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§1. Introduction.

The Godbillon-Vey invariant ([8]) is defined for a codimension one
foliation of class C? as a 8-dimensional de Rham cohomology class of
the manifold. When the foliation is given by a 1-form o, there exists
a l-form » such that do=7nAw by the integrability condition, and the
Godbillon-Vey class is that of the closed 3-form »Ady. This gives rise
to the Godbillon-Vey 2-cocycle of the group Diff3(S') of orientation
preserving C*-diffeomorphisms of the circle.

In [10], Hurder and Katok defined the Godbillon-Vey invariant for
foliations of class C'**, where a>1/2. They asked whether one can define
the Godbillon-Vey invariant for the foliations of class C'** for 0<a<1/2.
This paper answers to this question. Namely we assert that the
Godbillon-Vey invariant is not nicely defined for the foliations of class
C'*« for 0<a<1/2. More precisely, we prove the following propositions.

PRrOPOSITION 1. The Godbillon-Vey 2-cocycle defined im Diffs(S") s
not continuous in the C'* topology for 0<a<1/2.

PROPOSITION 2. For 0<a<1/2, there is a foliated R-product F with
compact support over a closed oriented surface 3 of class C*** with the
Sfollowing properties. < admits a partition into a countable number of
saturated Borel sets B; where the Godbillon-Vey invariants GV(<, B;) are
defined and GV (¥, B;)=co.

Roughly speaking, Proposition 2 says that there is a foliated R-
product F with compact support of class C'** (0 <a<1/2) whose Godbillon-
Vey invariant is equal to infinity. Here a foliated R-product with com-
pact support is a foliation of XX R transverse to the fibers of the
projection 3 X R——23 whose leaves are horizontal out of a compact set.
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For the fact that the Godbillon-Vey invariants are defined with respect
to saturated Borel sets, see [12], [4], [5], [8], [9] and [7].

As is asked by Ghys ([6], [7]), it is interesting to know the natural
domain of definition of the Godbillon-Vey invariant. We study this
question in a future paper.

The author would like to thank the referee for his careful reading.

§2. Proof of Proposition 1.

For the proof of Proposition 1, we use the construction of a family
of foliated S'-bundles with holonomy in the amalgamated group

SL(2, R)+PSL(2, R)/SO(2)=PS0(2)

giving a continuous variation of the Godbillon-Vey invariant (see [14],
[2] and [15]). Since we need an estimate on the norm of the holonomy,
we review here the construction.

In the hyperbolic plane H?, we take two geodesics intersecting nor-
mally at a point O (€ H?). Let A, B,C and D be the points on these
geodesics whose distances from O are equal to e. We assume that A, B,
C and D are in the positive cyclic order. Let ¢ and ¢ be the orientation
preserving isometries of H? satisfying the following conditions.

¢(BC)=AD and ¢(DC)=AB.

Then ¢gpp~'¢~" is the rotation around A by the angle equal to the area
of the geodesic square ABCD. Now consider the space T°—Int D* ob-
tained from the 2-torus 7% by deleting a small open disk in it. There
is a presentation of x,(T®—Int D* by the generators 8 and y with their
commutator Byf~'r~' representing the homotopy class of the boundary
o(T*—Int D*. We can define a foliated S*-bundle over T°—Int D* by
giving the holonomy homomorphism =,(T*—Int D*)——Diff%(S'). Here a
foliated S’-bundle means a foliation of the total space of an S'-bundle
transverse to the fibers. Let G denote the foliated S'-bundle over
T?—Int D? such that the holonomy along B and y are equal to ¢ and ¢,
respectively. Note that the isometries ¢ and ¢ act real analytically on
the boundary circle of the hyperbolic plane H, hence we are considering
¢ and ¢ as elements of Diff%(S"). Then the boundary of this foliated
St-bundle is isomorphic to a linear foliation of S'XxS' with slope equal
to the area of ABCD. There is a well-defined Godbillon-Vey number
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for this foliated S'-bundle, which is also equal to the area of ABCD (up
to a non-zero real multiple) ([15]).

Now take another choice ¢’ of the distance and construct the geodesic
square A’B'C’D’ in the negative cyeclic order for this time. Then we
have a foliated S'-bundle over T?—IntD? whose boundary is a linear
foliation of S'x.S' with slope equal to the algebraic area of A’B’C'D’,
that is, minus the absolute area of A’B’C’'D’. Now consider the double
cover along the fiber of this foliated S'-bundle over 7°—Int D* (whose
total space is in fact the product (T*—Int D?* xS'). Then the slope of
the boundary of the new foliated S'-bundle is the half of the algebraic
area of A’B’C’'D’. The Godbillon-Vey number is, however, equal to the
double of the algebraic area of A’B'C'D’.

