may choose k(®) such that k(®)|B,=ids,

LEMMA 2.2. Suppose that @, @' : BXI—X are two H-homotopies from
@, to ¢, such that @ and @ are H-homotopic rel BxI. Then the two
H-homotopy equivalences

k@), k@) : XUA— XU A

%0 ?1

are H-homotopic rel X. By abuse of motation we denote the conclusion
of Lemma 2.2 simply by k(®@)=k(@').

If @,: BXI—X is an H-homotopy from ¢, to ¢, and @,: BXI—X is
an H-homotopy from ¢, to ¢, the join @,%®@,: BXI—X is an H-homotopy
from ¢, to ¢,

LEMMA 2.3. We have
k(@xD,) =k (D,)ok(@,) : X U A—> X U A.
%o

92
If f: X—Y is an H-map we let
FffXUA—YUA
[ Io

be the H-map induced by f and by the identity map on A. We call
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F the canonical extension of f. We have f|X=f.

LEMMA 2.4. Suppose that the H-maps f,, fi: X—Y are H-homotopic
and that F: XXI—Y is an H-homotopy from f, to f;. Then the diagram

xua—2 L,vua4

¢ Io®
7 ey

YU A

f19

ts H-homotopy commutative. Here 6=Fo(pXid): BXI—Y, and k(0)
denotes the corresponding H-homotopy equivalence given by Lemma 2.1.

LEMMA 25. If f: X—Y s an H-homotopy equivalence then so is its
canonical extension f: XUUA—Y U A.
4 fe

LEMMA 2.6. Let @: BXI—X be an H-homotopy from ¢, to ¢, and
let f: X—Y be an H-map. Then the diagram

XU 4d YUA

() foq

k(@) k(f- @)

XUA—L Lyvu4

91 foq
18 H-homotopy commutative.
If a: (A, B)—(C, D) is an H-map we define

a: XUA— X UC
gal ¢
to be the H-map induced by the identity map on X and the H-map «
on A. Observe that &|X=idy. By ¢ we denote an H-map ¢:D—X.

LEMMA 2.7. Suppose that the H-maps a,, a,: (A, B)—(C, D) are H-
homotopic (as maps of pairs) and that A:(A, B)XI—(C,D) is an H-
homotopy from «, to «,. Then the diagram
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XUA__;&O“—)XUC
¢

dagl

k(D)

XU A

¢'“1[

18 H-homotopy commutative. Here I'=¢o(A|) : BX I-X, and k(") denotes
the corresponding H-homotopy equivalence as given by Lemma 2.1.

LEMMA 2.8. Suppose that «: (A, B)—(C, D) is an H-homotopy equiv-
alence of H-pairs. Then &: X¢U A—>XUC 1s an H-homotopy equivalence.
al ¢
. LEMMA 2.9. Suppose that ¥ : DXI—X is an H-homotopy from ¢, to

¢, and that a: (A, B)—(C, D) is an H-map. Then the diagram

XUA—JLaXyC

‘/‘oa |

k' k

Xuda—2 .xuc
$al 9

is H-homotopy commutative. Here k=kW) and k'=k¥ o (a| Xid)).

LEMMA 2.10. Let f: X—Y and a: (A, B—(C, D) be H-maps. Then
the diagram

XUA YUA

da| fgai

a jé

XUC—f—>YUC
¢ o

commutes.

3. k-equivalence and 2-maps

In this section H denotes a compact Lie group. (In fact H could
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also in this section, as in Section 2, be an arbitrary locally compact
group.) By X, Y and Z we denote H-spaces and (4, B), (C, D) and (E, F)
denote H-pairs that have the H-homotopy extension property.

Assume that «: (4, B)—(C, D) and 5: X—Y are H-homotopy equiv-
alences, and that ¢ : B—X and p: D—Y are arbitrary H-maps such that
the lower square in the diagram

A—2 ¢

U ol U
(S) B———D
¢ Iz
7

X—Y

is H-homotopy commutative. Let :BXI—>Y be an H-homotopy from
pop to pmoa|. We form the composite map

(1) z(s;g):XUA_LYUAMYulA_“—»YUC.
[ 79 ra u

Then A(S; 2) is an H-homotopy equivalence since 7, k() and & are H-
homotopy equivalences by Lemma 2.5, 2.1 and 2.8, respectively. Further-
more 7|X=n, k(2)|Y=idy and &|Y=idy, and hence A(S;Q)|Y=». Also
recall from Section 2 that if B, is a closed subset of A, disjoint from
B, and (A, B,U B) has the H-homotopy extension property then we obtain
A(S; 2)|By=a|B,. Furthermore the homotopy 2 determines the map k(2)
uniquely up to H-homotopy rel X. We shall in the rest of the paper
usually denote the map A(S; 2) by A(yp, @; Q). In using the notation

Apa;: XUA—Y UC
? “

one should keep in mind that ¢ : B—X denotes an arbitrary H-map and
that ¢: D—Y is an H-map such that »o¢ is H-homotopic to po(a|). By
a slight abuse of terminology we call A(n, «; 2) the A-map induced by
»,a and £.

We show in Corollary 3.6 that different choices of H-homotopies,
say £ and £, from nop to poa| give rise to H-homotopy equivalences
A, a; Q) and A(n, a; £') that are k-equivalent in the sense defined below.
In the following U denotes an arbitrary H-space, and in Definition 3.1
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below p,: D—Y,1=1,2, denote H-maps.

DEFINITION 3.1. We say that two H-maps f,: U—-Y U C and U
—Y U C are k-equivalent if there exists an H—homoto;%r U.DxI-Y
2
from Zgl to u¢, such that the diagram

Yuc

L3
i/

U k(W)

N

Yuc
2]

is H-homotopy commutative.

In case ¥: DXI—Y is the constant homotopy from g to g, the map
E@): YUC—-YUC is H-homotopic (in fact rel Y) to the identity map,

“ “
see Section 2. Therefore, if f,f:U—Y UC are H-homotopic H-maps
"
then f is k-equivalent to f’. In particular any H-map f:U—-YUC is
n

k-equivalent to itself. Furthermore we have

LEMMA 3.2. The k-equivalence relation is both symmetric and tran-
sitive.

Proor. This follows immediately from Lemma 2.1 and Lemma 2.3. [ ]

Thus k-equivalence is an equivalence relation, a fact that we from
now on will use freely. The notion of k-equivalence allows us to refor-
mulate Lemma 2.4 in the following convenient form.

