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On the cylinder isomorphism associated to

the family of lines on a hypersurface

By Ichiro SHIMADA

§1. Introduction.

Let X be a hypersurface of degree a in P**' defined over the complex
number field C. We assume that n>8. Let _[(X) denote the variety
of all lines on X. Then we have the cylinder homomorphism

. H,,L(X) Z)— H,(X, Z)

[r] ;——>[ U L]

Ler
where y is a topological (n—2)-cycle on _L(X) and U L is the topological
Lery

n-cycle of the union of all lines corresponding to the points on 7. In
this paper, we shall show that, if n is odd or 4, and a<mn, then ¥ is
an isomorphism modulo torsion for a general X.

Let us state our result more precisely. Let @ be the variety of all
hypersurfaces of degree a in P**!, and G the Grassmannian variety of
all lines in P**'. Let Z be the incidence correspondence Z:={(L, X)
€GXQ| LcX} with the natural projections a:Z—G, :Z—Q. Note
that L(X)=8"%X) for X€Q. It is easy to see that Z is smooth. On
the other hand, it is known that B is surjective if a<2n—1 (cf. [1]).
Thus we have the maximal Zariski open dense subset @ of @ such that
B is smooth over Q. It is easy to see that dim [ (X)=2n—a—1 for
XeQ. We denote by F®Q the cylinder homomorphism H, ,(L(X), Q)
—H,(X,0). We put

Vaol L(X), Z) :=ker(H, o(L(X), Z) — H, (G, Z)),
VX, Z) :=ker(H, (X, Z) —> H,(P™*, Z)).

THEOREM. Suppose that n>3, n>a, and X€Q. Then TRQ 1is
surjective. Moreover
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(1) if n is odd, then ¥ is an isomorphism modulo torsion.

(2) If m s even, then

(2-1) ker T'Q®Q s contained in the image of the natural map H,,..(G, Q)
—H, ,(L(X),Q), and dim ker ¥RQ< (n—2)/4,

(2-ii) of n/2+2>a, then U 1s surjective.

In particular, T is an isomorphism modulo torsion if n=4.

It is known that, if X is a smooth cubic hypersurface, then Xc @’ (cf.
[1]). Thus we have

COROLLARY. For a smooth cubic hypersurface X with dim X>38, ¥
18 surjective. If dim X s odd, then ¥ is an isomorphism modulo torsion.

It is known that ¥ is an isomorphism for a smooth X if ¢=3 and
n=38 (cf. [5]), or =3 and n=4 (cf. [2]). It is also known that T'®Q
is surjective for a general X if a<n+1 (cf. [4], [10]). If TRQ is sur-
jective, the Hodge level of H*(X) must be less than n, hence the degree
a must be <n+1. For the case a=n+1, it is known that TRQ is not
an isomorphism (cf. [9]).

The tool of the proof of injectivity of ¥®Q is a higher dimensional
analogue of the Clemens-Letizia method (cf. [3], [8]). To prove the sur-
jectivity of ¥, we use some ideas originated from [10]. The contents
of this paper are as follows. In §2, we investigate the degeneration of
L(X). In§3, we study the relation between vanishing cycles of _[(X)
and X. In §4, we study the kernel of ¥®Q, and prove that ker ¥&QQ
is contained in the image of the natural map H,...(G,Q)—H, (L (X),Q),
and dimker T7®Q<(n—2)/4. In §5, we show that ¥ maps a vanishing
cycle of _L(X) to a vanishing cycle of X, and thus the image of
V. o(L(X), Z) via ¥ is just V,(X, Z), and then prove (2-ii).

In this paper, we use the same symbol L for a line on X and the
corresponding point on _L(X), and write L¢ _[L(X), for example. We
also use the same symbol for a hypersurface and the corresponding point
on Q.

The author would like to thank Professors T. Shioda, J. P. Murre,
Y. Kawamata, and N. Nakayama for their warm encouragement and
invaluable conversations. He also thanks to the referee for many helpful
suggestions.
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§2. Degenerations of .L(X).

Let 7: V—A Dbe a proper flat holomorphic map from a complex mani-
fold V of dimension m-+1 onto the unit disk A. This map is called a
degeneration if z is smooth over the punctured disk AN\{0} and V,:=="'(¢)
is irreducible for ¢+£0. Let Sing V, denote the singular locus of V.

DEFINITION 1. A degeneration = : V—A is called quadric of codimen-
sion k& if Sing V, is eonnected and, for every point p¢€ Sing V,, there
exist local coordinates (z,, ---,2,) of V around p such that z=zi+---+

The following lemma is easy.

