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Introduction

Conner and Raymond studied the action of the torus T#*=S'XS'X - -+ X
S' on a T*space. The orbit map w: T*—X is induced by the action of
T* on a basepoint in X. The Conner-Raymond Splitting Theorem is first
stated and proved in [CR, Theorem 3.1] and is restated and proved in
[G8, Corollary 4] in the following form:

THE CONNER-RAYMOND SPLITTING THEOREM. If a torus T* acts on
X so that evaluation at a point gives a map w : T*—X so that wy(H,(T"))
18 a direct summand of H,(X) of rank k, then X s equivariantly
homeomorphic to T*X Y for some space Y where T* acts on the product

by g(h, y)=(gh, v).

The above statement will be referred to as the Conner-Raymond
Splitting Theorem. This is a particular case of the original version [CR],
in which the factor (L, ¢) is the identity map of =,(X, x), the kernel H
is trivial and =, is replaced by H,( , Z).

Oprea [O, Theorem 11] has independently of Gottlieb found a Conner-
Raymond Splitting Theorem for the case that k equals 1.

In this paper we prove the following generalization of the Conner-
Raymond Splitting Theorem. G is assumed to be a compact Lie group.
X is a completely regular pathconnected G-space and w:G—X is the
orbit map. X and G are assumed to be homotopy equivalent of CW
complexes. G is the identity map of G. Let T; be the functor from
the homotopy category to the category of groups, sending a space X to
the group [X,G], and w':[X, G]-[G, G] be the morphism induced by
precomposing with w, sending a homotopy class f: X—G to fow:G—G.

THEOREM 3.1. The following statements are equivalent:
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(i) X 14s isomorphic as a G-space to G X (X/G), where G acts diago-
nally, by multiplication on the first factor and trivially on the second.

(ii) w' has a right inverse, that is w* is onto.

(iii) w has a left inverse r: X—G.

In the particular case G=T* Theorem 8.1 implies the Conner-
Raymond Splitting Theorem, as explained in 8.2 below.

A proof of Theorem 8.1 follows from Theorem 1.3 below. This is
a splitting theorem which characterizes when a given space is a cartesian
product of an H-space. Again all spaces involved are assumed to be
homotopy equivalent to CW complexes.

1.3. SPLITTING THEOREM. Given spaces X, K and Y the following
statements are equivalent:

(i) K is an H-space and there exists a space Y such that X 1is
homotopy equivalent to KXY.

(ii) There is a class i: K—X in the generalized Gottlieb set G(K, X)
(as defined by Varadarajan [V]) such that i* has a right inverse (that
18 ¢t 1s onto).

(iii) There are classes © in G(K, X) and r: X—K such that r s a
left inverse for i (and has a fiber Y).

1.7 below shows that when K equals S*X - - - X S*, Theorem 1.3 implies
the main theorem of [G3] (the theorem on page 216) and Theorem 10
of [O].

As a corollary, any of the above conditions and the fact that K is
a finite non contractible H-space, both imply (Corollary 1.8 below) that
the Euler characteristic of X is zero.

The proof of Theorem 1.3 involves the ideas of the evaluation sub-
group, studied by Gottlieb [G1l] [G2] and followed by the work of
Varadarajan [V].

This work is organized as follows: Theorem 1.3 is the main result
of Section 1. Section 2 contains the proof of Theorem 2.2, which is a
dual of Theorem 1.3, and gives necessary and sufficient conditions for
splitting co-H-spaces as wedge summands. Section 3 contains the proof
of Theorem 3.1. Section 4 gives homology conditions for splitting
Eilenberg-Maclane spaces off a space.

All spaces considered are assumed to be homotopy equivalent to CW
complexes. In this paper (co-)H-spaces do not necessarily have (co-)products
which are (co-)associative.
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§ 1. Splitting H-spaces off a space

This Section reviews the definition of the Gottlieb set as defined by
Varadarajan [V], and uses it to give necessary and sufficient conditions
for the splitting of an H-space K. From 1.3 on, every space is assumed
to be homotopy equivalent to a CW complex.