LEmMMA 33. If fi: X—Y, 1=0,1, are H-homotopic H-maps, then the

canonical extensions fi: XUA—YUA, 1=0,1, are k-equivalent.
[ fie

Proor. This follows directly from Lemma 2.4 and Definition 3.1. []

An analogous reformation of Lemma 2.7 says the following : Suppose
that the H-homotopy equivalences «;: (4, B)—(C, D), 1=0, 1, are H-homo-
topic. Then the H-homotopy equivalences (&) : X U C—-X U A 1=0, 1, are

k-equivalent. This fact follows directly from Lemmas 27 and 2.8, and
Definition 3.1.
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The following lemma will be very useful.

LEMMA 3.4. Let B=a": (C, D)—(A, B) be an H-homotopy inverse of a.
Then the H-homotopy equwalences

YuA—»YUc

pe|
and
B YUA— Y UC

pa| palBi

are k-equivalent.

Proor. Let 4:(C, D)xI—(C, D) be an H-homotopy from aof to the

identity map. Then it follows by Lemma 2.7 that the map ao,B ao,B is
H-homotopicto £(A4): Y U C—»YUC Since 3: Y U C—YUA is an H-homo-

pralpl ralpl wal
topy equivalence by Lemma 28 it now follows that & is H-homotopic to

k(A)o(B); i.e., & is k-equivalent to (B)~. []
In Lemma 3.5 we let ¢,: B—Y,1=1, 2, denote H-maps.

LEMMA 3.5. Suppose that the H-maps f : U—>YUA and f,: U—»YUA

are k-equivalent. Then :
(a) The H-maps Oof,: U>Z oti A and bof,:U—Z U A are k-equivalent
(7}

for every H-map 0 :Y—Z. '
(b) The H-maps (B)~of,: U—Y U C and (B)-ofy: U-Y U C are k-equiv-

alent for every H- homotopy equwalence B:(C, D)— (A B).

ProOOF. (a) is an immediate consequence of Lemma 2.6, and (b) fol-
lows from Lemma 2.8 and Lemma 2.9. []

LEMMA 3.6. Assume that «: (A, B)—(C, D) is an H-homotopy equiv-
alence and let B=a": (C, D)—(A, B) be an H-homotopy inverse of «.
By ¢: B—>Y and p: D—Y we denote arbitrary H-maps. Suppose that
the H-maps fi: U—>YUA and f,: U-Y UA are k-equivalent. Then the

pral

H-maps (B) ofi: U—)YUC and &of,: U—»YUC are k-equivalent.

Proor. First we note that by part b of Lemma 3.5 the maps
(B)=of;: U—>YUC and (B)-of,: U»Y U C are k-equivalent. It follows by

a\ |
Lemma 3.4 that (B)-: YUA—>Y U Cﬂ is k-equivalent to &: YUA—»YUC

ualp N nal

” al
and hence (B)~of; is k- equlvalent to a&of,. Therefore (B)~of; is k- equlv—
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alent to @of,. []

LEMMA 3.7. Let the notation and assumptions be as in diagram (S)
at the beginwing of this section, and let 8: (C, D)—(A, B) be an H-homo-
topy 1nverse of a. Then the H-homotopy equivalences Ana; 2): XUA

¢

—»Y&JC and (B)=o7 : XUA—»YUC are k-equivalent.

798|
Proor. The H-maps 7: XU A—»YUA and k(2)o7: XuA—>YuA are
k-equivalent by definition. Hence Lemma 3.6 implies that (,8) or‘}mle ud
~YUC and 2(p, a3 2) =dok(2)o7: XU A>T UC are k-equivalent. [
[ “

COROLLARY 3.8. Suppose that 2,2 : BXI—Y are two H-homotopies
Srom nop to poa|. Then the H-homotopy equivalences Aln, a;R2): XUA
14

—-YUC and A(p, a;2): XUA->YUC are k-equivalent.
“ ¢ o

Proor. This follows directly from Lemma 3.7. []

Thus we see that the map A(yp, «; 2): XUA—YUC, induced by the
14

”
diagram (S) at the beginning of this section, is up to k-equivalence in-
dependent of the choice of the connecting H-homotopy 2 from zop to
poa|. Hence we will denote such a map simply by

Ap,a): X UA—> Y UC.
? “

One should keep in mind that A(y, @) is an H-homotopy equivalence that
is uniquely determined up to k-equivalence by the diagram (S). By abuse
of terminology we call A(p, «) the 2-map induced by the diagram (S).

LEMMA 8.9. Assume that the H-homotopy equivalences «;: (A, B)—

(C, D), 1=0,1, are H-homotopic and that the H-homotopy equivalences

7:: X—Y, ©=0,1, are H-homotopic. Let ¢: B—X be an H-map and let

t:: D=Y, be H-maps such that p, is H-homotopic to pope(e;|)=, =0, 1.

Then the H-homotopy equivalences A(n, a): X %JA»Y/LIJC and A, a)) :
0

XUA—-YUC are k-equivalent.
¢ 131

Proor. Let 8:(C, D)—(A, B) be an H-homotopy inverse of a,. Then
B is also an H-homotopy inverse of «,. Hence we know by Lemma 3.7
that (5, a,) is k-equivalent to (B)~oF,: XuA—>Y U C, and that A(p, a,) is

70981
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k-equivalent to (8)-o%: XUA—>Y U C. Now the H-maps 7;: XU A— YUA

1=0, 1, are k-equivalent by Lemma 3.8, and therefore part b of Lemma
35 implies that the H-maps (B) o7 : X U A—-Y UC, 1=0,1, are k-equiv-

7;¢81

alent. It now follows that the H-maps (7, ao) and 2(771, a,) are k-equivalent. []

Assume that a: (4, B)—(C,D), y:(C,D)—(E,F), n: X—>Y and 0: Y
—»Z are H-homotopy equivalences. Let ¢: B—X be an H-map and let
¢:D—Y an H-map which is H-homotopic to nopeo(a|)”, and let w: F—Z
be an H-map which is H-homotopic to fopo(y|)~. In this situation we
have

LEMMA 3.10. The maps A(fon, yoa) and A(6,7)ed(p,a): XUA—-ZUE
"3 @
are k-equivalent.