LEMMA 1. The degeneration = : V—A is quadric of codimension k
if and only if Sing V, 1s smooth, connscted and, for each p € Sing V,,
there exists a smooth (k+1)-dimensional submanifold W, of V defined
m a small netghborhood of p such that (a) W, intersects with Sing V,
transversely at p, and (b) p is a non-degenerate critical point of the func-
tion |y . []

Let W, be an arbitrary (k+1)-dimensional submanifold of V which inter-
sects with Sing V, at p transversely. Then p€ W/ is a non-degenerate
critical point of =z|y,. Let [c*]€ H(W,N V., Z) be the vanishing cycle
for the non-degenerate critical point p of =z[y;, where e€ A\{0} is suffi-
ciently small and V. :=zn""(¢).

DEFINITION 2. We call the image of [¢t]€ H,(W.,N V., Z) by the
natural map H,(W,NV.,, Z)—->H,(V., Z) the vanishing cycle for the quadric
degeneration of V. at t=0.

By a similar argument of [8] p. 482, we have

LEMMA 2. Let n: V—A be a quadric degeneration of codimension k.
Then the space of wanishing k-cycles ker(spy : H,(V., Z)—~H,(V,, Z))QRQ
is of dimension at most 1 and is generated by the wvanmishing cycle of
the degeneration. [ ]

We use the notation in the introduction. In what follows, we always
assume that n>3, n>a. The lemma below will be proved together with
Lemma 4.
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LEMMA 3. Ewvery hypersurface contained in @ is smooth.

By this lemma, it is enough to prove Theorem for a general hypersurface
X, contained in @’. Let DcC@Q be a general line passing the point X, € @'.
Let ¢ be an affine parameter on D such that the point t=co is corre-
sponding to X.. We may assume that the pencil {X,},.p corresponding
to the line D is a Lefschetz pencil. Let X,,---, X, be the singular
members. By Bertini’s theorem, we may also assume that Z,:=p"(D)
is smooth. Let B, denote the restriction of g to Z,. Our first goal is
to prove the following proposition which will be used in the Clemens-
Letizia argument in §4.

PROPOSITION 1. We put DN\(DNQ')={t,, -+, ty, tysr * * *, tyrn). If we
take the line D passing X., general enough, then
@) L(X,) 1s smooth, commected and of dimension 2n—a—1 for any
te DN,
(b) for 1<J<M, L(X., ) has only isolated singularities, and

+7
(e) for 1<J<N, Bp is a quadric degeneration of codimension n—2 at
each t;.

~ Proor. The assertion (a) is an easy consequence of the results of
[1] and the definition of Q'

Proor oF (b). For a pair (L, X) € Z, let T, . x, be the Zariski tangent
space of _L(X) at Le_L(X). Then B is not smooth at (L, X) if and
only if dim T, ,x,>2n—a—1. We put

Z,:=the closure in Z of the set {(L, X) € Z| X is smooth along L,
and dim T, ,x,>2n—a—1}.

Now Lemma 4 below implies that 5(Z,)c@ is an irreducible subvariety
of Q of codimension >1, and if the codimension is exactly 1, then
Blz,: Zi—B(Z,) is generically finite. Thus (b) follows.

LEMMA 4. If a=2 or 8, then Z, is empty. If a>4, then Z, s an
irreducible subvariety of Z of codimension 2n—a.

PROOF OF LEMMAS 3 AND 4. We fix a line LEG. Let X€Q be a
hypersurface which contains L. We have the canonical exact sequence

0—>NL,X—>NL,,,n+1£>NX,,,n+1| ., of normal sheaves and the canonical isomor-
phism T, ,x=H"L, N.x). We see that dim T, ., is larger than 2n—
a—1 if and only if H(p): H(L, Ny x)>H'(L, Ny ps+1) does not have the
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maximal rank. We choose homogeneous coordinates (& : - - - : &,41) of P
such that L is defined by &=---=£&,=0. Then the defining homogeneous
equation F' of X is written as follows;

F(*’Sm ) Sn+l) 351'gl(§-m En+1)+ ct +$n'gn(50) ‘Sn+1)
+ (terms which contain &, -- -, &, with degree
more than 1).