If the area of ABCD is equal to the half of the area of A’B'C'D’,
then there is an orientation reversing diffeomorphism from one boundary
to the other preserving the S! fibration and the foliation, and we obtain
a foliated S'-bundle over the surface X, of genus 2. The Godbillon-Vey
number of this foliated S'-bundle is equal to —3 times the area of
ABCD. By changing ¢ continuously, we obtain a family of foliations
giving a smooth variation of the Godbillon-Vey number.

In this construction, the C™-norm of the holonomy of the foliated -S'-
bundle along the generators of r,(J,) are estimated by the diameter of
the square ABCD, hence by the square root of the area of ABCD.
Note that this foliated S'-bundle has in fact a structure of a foliated
St-product, and we can give a foliated S'-product structure such that
the norm of this foliated product is also estimated by the square root
of the area of ABCD. Here a foliated S™-product over a space Y is a
foliated S'-bundle with a trivialization of the S'-bundle structure, and
we can define C-norms of a foliated S'-products with smooth leaves as
the supremum over the points ¥ of Y of the norms of the linear maps
from the tangent spaces T,Y to the space of the vector fields on S*' with
the Cr-topology defined by the foliated product structure (See [16].).
Here the C'-topology of the space of the vector fields on S* is of course
defined by the following C’-norm: For a vector field &,

&],=3 sup |(3/oz)*&(x)].

k=0 xSl

We also note that, for 0<<a<1, the C"*¢-norm is defined by
l51r+a=|€|r+535§>|(3/aw)’§(x1)—(a/aw)’&(wo)l/wa—wol"-
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Hence we obtained a family {<F,} of foliated S-products such that, for
any r>0,
|F.|,<C,t'® and GV(F,)=t for 0<t<T,
where C, and T are positive real numbers.
PRrOOF OF ProPOSITION 1. For a positive integer =, consider the n-
fold cyclic cover along the fiber of the foliated S'-product <,. Then we

obtain the foliated S'-product (™ over J3,. For the C'**-norm and the
Godbillon-Vey number of <, we have the following estimates.

|F P 1pa<Comet and G V(F™)=mnt.
If t=1/n and @<1/2, then we have
|F M 14a <ConeMD—0 as nm—oo

while GV(%™)=1. Thus GV is not continuous at the trivial foliated
S'-product in the C'**-topology for a<1/2.

REMARK. GV is not bounded in the neighborhood of the trivial
foliated S'-product. To show this, it is only necessary to put {=n"* in
the above proof, where 2a<a’<1.

§3. Proof of Proposition 2.

In order to construct an example showing Proposition 2, first we
construct a family of foliated R-products with support in a fixed interval
which has properties similar to {F™} in §2. Here the support of a
foliated R-product over a space Y is the minimal closed subset K of R
such that the leaves in Y X(R—K) are horizontal. The construction is
done by using the fragmentation homotopy ([1], [11], [16]).

LEMMA 3. There exists a family of foliated R-products K™ (0<t<
T') with support in [—2, 3] such that

| H M| 11aLCt? and GV (IL™)=nt,
where T’ and C' are positive real numbers.

Proor. Take a cell decomposition of the closed orientable surface
3, of genus 2 into squares with ordered edges. The order on the edges
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are given in such a way that (0,0)<(1,0)<(1,1) and (0,0)<(0,1)<(1,1)
for the standard square [0,1]%. In fact, X, has such a decomposition with
3 squares.

Take a smooth partition of unity {g, gz, p£s} of S'=R/Z such that

(0) #1“‘#2""#3:1,
(1) =1 on [0,1/6] and z,=0 on [2/6, 5/6] and
(2) palx)=m(@—1/3) and p(r)=pm(c—2/3).

Then we have the fragmentation homotopy using g, ¢, and g, ([1], [11],
[16]). For a foliated S'-product sufficiently close to the trivial foliated
S'-product, by this homotopy we obtain a family of new foliated products.
Each square of X, produces foliated products over 9 squares. The sup-
ports of the 9 foliated products are contained in the unions of supports
of at most two functions of the partition of unity, hence they are con-
tained in [—1/6, 4/6], [1/6, 6/6] or [3/6, 8/6], and the supports of these 9
foliated products restricted over their edges are contained in the supports
of one of these functions. The C'-norm of the new foliated produect is
estimated by the C™-norm of the old one ([16]).

Now we apply this homotopy to &,. Then we obtain a foliated S'-
product &, such that

|G,|.<Cit"* and GV(G,)=t for 0<t<T,

where C/ and T’ are positive real numbers, and the support of the foli-
ated product over each small square is not the whole circle.