Proor. Let B:(C,D)—(A, B) and d: (E, F')—(C, D) be H-homotopy
inverses of « and y, respectively. It follows by Lemma 3.7 that
(B)y~o7 : XUA—»YU C is k-equivalent to A(y, ) : XUA—»YUC’ By part a of

Lemma 3. 5 we have that 6o (B)~o7% is k-equivalent to k(Qz)oeoZ(r/ a), where
Q,: DXI—Z is an H-homotopy from fopx to woy|. Therefore we obtain
by applying Lemma 3.6 that (5)- “o(ﬁ) o7 is k-equivalent to fok(f2,)o80
A, @)=2(0,7)oA(n, @). But Gof=fo0 (see Lemma 2.10) and therefore
6o(B)- is H-homotopic to (B)~of. Thus (8)=ofo(B)~ofi=(8)""o(B) ohof=
PR — P —

(Bod) *o(fon), and by Lemma 3.7 the map (Bod) *o(foy) is k-equivalent
to 2(Gon, yoa). []

4. Equivariant simple-homotopy type of adjunction spaces

PROPOSITION 4.1. Let Y be a finite H-CW complex and let (C, D) be
a finite H-CW pair. Suppose that p,, p,: D—Y are skeletal H-maps that
are H-homotopic and that ¥ : DXI—Y s an H-homotopy from g, to p,.
Then
k=k@): YUC— Y UC

“y "

18 a stmple H-homotopy equivalence.

Proor. By the relative equivariant skeletal approximation theorem
¥ is H-homotopic rel DX I to a skeletal H-map ¥ :DxI—Y. Then ¥
is a skeletal H-homotopy from g, to . By Lemma 2.2 we know that
k@) is H-homotopic (in fact rel Y) to k(¥), and hence it is enough to
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prove that k(@) is a simple H-homotopy equivalence. The adjunction
space Y%J(CXI ) is a finite H-CW complex. Since CxI H-collapses to

Cx{0}UDXI it follows that YU (CxI) H-collapses to Y U (Cx {0}UDXI)
¥ 7
:YLﬂJC, see [3, Corollary I1.1.10 and Lemma II.1.6]. In the same way
0
we see that YL&J(C' XI) collapses to YUC by a finite sequence of ele-

)
mentary H-collapses. Hence, the map '

A

EF): Y UCSH Yy (CXI)—»YUC
2] L3 #y
is a formal H-deformation and in particular &(¥) is a simple H-homotopy
equivalence. []

COROLLARY 4.2. Let Y and (C,D) and po, p: D—Y be as in Propo-
sition 4.1. Suppose that fo,: U-YUC and f,: U->YUC are k-equivalent

) “
H-maps. Then f, and f, are s-equivalent, in fact foland fi are s-equiv-
alent rel Y. []

Propositions 4.3 and 4.4 given below have proofs that are very similar
to each other. Of these the proof of Proposition 4.4 is the more en-
lightening one, and also the somewhat more complicated one. Therefore
we give the proof of Proposition 4.4 in detail and leave the proof of
Proposition 4.3 to the reader.

PROPOSITION 4.3. Let Y and Z be finite H-CW complexes and let
(C,D) be a finite H-CW pair, and let p:D—Y be a skeletal H-map.
Suppose that ¢: Y—Z 1s a skeletal simple H-homotopy equivalence. Then

its canonical extension ¢:YUC—ZUC s a simple H-homotopy equiv-
“ cu
alence.

PROPOSITION 4.4. Let Y be a finite H-CW complex, and let (C, D)
and (E, F) be finite H-CW pairs, and let v: F—Y be a skeletal H-map.
Suppose that y: (C, D)—(E, F) is a skeletal simple H-homotopy equivalence.
Then 7: YUC—YUE s a simple H-homotopy equivalence.

vr| v

PrOOF OF PROPOSITION 4.4. We consider the diagram
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I
Y U (Cx{0} U DxT) X0y (Bx{oyu FXI)
Ty 1)
1 ,';/
I
Y U (€XT) a > Y U (EXIT)
Ty (1}
r r
Yuc 7 YUE

ur| v

Here v, : Fx{1}-Y, denotes the map given by yy(x,1)=v(z) for all
z€F and vy|y : DX{1}—Y is defined similarly.

The inclusions CX{0}UDXIcCXI and EX{0}UFXI—>EXI are
H-expansions, see [3, Corollary II. 1.10]. Hence it follows by [3, Lemma
II. 1.6] that the inclusions ¢ and ¢’ in the above diagram are H-expan-
sions. The upper square of the above diagram clearly commutes.

In the lower square of the above diagram r and 7/ denote the retrac-
tions induced by the standard projections CXI—-CXx{1}=C and EXI—
Ex{1}=EFE, respectively. With this choice of retractions r and 7’ the
lower square clearly commutes. Since CXI H-collapses to Cx {1}, see
[3, Corollary II. 1.10], it follows by [3, Lemma II. 1.6] that Y U (CxI)

Ty
H-collapses to YUC. Therefore any H-retraction from Y U (CXI) onto
url ”7'(1)
YUC is a simple H-homotopy equivalence. In particular » is a simple
ur|
H-homotopy equivalence, and the same argument shows that 7/ is a

simple H-homotopy equivalence.

Thus we have shown that the maps 707 and 7’07’ are simple H-homo-
topy equivalences. Therefore, in order to prove that # is a simple H-
homotopy equivalence, it is enough to show that the map 7=y X {0}Uy| X1,
at the top of the diagram, is a simple H-homotopy equivalence. This
we do in the following way.

In order to simplify the notation we denote

K=Y U (Cx{0} U DXI)

vrl {1}

and



618 Soren ILLMAN

L=Y U (Ex{0} U FXI).

Y1y

We shall prove that
F=rx{0} U y|XI:K—> L

is a simple H-homotopy equivalence. Let K* denote the H-equivariant
subdivision of K obtained by subdividing the unit interval I=[0,1] at
the point 1/2. Then
K¥=Cx{0} U DX[0, 1/2]
and
Kf=Y U (Dx[1/2,1])

‘ UT|(1}
are H-subcomplexes of K*. Furthermore we have that
K¥ U Kf=K*
and
K¥ N K¥=Dx{1/2}.

In complete analogy with the above we define an H-equivariant sub-
division L* of L, and obtain H-subcomplexes L¥ and L¥ of L* such that

L¥y L¥=L*
and
L¥ N LF¥=Fx{1/2}.