The morphism ¢ : N, pm+1(=0(1)®") =Ny p+1|(=0(a)) is given by (g.)icocn
where ¢,=§,|.. If we put

a—1
gu(eov Sn+1) — EO gp,u'sg—l_ﬂ"sﬁ-}-l y

then the morphism H°(p) is given by the matrix

~ M, 0--.-- 0 Jio G20 " Gnpo
My= -M—_ where My= D .
- 0 F J1,0-1 92,0-1 * " * Tnya1

Suppose that X is singular at a point (@:0:--.-:0:8)€L. Then
we have §i(a, B)="--=4.(a, B)=0, and we get a non-trivial linear relation
(@, a B, -+, af Y, B Mp=(0, - - -, 0) between the rows of M,. Hence
we get dim T, ,x,>2n—a—1. Now, for any singular hypersurface X
of degree a<mn, there exists a line on X which passes through the
singular locus of X (ef. proof of Lemma 1 in Lecture 4, [11]). This
completes the proof of Lemma 3.

Suppose that X is smooth along L. If the rank of M is not maxi-
mal, we get two linear relations

{ (To: Tty Tu—l)MF:(Ov ° ’ 0)
(o -+ 7.)Mp=(0, ---,0),
at least one of which is non-trivial. Then (r, ---,7._,) and (ry, -+, 7.)

is linearly independent. In fact, if not, there would exist (a, 8)+(0,0)
such that (r,, ---,7.)=c-(@* a*'8, ---,aB*"", f°), where c€C*. Hence
gy -+, 9, would have a common zero on L. Let M(a,n) be the variety
of all a Xn matrices. Let M, be the variety of all M¢c % (a,n) such
that there exists a vector (y,, ---,7.) € C**' which satisfies the following
two conditions:1) (7, ---,7...) and (7, ---, 7.) are linearly independent,
and 2) (ro, -+, 7oc)M=(ry, -+, 7.)M=(0, --+,0). If a>8, then M, is
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irreducible and of codimension 2n—a in HM(a, n). If a=2, then M,={0}.
Because the linear map

{Fe H(P,Oa))| F|.=0} —> HM(a, n)
F }——)MF
is surjective, we have codim Z,<2n—a. Let X={F=0} be a general

hypersurface containing L such that Mp€ M,. The column vectors of
My span an (¢ —2)-dimensional linear space in C*={g(&, £.+,)| g is homo-

geneous of degree a}. If a>4, then g, ---, g, do not have a common
zero on L because each zero of g, defines a subspace in C* of codimen-
sion 1<a—2. Hence X € Z, and codim Z,=2n—a. If a=3, theng, ---, 9.

are proportional to each other and X is singular at some points on L.
Thus Z, is empty. []

ProoF OF (c). We fix a point o€ P"*' and put

Q.ine :={X €Q| X is singular},
Quing.o - ={X€Q,.,] 0€ X, X is singular at o}, and
L(X,0):={Le L(X)]o€L} for X€ Q-

We take a general X, € Q... and consider the pencil {X,},.p spanned by
X, and X.. The two lemmas below prove (c).

LEMMA 5. (1) Sing(L(X,)) coincides with _L(X,,0), and
2) _L(X,, 0) is smooth, connected and of dimension n—a-+1.

LEMMA 6. For each L,c _L(X, 0), we have a smooth (n—1)-dimen-
sional submanifold S(L,) of Zp defined in a small meighborhood of
(Lo, Xo) € Zp such that
(1) S(L,) intersects L(X,, 0) at (L, X,) transversely,

(2) the restriction Bplsu, of Bo to S(L,) has a mon-degenerate critical
point at (L, X,) € S(Ly).

Proor OoF LEMMA 5. The assersion (2) can be proved by the same
argument with the proof of Lemma 1 in Lecture 4, [11]. For (1), we
consider the hypersurface X'={&&'+&Eaii+E&i+&+ - +£,=0}, which
is smooth and contains the line L'={f,=---=¢,=0}. It is easy to see
that _L(X’) is singular at L'e L(X’') if a>4. Hence we see that
X' € B(Z)\Q.in,. Because p(Z,) and @Q,,, are both irreducible and @i, is



On the cylinder isomorphism 709

of codimension 1 in @, we see that 8(Z,) N Q.. is of codimension >1 in
Q... Thus we have Sing(L(X))c.L(X,o0) for a general X € Q... The
inclusion _L(X, 0)cSing(L(X)) has been shown in the proof of Lemma
3. [

Proor oF LEMMA 6. We fix affine coordinates (x,, ---,x,) on an af-
fine space A**' in P**' which contains the o as the origin. We may
assume that the line L,€ _L(X,, 0) is defined by

(2.1) L,:2,=---=x,=0.
Let (%, -+, Uy, vy, - -+, v,) be local coordinates of G around L, such that
the line corresponding to (%, -«-, U, v, -+, v,)€EG is given by