1.1 The Gottlieb set

Given spaces K and X the Gottlieb set denoted G(K, X) is the subset
of all the homotopy classes f in [K, X] such that the diagram

(in which 7 is the inclusion and V is the folding class) has a class
p: KxX—X making it commute. This definition of Varadarajan [V]
specializes to the definitions of the evaluation group given by Gottlieb
[G1, G2], when K is a sphere.

The following lemma is a corollary to [V, 2.2].

1.2 LEMMA. A class f in the Gottlieb set has the property that the
image of w (f) lies in the center of m,(X). [

Suppose X, K and Y are homotopy equivalent to CW complexes in
the following Theorem.

A mecessary and suffictent condition for splitting H-spaces

1.8 SPLITTING THEOREM. The following conditions are equivalent:

(i) K 1is an H-space and there exists a space Y such that X 1s
homotopy equivalent to KX Y.

(ii) There is a class © 1n G(K, X) such that *:[X, K]->[K, K] has
a right inverse, (that is t* is onto).
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(iii) There are classes © in G(K, X) and r: X—K such that r is a
left inverse for ¢ (and has a fiber Y).

Proor. (1 )==(iii)
Assuming (i) there are classes f: X—>K XY and ¢g: KX Y—X which
are homotopy inverses of one another. The map % can be defined as the

composition K—*> KXY —?»X and » can be defined as X kx Y5

Then 7ot equals mgofogoix which is K. Thus 4 has r as a left inverse.

Let m: KX K—K be the product of K. There is the pairing K X K g—XL

ExExY™ X g ¥—"3X, which restricts to i\/X on the wedge, and
thus ¢ is in G(K, X).

(iii)==(ii)

r* is a right inverse for 7.

(il)==(1)

A right inverse 7 for 4 can be chosen, making 7(K)=1 a left inverse
to . The map h: Y—X denotes the inclusion of the homotopy fiber of
r. By [M], 2K is homotopy equivalent to a CW complex. Thus in the
fiber sequence 2K—Y—X the base and fiber are homotopy equivalent
to a CW complex, and hence by [S], Y is homotopy equivalent to a CW
complex.

The fact that ¢ is in G(K, X) implies that there is a class p: KX X—X
making diagram in Section 1.1 commute.

The composition ropuo (K X1) is a class KX K—K establishing the fact
that K is an H-space.

The composition po(KXh) is a elass KXY—X denoted g in the
following diagram:

projection

Y L ExY K
[ |
Y-, x " LK,

in which iy denotes the composition YC KV Y—>KXY.

By the definition of g and the diagram in Section 1.1, the left square
commutes, while the right square commutes after =, is applied. Thus
¢ induces an isomorphism of homotopy groups, and as all spaces involved
are homotopy equivalent to CW complexes, it follows that ¢ is a homo-
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topy equivalence. []

In the next lemma = is an integer, =y, m,, - -, 7, are abelian groups,
IIis 7, - - - Pry, T equals K(my, n) X K(wy, ) X - - - X K(m,, m), X is a space
homotopy equivalent to a CW complex, and ¢ is a class T—X.

1.4 LEMMA. The following conditions are equivalent:

(i) There exists r: X—T which ts the left inverse of 1.

(ii) H,(;II) has a left inverse, (that is, it s a split imgection).
(i) H,(i;x;) has a left inverse, for all j, 1<5j<k.

ProOF. (i)==(ii) is trivial by functoriality.

(ii)==(1).

A left inverse 7 to H,(i) is an element in Hom(H,(X),I). There
is the following sequence of homomorphisms:

Hom(H,(X), IT) % HX, II)=[X, T},

in which the homomorphism denoted un is part of the universal coefficient
formula. Thus there is »: X—T so that H,(r;II) equals #. The fact
that 7 is an inverse for H,(i; /) implies that r is an inverse for 1.