We claim that 7|: K¥—Lf is a simple H-homotopy equivalence. In
order to see this we consider the commutative diagram

Kr T s
7o 70
cx {0y =%, B0}

where 7, denotes the retraction induced by the standard projection
DXJ0,1/2]—->Dx {0} and 7} is defined similarly. Then 7, and 7} are simple
H-homotopy equivalences, and since y:C—FE is a simple H-homotopy
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equivalence, by assumption, the claim follows. .
The map 7| : Kf—L¥ is also a simple H-homotopy equivalence. This
follows from the fact that in the commutative diagram

7l

K# L¥

1 ’ri

Y ———m—>Y
the retractions 7, and 7, induced by the standard projections DXx[1/2, 1]
—Dx{1}=D and FX[1/2,1]>FX{1}=F, are simple H-homotopy equiv-
alences.

Furthermore we have that 7| : K¥ N KFf—L¥N L5 is a simple H-homo-
topy equivalence since it equals y|Xx{1/2}: DX {1/2}—>F x{1/2}, which is
a simple H-homotopy equivalence by assumption.

By the sum theorem for equivariant Whitehead torsion, see [3,
Theorem II. 3.12], it now follows that 7: K*—L* is a simple H-homotopy
equivalence. Furthermore, the G-equivariant subdivision maps j: K*—~K
and j': L*—L are simple G-homotopy equivalences by [6, Theorem 12.2].
Hence 7: K—L is a simple H-homotopy equivalence. []

We shall now combine the results of this section into one theorem.
In Theorem 4.5 below Y and Z denote finite H-CW complexes, and (C, D)
and (E, F') denote finite H-CW pairs.

THEOREM 4.5. Suppose that o : Y—>Z and y: (C, D)—(E, F) are simple
H-homotopy equivalences. Let pr: D—Y be a skeletal H-map and v: F—Z
a skeletal H-approximation of copo(r|)~. Then

Ao,7): YUC—ZUE
“ v

18 a simple H-homotopy equivalence.

Proor. It follows by the equivariant skeletal approximation theorem,
Corollary 3.7 and Corollary 4.2 that it is enough to consider the case
when y and o are skeletal H-maps. In this case cgop: D—Z and voy|:
D—Z are skeletal H-maps. Since gopo(y|)~ is H-homotopic to v it follows
that ooy is H-homotopic to vo(y|). Let Q:DXI—Z be an H-homotopy
from gop to vo(r|). Then the composite map
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Ao, 7;92): YUC——»ZUC ZUC 4 ZUE
ur| v
is a simple H-homotopy equivalence since @, k(2) and # are simple H-
homotopy equivalences by Propositions 4.3, 4.1 and 4.4, respectively. []

5. A Kkey result

In Theorem 5.1 below X denotes an H-space, (4, B) an H-pair that
has the H-homotopy extension property, and ¢ : B—X an arbitrary H-map.
Furthermore, Y; denote finite H-CW complexes, (C;, D,) finite H-CW
pairs and g, : D,—Y; skeletal H-maps, i=1, 2.

THEOREM 5.1. Suppose that the H-homotopy equivalences a,: (A, B)
—(C,, D)) and a,: (A, B)—(C., D,) are s-equivalent as maps of pairs and
that the H-homotopy equivalences 0,: X—Y, and 0,: X— Y, are s-equivalent.
Then the H-homotopy equivalences (0., ;) : X UA—->Y UC, and 2(0., as) :

¢ “
XUA—»YU C. are s-equivalent. In fact, if o:Y,—Y, is la, simple H-homo-

topy equwalence such that oo, 1s H-homotopic to 0, then, o can be ex-
tended to a simple H-homotopy equivalence 3 :Y,UC,—Y,UC, such that
“1 )

2ol(0,, &) 1s H-homotopic to A(0,, a,).

Proor. Let y: (C,, D,)—(C,, D;) be a simple H-homotopy equivalence
such that yoa,=a,, and let 0: Y,—Y, be a simple H-homotopy equivalence
such that ¢06,=6, Since 6,0p=poa;| and Gop=poa,| it now follows
that oop,~p,0y. Thus we can form the A-map (o, 7): Y, UC—»YZUCZ,

1z
and by Theorem 4.5 (o, y) is a simple H-homotopy equlvalence and we

also have that (o, 7)|Y,=0¢. By Lemma 3.10 the composite map (s, y)e

A(0y, @) is k-equivalent to A(oof,, yoa;), and by Lemma 3.9 we know that
A(oob,, yoa,) is k-equivalent to 4(f,, a;). Therefore A(g, y)o2(0,, o) is k-equiv-
alent to (6, a,) ;i.e., there exists an H-homotopy A :D,XI—D, from p,
to p, such that setting k=k(4): Y,UC,—Y,UC, we have that kod(s, y)o

1z u
(0, ay) is H-homotopic to 2(6,, a,). 2By Corolzlary 4.2 we have that k is
a simple H-homotopy equivalence and k|Y,=id. Hence X=kol(o,7):
Y,uC—Y,UC, is a simple H-homotopy equivalence which extends ¢ and

’ P
Soa(6, @) is H-homotopic to (6, a,). []
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6. Preferred H-reductions

THEOREM 6.1. Let G be a compact Lie group and H a closed sub-
group of G. Then, given a finite G-CW complex X, there exist a finite
H-CW complex Ry X and an H-homotopy equivalence

7: X — RyX

such that this construction 1s unique up to a simple H-homotopy equiv-
alence.

The last statement in Theorem 6.1 means that if one by some other
choices in the construction arrives at the finite H-CW complex R4 X and
the H-homotopy equivalence 7': X—R;X, then

7op” :RyX —> REX
is a simple H-homotopy equivalence;i.e., » and 7’ are s-equivalent.

Proor. The proof is by induction on the number of G-cells in X.
First assume that X consists of one 0-dimensional G-cell, say X=G/P,
where P is a closed subgroup of G. By Theorem 1.8 there exists a

distinguished H-triangulation u: F — G/P of the H-manifold G/P. We
define Ry (G/P)=F and n=u"'. Then Ry(G/P) is a finite H-CW complex
and 7 :G/P—Ry(G/P) is an H-homeomorphism and hence in particular
an H-homotopy equivalence. If we choose another distinguished H-trian-
gulation u’: F"—G/P of G/P, and define R;(G/P)=F’ and »'=(u/)"*, we
have by Theorem 1.3 that 3’op™'=(u/)'ou : F—F" is a simple H-homotopy
equivalence.