{2, W A+0y, Ul 40, - -+, U A+0,)| AECIC A, Let fand g be the defining
equations in A4"*' of X, and X, respectively. The defining equation of
X, is f+t-g=0. We put

[0] f(v)+t-g(v)=0, and for v=1, ---,q,

3 *f .09 >_
b1 B (ot )0,
where v:=(0,v, ---,v,), %,:=1. The local defining equations of Z,
:=p7YD) in a small neighborhood of (0, L,) in DXG is [0], [1], - - -, [a],
and the subvariety (X, 0) of DXG is defined by the equations t=v,
=...=v,=0 and [2], [3], ---,[a] above. (Note that if t=v,=...=v,=0,
then the equations [0],[1] hold automatically because f does not have
the homogeneous part of degree 1.) Let T..,.0xc be the tangent space
of DXG at (0, L,) € DXG. We identify

0——-}— ZCz +Z 77@6 € To.1y.0x¢

with (0, &, -+, & i -+, 9) €C™*. Then the tangent space T, cixgo
CT(o,LO),DxG is given by

~ lTe]11]0]
1{o---0f0---0 ] &
0 L ||"

ESRK
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where A is an (@ —1) X7 matrix defined as follows: Let f, be the homo-
geneous part of degree v of /. We put

fu:xg_l' (aulxl +a»zx2+ e "l"aunxn)

+ (terms which contain x, with degree less than v—1).

The matrix A is

Qgy Olgg *** o+ Ay
A= Qg Qgg » v 000 A3y
Aoy Agg * 0000t (227%

If X, is general in @, the matrix A has the maximal rank for every
L,e L(X,,0), because _L(X,,0) is smooth by Lemma 5. Hence we can
change the affine coordinates (x,, ---,x,) linearly so that (2.1) still holds
and

2.2) A:[IH ] o].
We also change the local coordinates (u,, - - -, u,, v, - - -, v,) of G in accord
with (x,, ---,%,). We define McDXG by 4,—=---=u,=0. Then M in-

tersects with Z, transversely in a smooth manifold S:=MNZ, of di-
mension n—1, and S meets with (X, 0) transversely at (0, L,). We
shall prove that the restriction Bp|s of Bp to S has a non-degenerate
critical point at (0, L,), thus S is the desired submanifold S(L,). It is
easy to see that

(2.8) w,:=wy|s, -+ -, w, :=v,|sdefine local coordinates on S,
(2.4) w,|s has a critical point at (0, L,) (i.e.,, at w=0).

Note that Bp|s is nothing but t|s. By the equation [0], we see

(2.5) Hom — L0 v | f(0, mifs(w), wy, - o, w,)
g0, vy, -+, v,) |8 9(0, vy|s(w), wy, - -+, w,)

Because f, is of the form x,-x,+ (terms not containing x,) by (2.2), the
non-degeneracy of the symmetric bilinear form defined by f, assures
that the form of (n—1)-variables defined by f,(0,0,w, ---, w,) is also
non-degenerate. By (2.4), (2.5), we see that 8p|s=t|s has a non-degenerate
critical point at w=0. []
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§3. Relation between the vanishing cycles of X and _[(X).

We continue to consider the Lefschetz pencil {X,},cp With o€ X,
the node. Let ¢ be a non-zero, sufficiently small number. It is well
known that there exists a vanishing cyele [2+]€ H,(X., Z) of X,, uniquely
determined up to sign, for the node o€ X,., By Lemma 6, we also have
a vanishing eycle [ot]€ H,_,(L(X,), Z) for the quadric degeneration of
L(X.) at t=0. First, we give an explicit description of the topological
cycles in X, and _[(X,) which represent [3+] and [¢*], and next, we shall
study the relation between [XY*] and [o*]. The main result of this sec-
tion is Proposition 2.

Let (w)=(w., ---, w,) be the local coordinates on S(L, defined by
(2.3), and %,(w) be the restriction to S(L,) of the function v, on DXG.
We consider the embedding

t: S(L,) C s 4!
(w2v ".!wn) > (Ov ﬁl(w)er’ ° "vwn)v
where A4"*!' is the affine space with the affine coordinates (x,, ---,x,)

which we have used in Proof of (¢) in §2. Let R(L,) denote its image.
We put z:=f/g. The local defining equation of X, is ¢(x)=e. We see
from (2.5) that