(ii)&=(iii) is clear. []
In the following version of the splitting theorem, T is a finite

!
product of Eilenberg-Maclane spaces X K(7n, n).
m=1

1.5 SPLITTING THEOREM FOR T. The following conditions are equiv-
alent:

(i) X 1s homotopy equivalent to T XY for some Y.

(ii) There is ©1:T—X in G(T,X) such that for all m,1<m<lI,
H, (i;m, ) s a split embedding. []

m

In 1.6 and 1.7 below, T* is §'X ..+ XS8'=(S")"~

1.6 The Hurewicz rank and the toral number

The following definitions appear in [G3].

“Let G be a subgroup of =,(X). Define the Hurewicz rank of G as
follows. Consider the image of G under the Hurewicz homomorphism £
in the homology group. Then k(G) may contain free summands of H,(X).
We say that the Hurewicz rank of G is the maximum rank of these
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free summands. If there is no free summand in h(G) then we say the
Hurewicz rank of G is zero and if there is no maximum we say the
Hurewicz rank of G is infinite.”

The toral number of X is the biggest non negative integer k such
that X is homotopy equivalent to T*xXY for some space Y.

The following theorem is the main theorem of [G3], for a space X
homotopy equivalent to a CW complex. T* is the torus $'X.S§'X--- XS,
A generalization of this theorem appears in Theorem 4.9 below.

1.7 THEOREM. The Hurewicz rank of X equals the toral number of
X.

Proor. By 1.5, the toral number of X equals to the biggest integer
k such that there is an element ¢ in G(T* X) for which H,(1;Z) is a
split injection. Thus it is left to show that this k& equals the Hurewicz
rank of X. Given that the Hurewicz rank of X is a number m, there
exist m classes 1,, 1<6<m, each lying in the Gottlieb group, and such
that for all 0, H,(i,; Z) is a split injection into a different summand of
H\(X;Z). There are classes gy, 1<60<m which make the diagram in
Section 1.1 commute. A class 2:T*X X—X can be defined as the com-
position po(SX ps)o ++ - o((SH)** VX p,). This class restricts to a class p

on T™Xx{*}, and establishes the fact that p is in G(T™, X). As 2 extends
all g, on the axes, it follows that H,(p; Z) equals éHI(i,,;Z). Thus %k
6=1

is greater than or equal to m. The restricting of 1 to g, shows the
other inequality and the proof follows. [T]

Using the known fact that every finite non contractible H-space has
Euler characteristic equal to zero, the following corollary is obtained:

1.8 COROLLARY. In the case that K is a finite non contractible H-
space and any of the conditions of 1.3 holds, then it follows that the
Euler characteristic of X is zero. [

§2. Splitting co-H-spaces off a space

This Section reviews the definition of the dual Gottlieb set as defined
by Varadarajan [V], and uses it to give necessary and sufficient condi-
tions for splitting of a connected simply connected co-H-space K, which
is homotopy equivalent to a CW complex. The proofs are dual to those
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of Section 1, and thus are only sketched. From 2.2 on, every space is
assumed to be homotopy equivalent to a connected simply connected CW
complex.

2.1 The dual Gottlieb set

Given spaces K and X the dual Gottlieb set denoted DG(X, K) is
the subset of all the homotopy classes f in [X, K] such that the diagram

X KvX

o b

XXX——KxX

(in which j is the inclusion and A is the diagonal class) has a class
0: X—K\V X making it commute.

X and K are homotopy equivalent to connected and simply connected
CW complexes in the following Theorem.

A mecessary and sufficient condition for splitting co-H-spaces

2.2 THEOREM. The following conditions are equivalent:

(i) K 1s a co-H-space and there exists a simply connected space Y
such that X 1s homotopy equivalent to K\/Y.

(ii) There is a class © tn DG(X, K) such that 4,:[K, X]—[K, K]
has a right inverse, that is i, is onto.

(iii) There are classes © in DG(X, K) and r: K—>X such that r isa
right inverse of 1 (and has a cofiber Y).