Let m>2 and assume inductively that we have proved Theorem 6.1
for all finite G-CW complexes with at most m—1 G-cells. Let X be a
finite G-CW complex with m G-cells. Choose a G-subcomplex X, of X
such that X is obtained from X, by adjoining one G-cell. By the induec-
tive assumption there exists a construction which gives a finite H-CW
complex RyX, and an H-homotopy equivalence

(1) 0:X,— RyX,

and the construction is unique up to a simple H-homotopy equivalence.
Suppose that X=X,Uc, where ¢ is a G-cell, of say dimension » and type
G/P. Let

(2) §: (D"XG|P, S 'XG|P) —> (¢, ¢) = (X, X,)
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be a characteristic G-map for ¢ and let
(3) ¢=¢&|: "' XG/P— X,

denote the corresponding attaching map. We then have the G-homeo-
morphism

(4) §:X0L4J(D”><G/P)—E—>X
induced by &.

Next we choose a distinguished H-triangulation « : F—~G/P of G/P,
which exists by Theorem 1.3, and consider the H-homeomorphism

(5) a=idXu™: (D"XG/P, S**XG|P) —> (D"X F, S* X F).
In order to simplify the notation we shall in the following denote
(C,D)=(D"XF,S*'XF).

(Here D* and S** have standard CW structures and (D*"X F, S*"'X F') is
then a finite H-CW pair.)

We form the A-map
(6) A0, a) : X, Lj (D"XG|P) — Ry X, U C,
13

where p: D—RyX, denotes a skeletal H-approximation of fo¢o(a|)™™
Then (0, @) is an H-homotopy equivalence and (6, a) extends 0, see
Section 3. We define : X—RyX to be the composite map

(7) n=2(0, a)o(f)™': X — Ry X, U C:=RX.
13

Then 7: X—R,X is an H-homotopy equivalence and we have 7|X,=0:
Xi—RgX,.

If we at the inductive level choose 6’ : X,—R}4X,, instead of 6 in (1),
we have by the inductive assumption that ¢ and 6’ are s-equivalent. Let
o:RyX,—RiX, be a simple H-homotopy equivalence such that o6 is
H-homotopic to 6. Suppose that we also choose another distinguished
H-triangulation «': F’—G/P of G/P, and set o'=idX (w/)™*:(D"XG/P,
S*'xX G|P)—(C', D), where (C’, D)= (D"X F’, S** X F”). 1t then follows by
Theorem 1.3 and Lemma 1.6 that a’oa™=idX ((u')"ou): (C, D)—(C’, D’)
is a simple H-homotopy equivalence ; i.e., the H-maps « and «’ are s-equiv-
alent, as maps of pairs. Hence Theorem 5.1 implies that
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(8) A0, a): X, U (D*"XG|P)—RLX, U C':=RpX
¢ "

is s-equivalent to 4(f,«) in (6). In fact we have by Theorem 5.1 that

there exists a simple H-homotopy equivalence X : R, X—R;X that extends

¢ such that Yo2(6, «) is H-homotopic to 2(¢’,a’). Hence Yoy, where 7 is

as in (7), is H-homotopic to

=20, &) (f)": X—RLX,

and thus 7 is s-equivalent to 7’ rel RyX,. We have now shown that
the map 7: X—Ry;X in (7) is up to s-equivalence rel R;X, independent
of the choice of the map ¢ in (1) and also of the choice of distinguished
H-triangulation of G/P and the corresponding map « in (5).

Suppose that

& (D"XG|P', 8" *X G|P")—>(c, ¢) & (X, X,)
is another characteristic G-map for the G-cell ¢, and let ¢'=¢&'|:
S* X G/P'—X, denote the corresponding attaching map for ¢, and let
& x, U (D*XGIP) =X

be the G-homeomorphism induced by £. By Lemma 1.1 there exist an
isometry f of R* and an analytic G-isomorphism g¢,: G/P—G/P’ such that
the maps

go(fXg), &:(D"XGIP,S"'XG|P)— (X, X,)
are G-homotopic. We denote

& =E&°(fXg,) and Dr=¢ o (fXg,).

If w: F—»G/P is a distinguished H-triangulation of G/P then g,ou: F—
G/P' is a distinguished H-triangulation of G/P’ by Lemma 1.4. We
showed above that our construction is, up to a simple H-homotopy equiv-
alence rel RyX,, independent of the choice of distinguished H-triangu-
lation, and hence we may use g,ou: F—G/P’. Moreover we note that
the H-maps

idX (goou) ™!, (idXu™)o(FXgo)™: (D*XGJP’, S X G/P")—(D* X F, S* X F)

are s-equivalent, since fXid:(D"XF,S**'XF)—(D"XF,S*'XF) is a
simple H-homotopy equivalence by Lemma 1.6. Hence it follows by
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Theorem 5.1 that the A-maps
(0, ap) =2(0, id X (goou) ™) :ij (D"XG|P)—>RzX, U C
/ ,,,

and
A0, ao(fXg)™"): X EPJ (D"XG|P")—RzX, U C

are s-equivalent rel Ry X,. Here p/: D>R;X, is a skeletal H-approximation
of Oo¢’o(a|)”". Furthermore it is immediately seen that the map

PSS
A0, ao(fXgo)Mo(fXg,) and the map (6, a), as in (6) but with ¢, in
place of ¢, are k-equivalent (in fact H-homotopic maps for a suitable
choice of connecting homotopies). Hence the maps 2(6, as(fX go) ™) (&)

and (0, @)o(,)™ are k-equivalent, since é’o(f/x\go):él. Since &, is H-
homotopic to & it follows that the map 2(0, a)o(£)™" is k-equivalent to
A0, a)o&7".  All in all we have now shown that the map

20, a)o()': X — Ry X, U C
-
is s-equivalent rel RyX, to

A0, @)0(): X — Ry X, U C,

where A(f, «) is as in (6). This shows that the map »: X—RyzX in (7)
is up to s-equivalence rel R, X, independent of the choice of characteristic
map & in (2).

The choice of a G-subcomplex X, of X such that X is obtained from
X, by adjoining one G-cell corresponds to the choice of one specific filtra-
tion of X by an increasing sequence of G-subcomplexes each obtained
from the preceeding one by adjoining one G-cell. It is easy to see, again
using an inductive argument, that the construction of »: X—RyX is in-
dependent up to simple H-homotopy type of this choice of filtration.
This completes the proof of Theorem 6.1. []

It follows from the construction of the finite H-CW complex RyX,
given in the above proof of Theorem 6.1, that R,X also satisfies the
following conditions
(i) dim(RgX)?i=dim X", for each H,<H.