(3.1) tiswo):ﬂnwo)%

Because t|su,,"'(¢)=S(Ly) N-L(X.), we have the isomorphism

(3.2) t. . S(Ly)NL(X,) = R(L,) N X,
induced from ¢, for ¢ small enough. We put
P(L,):= U Lcp*.
LeS(Ly)

Then P(L,) is a smooth hypersurface in a small neighborhood of o € P**'.
In fact, P(L,) N A" is the image of the map

CXS(LO) 3 (lv Way **+,y wn)
A (4, Uy (W) A+ By (W), g (W) A+ W,, (W) A+wWs, - - -, (W) A+w,),

where #;(w) is the restriction to S(L,) of the function ;. It is obvious
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that 7 is an embedding in a small neighborhood of (2, w)=(0,0, ---,0) €
CxS(L,). Let P'(L,) be a small neighborhood of o in P(L,). We have
a canonical projection #:P/(L,)—R(L, which is compatible with the
projection CXS(L,)—S(L,) via ¢ and 7. For p€ R(L,), the fibre z7*(p) is
a segment of the line corresponding to ¢ ‘(p) € S(L,), which is contained
in X.,. Hence we have

(3.3) t(L)=R(L)NL  for LeS(L)nL(X.),
and
(3.4) Tl prng =Tl riLyom.
LEMMA 7. There is an analytic local coordinate system (z,, - - -, 2,)

of P*** around o such that we have coordinate descriptions as follows ;

T=2+ -+,
P/(Ly) : 20++ —12,=0, R(L,):2,=2,=0,
T (20, vV =120, 25 -, 2) —> (0,0,2, -+, 2,) .
Proor. It is obvious that we have local coordinates (v, ---, ¥.) of

P+ with the origin o such that
(3.5) P/(Ly) : 4,=0, R(L,) : ¥yo=%,=0, and
T (0, Yis Yoo * * °, yn) [ — (0' 0» Yoy =y yn)

From (3.1) and Lemma 6, we see that t|g.,=7(0,0,%. ---,¥,) has a

non-degenerate critical point at (v, ---,%.)=(0, ---,0). Hence we can

change the coordinates (v, %, ---,%.) so that we have ¢(0,0,%, -+, ¥.)

=yi+---+v: and the descriptions (3.5) still hold. From (3.4), we have

t(y) =i+ +92 +i hi{y)-9,-y.. Because o is a non-degenerate critical
i=0

point of z, we have h,(0, ---,0)#0. Now we can get easily the desired
local coordinates (2o, ---,2,) from (y, ---,%.) by a suitable coordinate
transformation. []

Using the coordinates in Lemma 7, we put, for a small positive real
number 7, B,:={(z,, - - -, 2,) € P*| |2+ ---+|2,°<r’}. We also put

DY ={(u,v) € R"'X R | |u|=1, |v|<1, {u,v)=0}
2={(u,0) € R**"X R+ | |u|=1}.
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Let ¢ be a small positive real number. By [7] p. 37, there is a diffe-
omorphism between B,N X, and D2, which is given by

ez
u=F

~TRez]’ v={(r"—e)/2} 1% Im z.

We will consider DY as a submanifold embedded in B,NX, by this
diffeomorphism. It is well known that X with an orientation + is a
topological cycle which represents the vanishing cycle in H,(X,, Z) for
the node o€ X,. From Lemma 7, we can see that

(8.6) 2 intersects with P(L,) transversely in a (n—2)-sphere,
(8.7) the (n—2)-sphere 2 N P(L,) is contained in R(L,) NX,,

(3.8) B.NR(L)NX, is diffeomorphic to the space D(¥NP(L,) of all
tangent vectors of length <1 of the sphere XN P(L,).

Since P/(L)NX, is a complex submanifold of X, of codimension 1, we
see from (3.6) that there is a orientation + of X N P(L,) canonically in-
duced from that of 2+ and the complex structure of P/(L,)N X, and X..
By the fact (3.7) and the local isomorphism (3.2), we have a topological
cycle

ot =7 ((E N P(Ly)Y)

in S(L)N-L(X,). By (3.8), this cycle o+ represents the vanishing cycle
of S(L)Nn-L(X.) for the node (0, L, €S(L)N-L(X,). Hence [o*]€
H, ,(L(X,), Z) is the vanishing cycle of _L(X,) for the quadric degenera-
tion at t=0.