Proor. (1i)==(iii).

The assumptions in (i) provide f: X—KVY, g: KVY—-X and p:
K—K\V K. The proof is dual to the proof of (i)==¢{(iii) in 1.3.

(iii)==(ii)

1y is a right inverse for 1,.

(ii)==(1)

The one sided inverse of 7, implies the existence of r. The fact

that ¢ is in DG(X, K) implies the existence of the following diagram
cofiber sequences:
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y projection KVY i K
h r
Y X K.

Thus ¢ implies homology isomorphism, and as all spaces are simply
connected, the assertion follows. []

§3. The Conner-Raymond Splitting Theorem

From now on G is a compact Lie group acting on a completely
regular path connected space X when both are homotopy equivalent to
CW complexes. The orbit map w:G—X is the composition G—-GV X—
G X X—X which by definition is in G(G@, X). In this Section a Theorem
is proved which generalizes the Conner-Raymond Splitting Theorem
appearing in the introduction.

3.1 THEOREM. The following statements are equivalent:

(i) X s isomorphic as a G space to GX (X|G), where G acts diag-
onally, by multiplication on the first factor and trivially on the second.

(ii) w* has a right inverse, that is w* is onto.

(iii) w has a left tnverse r: X—G.

Proor. The proof of (i)==(iii) is trivial, as in this case w is the
inclusion of G in GX (X/G) and r is the projection of G X (X/G) on G.

The proof of (iii)==(ii) is trivial by applying [ , G].

(ii)==(1)

The right inverse of w* implies the existence of a left inverse =
for w, forming the following diagram:

in which % :Y—X is the inclusion of the homotopy fiber of r and gq
maps X to the quotient under the action of G. As row is the identity
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class, and G is a compact group it follows that the isotropy group at
the basepoint is the trivial subgroup, because if the isotropy subgroup
were the non trivial H, then H,(w):H,(G, Z)—~H,(G/H, Z) would have
had no inverse, where n is the dimension of G. The fact that X is
path connected implies that the isotropy group is trivial at every point.

Thus by [B, II, 5.8] the quotient map XLX/G is a principal bundle
with fiber G.

Two continuations of the proof are presented. One that uses Theorem
1.3 above and one that does not. Suppose we have a short exact sequence

of abelian groups GLX—q>X/G. Then a one sided inverse to either
w or q implies that the group X is the direct sum of the groups G and
X/G. 1In the topological setup, the proof using 1.3 has an inverse to ¢
while the other proof uses an inverse to w in some sense.

Using the fact that w is in the Gottlieb set and that row is the
identity class, the assumptions of Theorem 1.3 (iii) hold, and thus X is
homotopy equivalent to GXY. Thus 74(X) equals 74(G)P74(Y). This
can be plugged into the long exact sequence of the fibration ¢ : X—» X/G.
It follows that goh : Y—X/G induces an isomorphism on homotopy groups.
As X and G are homotopy equivalent to CW complexes, so is Y, by [M]
and by [S]. Also it follows that X is an ANR. By [H], being an ANR
is a local property so that this property is preserved in X/G, which is
therefore homotopy equivalent to a CW complex. Thus ¢ok is a homotopy
equivalence. Let B be a homotopy inverse, then hof:X/G—X is a
homotopy section of ¢, and by the covering homotopy property, there is
a cross section y:X/G—X. Thus the principal bundle X is isomorphic
to trivial principal bundle G X (X/G).

Another way to see that q: X—»X/G is a trivial principal bundle
consists of observing that X homotopy retracts into its fiber creating
the following diagram

6% x Lix/G

| o

G 5 G x XG55 XIG,

in which ¢ is the inclusion and = is the projection. Then rXq can be
shown to be a fiber homotopy equivalence, by using the homotopy exact
sequence and Dold’s theorem [Do, Theorem 6.3] on fiber homotopy equiv-
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alences. This implies isomorphism between the two bundles. []

In the following corollary, = is an abelian group, n is an integer
and G is the group K(z, n)**, denoted T*. The proof is trivial using 1.3
and 1.4.