Let G denote the foliated R-product over ¥, which is the infinite
cyclic cover of G,. For each square @, let G§ denote the foliated R-
product G{= restricted over the square Q. The support of G§> is con-
tained in U,cz[k+a, k+b], where [a, b] is one of the above three inter-
vals containing the support of G,. Let G§ be the foliated R-product
over @ defined as the restriction of G§ to [a, n—1+b] (in the direction
of the fiber R); that is, G¢” coincides with G§ on QX[a, n—1+b] and
the leaves of Gy" in @ X (R—[a, n—1+b]) are horizontal. Note that these
G¢" might not match up along the all edges of the squares. However,
for each edge of Q, there is another edge of another square @' such that
the foliated R-product over these edges are isomorphic by the translation
by +1 or 0.

Let J(§” denote the foliated R-product over @ obtained from G§
by applying the similarity transformation by 1/n in the direction of the
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fiber R. Let p denote a C* vector field on R such that
o*)=1 on [—1,2] and p(x)=0 on R-—[-2,63].

Let z(s) denote the time s map of p. Let ¢ and ¢’ be the pair of foliated
R-products over the edges of the disjoint union of 4§ such that ¢’ is
isomorphic to o translated by 1/n in the direction of the fiber R. Let ¢
also denote the smooth map ¢:[0,1]—>Diff?(R) such that the leaf
through (0, z) €[0,1]X R is the graph of t——o(t)(x). For this pair we
consider the foliated R-product G., over [0, 1]* given by

(s, t)——>7(s/n)a(t).

Here a C= foliated R-product with compact support over [0, 1]? is defined
by a continuous map @:[0, 1*——Diff>(R) and the leaf of this foliated
product passing through (v, x) is given by

{(z, Q(2)Q(y)(x)); z€[0, 1T}

Note that, the foliated R-product G., restricted over [0,1]x{0} and that
restricted over [0, 1]x {1} are the same, and G,, restricted over {0}x[0, 1]
and {1}x[0, 1] are isomorphic to ¢ and ¢/, respectively. Hence G, can
be considered as a foliated R-product over [0,1]XxS' and we attach this
to the disjoint union of 4[§" along ¢ and ¢'.

By attaching all the foliated R-products 4" and G., along all pairs
of edges where the foliated R-products are isomorphic, we obtain the
foliated R-product 4{{® over a certain closed surface with support in
[—2,8]. Since the norm of z(s/n) is estimated by a constant times 1/n,
for the C'**-norm of 4 (™, we have the following estimate as before.

| H (Pl <C'mt2,

As for the Godbillon-Vey number of ™, we can calculate it as
follows. We have the universal defining 1-form « for the foliated R-
products.

a)—_—'dx_Fuldul_Fuzdug———ondxo,

where F(u,, U, o) =@Q(uy, u,)@(0, 0)~*(x,) for the foliated R-product corre-
sponding to @ :[0, 1]>——Diff*(R). Then we obtain the universal Godbillon-
Vey form npAdy as follows (see [13]).

do=(F., du,+ F,,du,) Adx,.
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F F,

= du,+ “2_du,.
F %o ' %0
1 F F
pAdp=——"—r| ~ "™ 0% | du, Adus Ade,.
(‘F”o)2 F’”o’o“l %ok

If F(u,, s, %) =7(Uy/n)0(Us) (%), then

_ o (Us) (2) + U/ on [—14+1/n,2—1/n]
_{ (/1) (%0) on (—oo, —1+1/n]U[2—1/n, ).

Hence for G,, the first column or the second column of the matrix in
pAdp is zero. Thus the Godbillon-Vey form restricted to the added
foliated R-products is zero and we have

GV (4 ™) =nt.

PrOOF OF PROPOSITION 2. Let x, x,, ---, be a strictly increasing se-
quence of real numbers such that

x,=0 and limz,,=1.

m-—c

For each interval [, ,, ©.], we choose a foliated R-product 4i;» given

in Lemma 3 in such a way that
(T —Tpey) "% (M) H2—0 as m——oo.

Let 9{ be the foliated R-product defined as the union of f,, {T;n,i, where
fw is an affine map of R sending [—2, 3] onto [%,_;, .]. That is, 4 is
a foliation of X X R such that

JNEX [Ty ] =f I8 | 2 X [T, T

and the leaves in H |3 X ((—oo, 0]U[L, o)) are horizontal. Then 4 is a
foliated R-product of class C'** and there is a partition of Y XR into
saturated sets XX (€n_;, Z.], 2 X(—00,0] and ¥ X[1, ). By the con-
struction, for the Godbillon-Vey number, we have GV (4, 3 X (Xp_,, T.])=1.
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