We embed Z, in a projective space P’, and let Y be the intersection
of Z, with a general plane in P’ of codimension n—a+1. We may
assume that Y,:=YN_L(X,) is smooth for ¢ which is non-zero and suf-
ficiently small, and that Y intersects with L (X,, o) transversely at points
(0,L,), -+-,(0,L,)€DXG. Then Y,:=YN_L(X, has only nodes (0, L,),
-+, (0, L,) as its singularities. We move Y continuously so that Y coin-
cides, in a small neighborhood of (0, L;), with the submanifold S(L,)
which we constructed in Lemma 6. For each %, we have a topological
(n—2)-cycle o on Y, constructed as above.

PROPOSITION 2. For [pl€ H, ,(Y., Z), let [p] be the tmage of [p] by
the natural map H, (Y. Z)—H, ,(L(X.),Z). Then the intersection
number [p]-([of]+---+[oF]) on Y, equals with the intersection nmumber
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T([pl)-[2+] on X..

Proor. For the open small ball B, of o in P**', we put By ={L € G|
LNB,+@}cG. Then (DX B7)NZp is a neighborhood of _L(X,,0) in Zp.
By taking the radius » of B, sufficiently small, we may assume that
Y N (DX B7)=disjoint union of U, U, - - -, U,, where U, is a small neigh-
borhood of (0, L;) in Y. By construction, the support ¢; of ¢} is contained
in U,. Let p be the topological cycle in Y, which represents [p]. We

put pNU,=p;.. We see that, if Le,o\.L_TJ,oiCYC.f( ), then LNY=¢.

We see from (3.7) that, if LNY+ @ for L € S(L;)N_L(X.), then this inter-
section LN2Y is a single point LNR(L;). By (3.3), we have L=¢*(LN
R(L))), and since LNR(L)e2NP(L,), we have L€g,. On the other
hand, if L€, then L and X meets at ¢,(L). By moving p in Y, we
may assume that p; meets of transversely at g points a,, ---,a,.€0,
Then the intersection of UL and 2 consists of the points ¢, (a,), - - -, t.(a,).

Lep;

By (3.6), UL and 3 meets at these points transversely. Note that the
orlentatlon ‘of the topological n-cycle UL is obtained canonically from

the orientation of p and the complex structure of each L€p. By the
definition of the orientation + of ¢+, we see that the sign of the local
intersection numbers at a; and ¢(a;) are same. []

§4. The kernel of TRQ.

PROPOSITION 3. The kernel of ¥QQ s contained in the image of
the matural map H,,.(G, Q)—H,_,(L(X), Q). In particular, T'QQ is in-
jective if n is odd. If m is even, we have dim ker FQQQ<(n—2)/4.

Proor. We consider the Lefschetz pencil {X,},cp in Proposition 1.
The fundamental group =, (D\[t, ---,tysu}, ) acts on H, ,(L(X.), Q)
and H*(_L(X.), Q).

LEMMA 8. The space of invariant cocycles I"*(L(X.), Q)C
H**_L(X.), Q) under this monodromy action is the image of the natural
map H* G, Q)—>H"*(L(X.), Q).

ProoF. By[7](7.4.1), the natural map =,(D\[¢,, - - -, tyyu}, 00)—>7, (@', o)
is surjective. Hence I"?(_L(X.), Q) is the space of invariant cocycles of
(@, o). Let B’ be the restriction of g to Z/:=57"Q'). By Théoreme
(4.1.1) (ii) of [6], the natural map
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H**(Z,Q) — H"*(Z', Q)—> H'(@', B"*B4Q) =I""*(L(X.), Q)

is surjective. Consider the commutative diagram

Z <y GXQ

7
@ @
Y

G

’

where & is the natural projection and # is the inclusion. Since « is
smooth and every fibre of « is a linear subspace of @=P¥ of codimen-
sion a+1, we have natural isomorphisms R‘@,Q0—=R'a,Q and H'(G, R'@,Q)
== H(G, R'ayQ) for 1<2(K—a—1). Because the Leray spectral sequences
with respect to a and & degenerate at E, we see that H"*(GXQ, Q)
L H"*(Z, Q) is an isomorphism. (It is clear that n—2<2(K—a—1).) We
have the Kiinneth decomposition H**(G X @, Q)zur@ 2H"(G, O)RH(Q, Q).
i

It is obvious that
H(G, Q)®H'(Q, Q) = H"*(GXQ, Q) = H"*(Z, Q) — H°(Q', R"*B4Q)
is a zero-map unless j=n—2, 1=0. It is also easy to see that

H(G, Q) = H*(G, Q)QH"(Q, Q) = H"*(GXQ, Q) = H"*(Z, Q)
— H'(Q, B"*p3Q) — H* *([L(X.), Q)

is the natural restriction map induced from _[(X.) = G. []