3.2 COROLLARY. The following statements are equivalent:

(i) X 1s isomorphic as a T* space to T*X (X/T*), where T* acts
diagonally, by multiplication on the first factor and trivially on the
second.

(ii) X s homotopy equivalent to T*X (X/T*).

(iii) H,(w;=) induces a split embedding of H,(T*;x) into H,(X ; 7). []

3.3 Remarks about conditions for 3.1

The classical Conner-Raymond Splitting Theorem, follows from 3.2
in the case that n equals one and = equals Z.

The restriction that G is a compact Lie group can not removed. For
example the group of the real numbers acts on §*, and any map r:S'—R
is an inverse for w, but it is not true that S*is homeomorphic to R*'X Y
for some Y.

§4. The rank theorem

The purpose of this section is to generalize Theorem 1.7 above so
that K(w, n) replaces S'. Thus an integer k is determined for X, such
that k is biggest with the property that X is homotopy equivalent to
T¥*xY for some Y, where T* is the kth fold cartesian power of K(r,n)
and = is an abelian group. All spaces are assumed to be homotopy
equivalent to CW complexes.

4.1 The extending group

For a given compact space X homotopy equivalent to a CW complex,
the space of self maps of X forms an associative monoid, denoted XZ*.
This space is homotopy equivalent to a CW complex by [M]. The sub-
space of all self maps of X which are homotopy equivalences is a sub-
monoid dencted X7, and the subset of all self maps homotopic to X is
the connected component of X in X*, which is also a submonoid homotopy
equivalent to a CW complex, denoted X% It follows that X% is a group-
like space, [W, p. 461].

It follows that the set of homotopy classes [K, X%] is a group, for
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every connected space K. Since X is compactly generated, this group
the is isomorphic to the subset of [K X X, X] which we denote E(K, X)
and call the extending group, consisting of all classes ¢ : KX X—X such
that p restricts on {*} XX to the class X, with pg+v equaling:

X K
ExX 25 kxexx 2% kxx 5 x.

The existence of the extending group does not imply that the Gottlieb
set is a group, because of the fact that a given class f in G(K, X) may
have many classes ¢ in E(K, X) extending fVX.

In the following, the image of the Gottlieb set under functors is
considered, as in [Du].

4.2 The image of the Gottlieb set under a functor

Given a cofunctor & : HOM—(C from the homotopy category, the
subset {F(f); FEG(K, X)} of HOM ¥ (K), F(X)) is called the F image
of the Gottlieb set and will be denoted by G(K, X, F).

4.3 LEMMA. (i) If & carries products to products, it carries E(K, X)
to E(4(K), ¥ (X)).

(ii) If for any two classes p,v in E(K, X) extending f\V X it holds
that F(p) equals F(v), then it follows that G(K, X, F) s a monoid subset
of HOM (¥ (K), ¥ (X)).

(iii) If in addition to the assumptions of (i) and (ii), F(X) is a
group, and for every p extending f\/ X 1t holds that F(p) equals F(f) +F(X)
where the addition is taken in F(X), then it follows that G(K, X, F) 1is
a subgroup of HOM.(F(K), ¥ (X)).

PRrROOF. Proof of (i) is trivial.

Proof of (ii). By the assumption for any f in G(K, X), F(f) can be

presented as ‘J(K—EQK x X2, x ) and this presentation does not depend
on the choice of p in E(K, X) extending f\V X. The operation in G(K, X, F)

can be defined by F(f)+F(g)=F(K—5>Kx X5 X), where p+v is the
class resulting by adding g and v in the monoid E(K, X) (mentioned in
4.1). It is easy to check that G(K, X, <) is an associative monoid.
Proof of (iii). By definition F(f+g) equals F(K)—LG(K)x
F(x) T gy x F (&) x F(x) ZEZIY, ggy gy 2 g x),

which can be presented as Ef(K)ﬂff(K)Xg(K)E@»Q(K)Xg(K)X
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F(K)X(F EF fl+9F(X
F(X) )Xo+ Ef K)XY%(X ) = F(X), which is the same as
Z(