(ii) The H-isotropy types occurring in RyzX and in X are exactly the
same.

This is seen exactly as in the proof of Theorem A in [8].
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DEFINITION 6.2. Let X be a finite G-CW complex. A preferred
H-reduection of X consists of a finite H-CW complex Y and an H-homo-
topy equivalence

0. X—Y

such that ¢ is s-equivalent to an H-homotopy equivalence n: X—R,X
constructed in Theorem 6.1 and Y satisfies (i) and (ii) above.

We will in the rest of this paper not pay any specific attention to
conditions (i) and (ii). All constructions used are such that conditions
(i) and (ii) hold and hence we concentrate our attention only to questions
concerning simple H-homotopy type.

The proof of Theorem 6.1 also establishes the following.

THEOREM 6.3. Let G be a compact Lie group and H a closed sub-
group of G. Suppose that (X, X,) is a finite G-CW pair and that
70 : Xo—RuX, is a preferred H-reduction of X, Then there exists a
preferred H-reduction 7: X—RyX of X, which extends 7, and this con-
struction 18 unique up to a stmple H-homotopy equivalence rel RyX,.

The last statement in Theorem 6.3 means that if one by some other
choices in the construction arrives at the preferred H-reduction 7' : X—
+X of X, which also extends #,, then there exists a simple H-homotopy
equivalence ¢:Ry;X—R4X, which extends the identity on RyX, such
that ooy is H-homotopic to 7.

In fact the proof of Theorem 6.1 shows that if 7: (X, X;)—(RxX, Rz X))
and 7' : (X, X,)— (R4 X, R;X,) are two preferred H-reductions of the pair
(X, X,) then there exists a simple H-homotopy equivalence o: (Rxz X, Ry X,)—
(REX, RiX,) such that ooy is H-homotopic to 7.

Suppose that f: X—W is a G-map between finite G-CW complexes.
Let 6: X—>RzX and »: W—RyW be preferred H-reductions of X and W,
respectively. Then we obtain an induced H-map

RHfZRHX'——-) RHW

by defining Ryf=7ofo6-. If f is a G-homotopy equivalence then Rf
is an H-homotopy equivalence.

The following Lemma is easy to prove, and we leave the details to
the reader.

LEMMA 6.4. Let 0: X—R,X be a preferred H-reduction of the finite
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G-CW complex, and let K be an ordinary finite CW complex. Then
idx0: KXX—>KXRyX is a preferred H-reduction of the finite G-CW
complex Kx X.

7. An important property of preferred H-reductions

In Proposition 7.1 below X denotes a finite G-CW complex and (K, L)
denotes a finite G-CW pair, and ¢ : L—X is a (K, L)-skeletal G-map, (see
Definition 1.8). The adjunction space X U K is then a finite G-CW complex.

¢

PROPOSITION 7.1. Let n: X—>RyX and 6: (K, L)—>RzK, RyL) be
preferred H-reductions of X and (K, L), respectively. Then

2(7?,0) N X U K'__) RHX U RHK
4 ©

s a preferred H-reduction of XUK. Here p:RyzL—RyX denotes a
14
skeletal H-approximation of the H-map nopo(6])".

Proor. First of all we note the following. If 6: (K, L)—(RzK, RyL)
and ¢': (K, L)—>(R%K, R;L) are two preferred H-reductions of (K, L),
then, @ and ¢’ are s-equivalent as maps of pairs. Hence Theorem 5.1
implies that the H-homotopy equivalences 2(,6) and A(p ¢’) are s-

equivalent, and hence if one of them is a preferred H-reduction of
XUK then so is the other one. Thus it is enough to exhibit one specific

[
preferred H-reduction 6: (K, L)—>(RzK, RyzL) of (K, L) and prove that
for this specific choice the 2-map A(», ) : XU K—RzXURyK is a preferred
¢ 3

H-reduction of XU K.

14
The proof of Proposition 7.1 is now by induction on the number of
G-cells in K—L. Let K, be a G-subcomplex of K such that Lc K, and
K—K, consists of one G-cell ¢, of say dimension n and type G/P. Let

£:(D"XG|P,S"*XG|P) —> (¢, ¢) = (K, K,)
be a characteristic G-map for ¢, and let
¢=&|: 8" *'XG/P— K,

be the corresponding attaching G-map for ¢. Then

£.K, y (D*XG/P) 5 K
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is a G-homeomorphism and élKozidxo.
We now construct a specific preferred H-reduction of (K, L) with
which it will be convenient to work. Let

00 : (Kg, L) e (RI{Km RHL)

be a preferred H-reduction of the pair (K, L). Let u:F—G/P be a
distinguished H-triangulation of G/P, which exists by Theorem 3.1, and
consider the H-homeomorphism

a=idXu"': (D"XG|P,S"*XG|P) — (D"XF,S"'XF).

In order to shorten the notation we denote the finite G-CW pair
(D*XG|P, S"*XG|P) by (A, B) and the finite H-CW pair (D"XF, S" ' X F')
by (C, D).

We now claim that the composite map

5 )

(1) 0:K— KUA—»RHK UA—)RHK UC

009

is a preferred H-reduction of K. (Here w=60,0¢0(a|)™ and @& : D-R;K,
is a skeletal H-approximation of w.) This is seen as follows. It follows
by Lemma 3.7 that the composite &6, is k-equivalent to (6, @). Hence
0=Fk o&oByo(£)~* is k-equivalent to 1(d,, a)o(§). By the very construction
of preferred H-reductions (see the proof of Theorem 6.1) the map
A(0,, @)o(€)™* is a preferred H-reduction of K. Therefore 0 is a preferred
H-reduction of K by Corollary 4.2.
By the inductive assumption the map

(2) G=4(n,0) : X Y K,—> RzX U R;K,
@

is a preferred H-reduction of XUK, Let j:K,~XUK, denote the
[4 ¢
obvious map. Observe that XU K is obtained from XU K, by adjoining
4 [4
the G-cell A=D"XG/[P by the attaching map jo¢ : B=S""'X G/P-XUK,.
(4

We claim that the composite map

(3) CXUK (XUK)%AL(HXURHKO)UA

COJ

“n v 13 P
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is a preferred H-reduction of X UK. Here v={,0jo¢po(a|)™* and &: D—
¢
RyXURLK, is a skeletal H-approximation of v. This is seen in exactly
©

the same way as we saw that 6 in (1) is a preferred H-reduction of K.