Following the argument of [8] p. 483, we see that ker ¥"XQ is contained
in the space I, ,(.L(X.), Q) of invariant eycles, using Proposition 1 and
the surjectivity of F®Q (cf. [10] or see §5). The fundamental group
m (D\{t}, - - -, tysm}, o) acts on H'(G) and H-(G) trivially. We have a
commutative diagram of z,-equivariant homomorphisms

H"G, 0 5p~° Huwwl@0 < HuuG,0)

l o T ]

H (LX), @) —5 5> Huneao LX), Q) 7y Hool LX), Q)
where P.D. denotes Poincaré duality and -[H]*~**' denotes intersection
product with (n—a+1)-st power of the homology class of a hyperplane
section. From Lemma 8, we see that I, ,(.L(X.), Q) coincides with the
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image of H,.0.(G, Q)—H,_(L(X.), Q). If n is odd, then dim I, _,(.L(X..), Q)
=dim I"*(L(X..), Q) <dim H" (G, Q)=0. Suppose that n is even. Let
I.(X.., Q)CcH,(X.,, Q) be the one-dimensional subspace of invariant eycles.
Because ¥®Q is surjective, the map Z&®Q|r, ,cx.n: I, (L(X.), Q)—
I,(X.., Q) must be surjective. Thus dim ker ¥®Q=dim I"*(_L(X..), Q) —1.
Since dim H"*@G, Q) =[(n—2)/4]+1, we have dim ker T'®Q<(n—2)/4. []

§5. The image of 7.

PROPOSITION 4. The homomorphism ¥ maps V,_,(L(X), Z) onto
VX, Z) surjectively.

ProoF. Note that the image of V, ,(L(X), Z) via ¥ is contained
in V,(X, Z) because we have a commutative diagram

H,,(L(X), Z) —— H,(X, Z)

| |

H,,G 2Z) —— H,/(P"Z).

It is obvious that vanishing cycles in H,_,(L(X.), Z) of quadratic de-
generations at t=t, ---, ¢y are contained in V,_,(L(X.),Z). On the
other hand, V,(X., Z) is generated by vanishing ecycles in H,(X., Z)
(cf. [7)). Let [2*]€ V,(X,, Z) and [o¢*]€ V,,(L(X.), Z) be the vanishing
cycles at ¢t=0, as in §3. Because the ecylinder map commutes with
specialization map, we have ¥([o*])=m,-[2*] (m,€ Z). Now it is enough
to show that m,= +1, because all vanishing cycles in H,(X., Z) are con-
jugate by the action of the global monodromy (cf. [7]). First, suppose
that n is even. In this case, we see from [7] p.40 that

o] ([of ]+ - - - +[of ) =[ot]-[ot]=%2 in H,, (Y, Z)

where [67]1€H,,(Y.,Z) (¢t=1,---,7) are the cycles in Proposition 2.
Thus we have ¥([o*])-[Z*]=m,-[2*]-[E*]==*2. Comparing this with
[2*]-[2¥]=%2 in H,,(X,, Z), we get m,==+1.

Next, we shall treat the odd dimensional case. Let {X.},cp be the
Lefschetz pencil with n=dim X, is even and n>a+1. Let {H(}..,t be a
general pencil of hyperplanes in P*+' such that o€ H, and o ¢ H,, where
o€ X, is a node. We denote by W,, the hyperplane section X,NH,. Fix
a non-zero, sufficiently small number ¢, and consider the pencil {W, .}scp.
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We shall prove Proposition 4 for a general member of this pencil. By
Lemma 3,4 in [10], we have a small neighborhood A of 0 in P' and two
points s,;, s_; € A such that

(a) W.,. is smooth for all s€ A\{s,;, s_,}, and
(b) W.. (¢==1) has one and only one singular point p; which is a node.

We take a path y:[—1,1]>A which satisfies the three conditions in
Lemma 5 of [10], and apply this Lemma to our situation. We get the
following facts:

(e) there is an (n—1)-sphere S, ,., in W, . for each v &€ (—1,1), which
represents, with an orientation -+, the vanishing ecycle [Sf]€
H, (W, .., Z) for both of the two nodes p_, € W. ,, and p, € W, ;41
and

d) {p,juU U1 ) S. o U{ps} is an m-sphere in X,, which represents,

vE (-

with an appropriate orientation, the vanishing cycle [2*]€ H,(X,, Z).
It is enough to show that

(5.1) im%y, ., 2085wl

Let L, :={(s, L)e P*XG| Lc W,,} be the incidence correspondence with
the natural projection = : L .—P'. By Proposition 1, we may assume that

(a)’ there are finitely many points {su, - - -, Sun}CTAN{s41, s_,} such that
7 is smooth over AN\({s, S_i, Su), -, Sun}, and
(b)) = is a quadric degeneration of codimension n—3 at s=s,, and s=s_,.