F (&) 20 (k) x F (&) LT g x )xfrf(X)a—“i"—“»sr(X), which is the
addition in HOM (¥ (K), )). The inverse of < (f) is the composition

F(X
F (&) 2L G x) M8 (x). [

44 Examples. (i) Let & ber, Then for every p extending f\VX
we have that =,(y) equals z,(f)Pr.(X). Thus it follows that G(K, X, «.)
is a subgroup of Hom(x,(K), 7.(X)).

(ii) Let K be an m-connected space and F be H,( ; ). Then for
every u extending fVX, H,(z;n) equals H,(f;n)®H.(X;x). Thus it
follows that G(K, X, H,( ; =)) is a subgroup of Hom(H,(K ; =), H.(X ; w)).

4.5 COROLLARY. The union HI of the images of all H,(f;=) as f
varies in G(K(x,n), X) is a subgroup of H,(X ;).

ProOF. Given a subgroup S of Hom(H,(K ; ), H,(X;x)), the union
of all the images of all maps in S is a subgroup of H,(X;=). [

4.6 The Hurewicz image of G(K(r, n), X)
HI is called the Hurewicz image of G(K(rx,n), X).
From now on the image of H,(f ;=) will be denoted Im(f).

47 LEMMA. Given a subgroup SG of HI which is of the form
m(f,)D - - - BIm(f), then

(i) There is a class g in G(T* X) so that Im(g) equals SG.

(ii) If all H,(f:; =) are one to one maps, so 18 H,(g; 7).

(i) If all H.(f:; =) are injective maps, so is H,(g; 7).

Proor. Each f; has a class y; in E(K(r, n), X) establishing the fact
that f; is in G(r,m, X). Thus pg:K(z,n)*XX—X can be defined as
ittt oo+ in E(K(r,n)*%, X). It has a restriction g:K(x, n)**X

{#*}>X which is in G(K(z,n)**, X), and H,.(g;w) equals éH,,(f.-;ﬂ). A
i=1

direct sum of maps is one to one, provided that the direct summands
are. Given left inverses for the summands, they imply the existence
of left inverses r; for f; respectively. The sum of the »;s in [ X, K(7, n)]
induces a left inverse for H,(g;x). [
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4.8 The injective Hurewicz rank of G(K(r,n), X) and the (7, n) splitting
number of X

The injective Hurewicz image is the biggest subgroup of HI which
is a direct sum of #®=’s, all of which split in H,(X;z). The number
of copies of 7z~ is called the injective Hurewicz rank of G(K(x, n), X).
By 4.7 there is some ¢ in G(K(m,n)** X) so that H,(g;x) has a left
inverse, and Im(g) equals (w@m)®'he inicetive Hurewicz rank_

In the case when n=1 and ==2, this specializes to the Hurewicz
rank of G(X) as in [G3], mentioned in 1.6 above. A similar invariant
using fundamental group and 4.4 (i) above is mentioned in [L].

The (z, n) splitting number of X is the biggest integer & such that
there exists a space Y and a homotopy equivalence of X with K(z, n)**Xx Y.

In the case when n=1 and == Z, this specializes to the toral number
of [G3], as mentioned in 1.7 above.

The following rank theorem generalizes the main theorem of [G3].

4.9 THE RANK THEOREM. The (z, n) splitting number of X equals
the injective Hurewicz rank of G(K(z, n), X).

Proor. By 1.3 the (7, n) splitting number of X is the biggest number
k such that there exists a class ¢: T"=K(z, n)**—>X in G(T* X) with a
left inverse. By 1.4 this equals the biggest number % such that there
exists ¢ in G(T% X) and H,(i;x) has a left inverse. By 4.7 this is the
injective Hurewicz rank of G(K(w, n), X). [
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