Now the map ¢, in (2) is by definition a composite of three maps
and by inserting this expression for ¢, in the formula (3) for { we obtain
¢ expressed as a composite of six maps. Now we compare { with the
map

(4) A, 0): X U K—> RzX U RyK.
9 "

The map 4(p, 6) in (4) is by definition a composite of three maps and if
we in the defining expression for the i-map A(y, 8) insert the expression
(1) for 6 we obtain A(y, 0) expressed as a composite of six maps. By
comparing these two composites of six maps with each other we see
that the maps { and A(p, 0) are s-equivalent. Since we already showed
that { is a preferred H-reduction of XU K it now follows that A(», 0) in

[
(4) is a preferred H-reduction of XU K. []
¢

8. The H-equivariant Whitehead group Why(X) of a finite G-CW complex
X

Let as before G denote a compact Lie group and H a fixed closed
subgroup of G. Suppose that X is a finite G-CW complex. We shall
define the H-equivariant Whitehead group Why(X) of X. Let 6: X—RzX
be a preferred H-reduction of X. Then RyX is a finite H-CW complex
and we have the H-equivariant Whitehead group Why(R;X) of R X.
If ¢’ : X—>R,X is another preferred H-reduction of X, then ¢, ,=6"00":
Rz X—RiX is a simple H-homotopy equivalence. In particular o, , is an
H-homotopy equivalence and hence

(1) (090)% : Why(RyX) —> Why(RX)

is an isomorphism. Thus any two preferred H-reductions 6: X—RyX
and ¢ : X—R4X of X give rise to a canonical isomorphism (1) between
Why(RzX) and Why(R4X). This defines for us a group Why(X), and
for each preferred H-reduction 0:X—RzX of X there is a canonical
isomorphism

(2) iy Why(RuX) —> Whyu(X).
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These canonical isomorphisms are characterized by the fact that
(3) (i5) 0% = (001,0)x : Why(RzX) — Why(REX)

for any two preferred H-reductions 6 : X—R X and ¢ : X—»R;X of X.

Suppose that f: X—W is a G-homotopy equivalence between finite
G-CW complexes. Let 6 : X—>RyX and : W—R,W be preferred H-reduc-
tions of X and W, respectively. By Ryf:RyX—Rz;W we denote the
H-map induced by f. Reecall that Ryf by definition is an H-map which
makes the diagram

X —f—> w
0 "
R, Xt R.w

H-homotopy commutative; i.e., Ryf=5ofo0-. Since f is a G-homotopy
equivalence it follows that Ryf is an H-homotopy equivalence between
finite H-CW complexes, and hence its H-equivariant Whitehead torsion
(Ryf) € Why(RgX) is defined.

We now define the H-equivariant Whitehead torsion of Ryf, as an
element of Why(X), by

(4) t(Ruf)=1(c(Ruf)) € Why(X).

We claim that this H-equivariant Whitehead torsion of Ryf is well-
defined ; i.e., it is independent of the choice of preferred H-reductions
of X and W. Let 6: X—>RyX and ¢’ : X—R},X be preferred H-reductions
of X and let »: W—R,W and 7' : W—RiW be preferred H-reductions
of W. By Ryf:RyX—RyW and Rif:R4X—R,yW we denote the cor-
responding H-maps induced by f:X—>W. We know that ¢, ,=000":
Ry X—RiX and o,,,=7 op" : RyW—RLW are simple H-homotopy equiv-
alences. Furthermore Rffoo, , is H-homotopic to o, ,oRyf, and hence
we obtain by the formula for the equivariant Whitehead torsion of a
composite map, see [3, Proposition II. 3.8], that

7(001,0) + (04,0) %' (t(RES)) = 7R f) + (Ruf) 5 (t(0y:,0)).

Since 0., and ¢, , are simple H-homotopy equivalences we have (s, ,,) =0
and z(o,,,) =0, and hence
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T(R&Sf) =(04,0) (t(Raf)) € Why(REX)
which shows that
(5) 1/ (t(R4S)) =%(r(Raf)) € Why(X).

This proves our claim that (4) is well-defined.

In particular we note the following case. Let (V, X) be a finite
G-CW pair where the inclusion j: X—V is a G-homotopy equivalence.
Let 6: X—>R,X be a preferred H-reduction of X and let »: V>R,V be
a preferred H-reduction of V which extends 0. Then (R;V,RyX) is a
finite H-CW pair such that the inclusion R;j: Ry X—R,V is an H-homo-
topy equivalence. Let 0': X—R4,X be another preferred H-reduction of
X and let 7' : V=R,V be a preferred H-reduction of V which extends
¢, and let Ryj : RxX—RLV denote the corresponding inclusion map, which
is an H-homotopy equivalence. Then we have, by what we showed above,
that

19(t(RpJ)) =1, (c(R4J)) € Why(X).
This can also be written in the form
(6) 19(8x(RyV, Ry X)) =1, (sy(RLV, RLX)) € Why(X),

see [3, Lemma II. 3.11].

By taking 6=6" we conclude that if »: V->R;V and 7 : V>R,V
are two preferred H-reductions of V, which both extend 6: X—»>R X,
then

sg(RgV, RpX)=sx(RLV, Ry X) € Why(RxX).
This proves the following lemma.

LEMMA 8.1. Let (V,X) be a finite G-CW pair, and let 6: X—>RzX
be a preferred H-reduction of X. Suppose that p: VR,V and v/ : V—
RLV are two preferred H-reductions of V which both extend 6. Then
there exists a formal H-deformation from RyV to RV rel RyX. []

9. Construction of the restriction homomorphism Resj;: Whe(X)—>Wh,(X)

LEMMA 9.1. Suppose that X collapses to X, by an elementary G-col-
lapse and let 0 : X,—RuX, be a preferred H-reduction of X,. Then there
exists a preferred H-reduction »: X—RyX of X, which extends 0, such
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that Ry X H-collapses to RyX,.