We take the path 7 which avoids s, -+ -, su. Reeall that ot L(X,) is
an (n—2)-sphere with an orientation which represents the vanishing cycle
[e*1€ H,_,(.L(X.), Z) for the quadric degeneration of _L(X,) at t=0. We
shall construct an (n—38)-dimensional sphere s, ., in L(W.,.,) for each
v€ (—1,1) which has the following properties;

(¢) with an orientation +, s, represents the vanishing cycle for both
of the quadric degenerations of (W, ,.,) at s=s,, and s=s_,, and

(d)’ there is a point ¢;€ L(W.,,) (i==+1) such that the union {gq_,}U
U S.,mU{gu} in L(X,) is an (n—2)-sphere which, with an ap-

v€(-1,1)
propriate orientation, represents [¢*]€ H, .(.L(X.), Z). (Note that
L(W.,.) can be naturally embedded in _[(X,).)

The assertion (5.1) follows from this construction as follows. By (e) and
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(c), we see that 'y, ([8!,w])=m-([S,.]) where m is an integer which
does not depend on v€ (—1,1). Then by (d) and (d)’, we have ¥y ([¢+])
=m-[2*]. By what we have proved in the previous paragraph, we have
m=m,= =1, which implies (5.1).

Now we construct sf,,. We use the coordinate description in Proof
of Lemma 6. We use the affine coordinates (x,, ---,x,) which is motf
arranged so that (2.2) holds. We take the hyperplane pencil {H,},p
given by H,={x,=s}, and put G,:={Le€G| LcH,}. The defining equa-
tions of DX @, in DX@G is given by u,=0, v,=s. Let M be a submani-
fold in a small neighborhood of (0, L,) in DX G which is of codimension

n—a+1 and is defined by linear equations u,=0 and f ,Biju,-—}-zn) 7:0;=0
i=1 i=1

(t=1, ---,n—a). Weput S:=Z,NM. If X,is general and M is general,
then we have

(1) M intersects with _L(X,, o) transversely, and S is smooth near (0, L),
(2) v.|s has no ecritical points in a neighborhood of (0, L),
(8) t|s and v,|s satisfy the condition (#) in Lemma 3 of [10].

In fact, these three conditions are open conditions for X, and M. Hence
it is enough to show that there is at least one example. If we choose
X, whose defining equation f satisfies

o=+ ai+ - - - 2, A:[Iu—l ‘ 0],

and M which is defined by u,=---=u,=0, then the conditions (1), (2), (3)
above are satisfied. Note that, on S,SN_L(X,) is defined by t|s=e, and
SNL(W.,) is defined by t|s=¢, v,/]s=s. By Lemma 4 of [10], we have
two values s, s, €A such that Mn_L(W.,) is singular for s=s¢/,, s,
If _L(W.,) is smooth, then M _L(W.,) is smooth for a general M. Hence
s, and s’, must coincide with s,, and s.,, Now by Lemma 5 of [10],
we get the desired cycle s}, and two points ¢, q_,. []

Next we prove the assertion (2-ii) of Theorem. We suppose that
n=dim X is even. We put m=n/2. Since we have already shown that
the image of ¥ containes V,(X, Z), it is enough to show that the com-

position H,_,(_L(X), Z)——s H,(X, Z)—*> H,(P**, Z) is surjective for a
general X. We fix an m-dimensional linear subspace P=P™ of P**!, and
a point ¢ on P. Let G(gq, P)C@G be the variety of all lines which pass
q and are contained in P. Let @,CQ be the variety of all hypersurfaces
of degree a which contain P.
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CLAIM. Suppose that m-+2>a. Then, for a general X€EQp, the
morphism f:Z—Q 1is smooth at every potnt of a '(G(q, P))NB Y (X), t.e.
at every point of G(q, P)c _L(X)CG.

Note that G(q, P)=P™*' defines a topological (n—2)-cyele in _[(X) for
X €Qp. The claim above implies that this cyecle G(q, P) can be deformed
to a topological (n—2)-cycle I' contained in _[(X’) for a general X' €Q.
It is obvious that 7,o%([I']) is the generator of H,(P"*', Z)~Z, hence
(2-ii) follows. The Claim can be proved by the argument similar to the
proof of Lemma 4. []
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