Proor. The assumption that X, is an elementary G-collapse of X
means that X can be expressed as an adjunction space of the form
X=X, U (I"XG|P)

(4
where P<G and ¢:J"'XG/P—X, is a G-map such that ¢(J*'XG/P)C
=1 and go(f”XG/P)CXS‘Z, see [3, p.13]. In the terminology of Defini-
tion 1.8 the map ¢:J" 'XG/P—X, is an (I"XG/P, J"' X G|P)-skeletal
G-map.
Let u : F—~G/P be a distinguished H-triangulation of the H-manifold
G/P, which exists by Theorem 1.3. Then w™:G/P—F is a preferred
H-reduection of G/P, and by Lemma 6.4

a=idXu™": (I"XG/P, J"_IXG/P)___)(Ian’ Jn—le)

is a preferred H-reduction of the finite G-CW pair (I"XG|P, J**X G/P).
Hence we have by Proposition 7.1 that
20,a): X, U (I"XG|P) —> Ry X, U (I"X F)
n

[4

is a preferred H-reduction of X=X,U (I"XG/P), and 2(6, «) extends the

given preferred H-reduction 0: Xy—RyX, of X,. Here pt: "X F—>RyX,
denotes a skeletal H-approximation of the H-map fo¢po(a|)™.

Since I" collapses to J"7!, in fact by one elementary collapse, it fol-
lows by Lemma 1.5 that I" X F' H-collapses to J* 'X F. Hence it follows,
see [3, Lemma II. 1.6], that Ry X=R;X,U (I*"X F') H-collapses to RzX,U

©

“
(X F)=RuX,. []

COROLLARY 9.2. Let (V,X) and (W, X) be finite G-CW pairs such
that there exists a formal G-deformation from V to W rel X, and let
0: X—>RyX be a preferred H-reduction of X. Suppose that y,: V->RzV
and 9,: W—oRsW are preferred H-reductions of V and W, respectively,
which extend 6. Then there exists a formal H-deformation from RyV
to RgyW rel RpX.

PrOOF. Let

k k km
V:VQ 1} Vl 27 e 1 Vm+1—_—W

be a formal G-deformation from V to Wrel X ;ie., each V,, 0<i<m+1,
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is a finite G-CW complex that contains X as a G-subcomplex and each
k;, 1<i<m+1, is either an elementary G-expansion or an elementary
G-collapse. For each 7=1,...,m we choose a preferred H-reduction
0,: Vi—»R,V, of V,, such that 6, extends 0: X—R,X. We also denote
the given preferred H-reductions », and #, by 6,: V,—»R;V, and 0,,,:
Vuii—Ra Vs, respectively.

Clearly it is enough to show that for each 7=0, ..., m there exists
a formal H-deformation from RV, to RyV;,, rel RyX. Assume for
example that k;: V;—V,,, is an elementary G-expansion. By Lemma
9.1 there exists a preferred H-reduction 6;,, : Visio>Ry Vit of V., which
extends 6,: V;—»R;V,, such that R;V,,, collapses to R;V; by a finite
sequence of elementary H-collapses. Thus there exists a formal H-defor-
mation from R, V; to Ry Vi1 rel Ry V, and hence in particular rel R, X.

Since 8;,,: Visi—>RuV;i and 0,,,: V,,,—Ry V;,, are preferred H-reduc-
tions of V;,,, which both extend 6: X—»R,X, it follows by Lemma 8.1
that there exists a formal H-deformation from R;V,, to R;V;, rel
RyX. Thus we have shown that there is a formal H-deformation from
Ry V, to RyV;,, rel RyX for each j=0,...,m. []

We are now able to define the restriction homomorphism
Res§ : Whe(X) — Why(X).
Choose a preferred H-reduction 6: X—R,X of X, and define
Resfi(ss(V, X)) =1o(su(Rx V, Ry X)) € Why(X)

for every s¢(V, X)€ Wh¢(X). The fact that this gives a well-defined
map is an immediate consequence of Corollary 9.2, and (6) in Section 8.

Lemma 9.3. The map Res§: Why(X)—>Why(X) is a homomorphism.

Proor. Let 6: X—R,X be a preferred H-reduction of X. Clearly
it is enough to prove that the restriction map Res§: Why(X)—>Whyz(RyzX)
is a homomorphism. Let s¢(V;, X) € Whe(X) and s¢(V, X) € Whe(X).
Then

8¢( V1, X)+86(Ve, X)=s6(V, g{) V., X).

Let n,: Vi>RsV,; and 7,: V,»R,V, be preferred H-reductions of V;
and V,, respectively, which extend the given H-reduction 6 : X—>R;X of
X. The space V‘E(J V,; i.e., the union of V, and V, along X, can also
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be considered as the adjunction space obtained by adjoining V, to V, by
the inclusion map ¢: X—V,. Hence it follows by Proposition 7.1 that

n: ViU V,—>RyV; U R4V,
X RpyX
where p=»,U7,, is a preferred H-reduction of V;U V,. Hence
X X

Resfi(sa( V1, X) +s6(V2, X)) =Resii(se(V2 U V2), X)
ZSH(RHVI U RHVZy RHX)
RyX

:SH(RH Vi RHX) +3H(RH Ve RHX)
=Resf(s¢(V,, X)) +Resf(se(Ve, X)) € Why(RzX). []

10. Behaviour of equivariant Whitehead torsion under the restriction homo-
morphism Res§

PROPOSITION 10.1. Suppose that f: X—W 1s a G-homotopy equivalence
between finite G-CW complexes and let Ryf:RyX—RyW be the H-map
induced by f. Then

Resg(z(f)) =7(Raf) € Why(X).
Proor. Recall that in defining the G-equivariant Whitehead torsion
of a G-homotopy equivalence f : X—W one may assume that f is skeletal

and then
7(f) =s¢(M;, X) € Whe(X),

where M, denotes the mapping cylinder of f, see [3, page 23 and Prop-
osition II.3.5]. We let ¢: X—>RyX and 75: W—»RyW be preferred
H-reductions of X and W respectively, and in order to simplify the
notation we denote f=R,f. We may assume that f is skeletal and then
the H-equivariant Whitehead torsion of f is given by

o(f)=%(sa(Ms, Rz X)) € Why(X).

By Lemma 6.8 §Xid: XX I-RzXXI is a preferred H-reduction of
XxI. It now follows by Proposition 7.1 that

C=2p:0Xid): W U (XXT) — RaWW Y (RuX X 1)

is a preferred H-reduction of M;=WU (XXI). Here f and f denote
f
maps f: XX {1}»>W and f: Rz X X {1}>R; W, respectively. Since X=X x {0}
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is a G-subcomplex of X X I disjoint from X X {1} we may choose { so that
¢ extends 6:XX{0}->R;Xx{0}. Since Mf-:RHWLfg (RgXXI), we have

shown that
C:M;— M;
is a preferred H-reduction of M, that extends 6: X—RyX. Hence

Resi(z(f)) =Resi(se(M, X))
=ty(su(M;, RuX))=7(f) € Wha(X). []
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