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On propagation of regular singularities for solutions
of nonlinear partial differential equations

By Tan IsHII

§0. Introduction.

In this paper we shall study in a complex domain £ what sort of
conditicns on a hypersurface are necessary in order that a solution of a
given neonlinear partial differential equation with holomorphic coefficients
has regular singularities along this hypersurface and give a simple
necessary condition. Moreover, we shall consider to construct a solution
which has prescribed singularities on a given hypersurface satisfying the
above condition.

In Chap. I we study the necessary condition. Let
01) Plu)= 3 a,(z)( D) =0
be a nonlinear equation for a partial differential operator P(u) with
differential order m and finite multiple order p for which we assume
a,(2) €O(2) for a domain 2CC" containing the origin. Let

(0.2) u(z)=(¢(2))"” (Fio(2) + F'(2))

be a solution of (0.1) with regular singularities of exponent o¢(z) and
spiral exponent ® on a regular hypersurface S={¢(z)=0} (Def. 1.4).
Corresponding to the pair (¢(z), ) we can associate, in general, with
it a subset z (or z,) of L and a polynomial

pi(s.2,8)= T a)([s: lalE)"
(or . (2,8, 2)= ¥ a,@)([o : || ")

of s€C and £€C", so called the principal class for (¢(2), ») (or principal
class for a characteristic exponent ¢.) (Def. 1.1) and the characteristic
polynomial for = (or z,) (Def. 1.2), respectively. Then S must satisfy

(0.3) p-(0(2), 2, D$(2')) =0 (or p, (2', Dg(2'), Fy(2'))=0); 2'€S
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(Theorem 1). §2 is devoted to the proof of Theorem 1. We believe that
the above formula describes in generic the characteristic of propagation of
regular singularities for solutions of nonlinear partial differential equa-
tions, because, similarly for linear case, that is a first order partial dif-
ferential equation for ¢(z) and, as we state later, we can find a plenty
of solutions which have the prescribed singularities on S={¢(z)=0}
satisfying (0.3).

Tsuno [8] studied in a complex domain a continuation problem for
quasilinear systems whether any solution u of a system can be extended
beyond a real hypersurface S if it is holomorphic on one side of S, and
gave a sufficient condition on S which contains cur “non-charasteristic”
condition in the case that w has some regularity on S. Kobayashi [5]
determined the lower bound of such regularity of u and showed that it
coincides with the maximal characteristic exponent. In the real domain
Bony [1] investigated propagation of singularities of solutions with rather
high regularity for quasilinear equations and showed that it is performed
along bicharacteristic curves for the linearized operator microlocally,
which may be transformed in our case.

On the other hand, we consider in Chap. II to construct solutions
of the form (0.2) for a given hypersurfase S={¢(z)=0} and o¢(z) which
satisfies the characteristic equation (0.3) for a principal class = (or =, ).
Our solutions have the form

5 i 1((2)) 1 (log B(2)) *1-"

Mi=0
+

||[vj;-

(0.4) u(z)=(¢(2)"* T

with an appropriate Mc N and d(z) € (O@R)* ((3.1), (3.2)). In §3 we
introduce three cases, that is, Case A, Case B and Case C in which we
can construet a solution of the form (0.4). In Case B the characteristic
polynomial p.(s, 2, &) has a particular structure and in Case C o(2) coin-
cides with a characteristic exponent. Any discussions in Chap. II, except
for §4 and §5, shall be performed for every these three cases. The
form (0.4) of the solution enforces us to introduce the second characteristic
polynomial and that at infinity (Def. 3.2). Then we can see that the
characteristic polynomial and the second characteristic polynomial together
with that at infinity are both invariant under any biholomorphic coor-
dinate transformation on £ (Lemma 2.1, Lemma 3.1). Let a triplet
(z, 0, ) satisfy conditions in one of above three cases. Then conditions
on ¢(z) which assure us to have a formal solution of the form (0.4) are
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given by the characteristic condition (Cond. I) and the noncharacteristic
condition (Cond. II), the latter of which is described with respect to the
second characteristic polynomial. In §4 and §5, we define for a given
formal functional series (0.4) formal functional series

(05) Dau:¢a—lal(k;Du;‘x’l¢d,k(10g ¢)z*’
(06) (Do)pr=gm 5 i dt*(log 9)",

where u;, and uf,, (k,[) € D, are determined so that both hand sides of
(0.5) and (0.6) coincide really when the right hand side of (0.4) is con-
vergent ((4.12), (5.7)). We can see that for any (k,l)€ D uf, is a poly-
nomial of u,,’s, (x, p)<(k, 1), and their derivatives, and we count out,
first, all terms in it which contain u,, and, secondly in the case D¢=0,
those containing u,,,’s, (k, o) < (k—f1, —1), (Lemma 5.1). In §6 we consider
the construction of formal solutions. Corresponding to each three cases,
we define a formal functional series
P(u):¢1’:(orz,r)(u) Z wk,,¢‘”‘(log ¢)l*

(k,1)e D

((6.4), (6.10)). In Case A, we have

{ wo,o—_—p,r(o(z), z, D¢(z))(u0,0)lﬁly
Wy, 1= (Uo,0)"'8:(0(2), d(2) -k, 2, D (2))us. 1+ Ry (k,1) € D,

where R, is a polynomial of u,,’s, (k, p)<(k, 1), and their derivatives
(Lemma 6.1). Take, for a given ¢(z) satisfying Cond. I and Cond. II,
an arbitrary u,,€O(2) such that u,,(0)70 and put

B

; (k1) eD,.
(uﬁ,o)lm_lsz(a’ d'kv Z, D¢) ( ) e *

Uk, = —

Then all u,,’s are determined uniquely from u,, by induction, and we
can obtain a formal solution of the form (0.4) of the equation (0.1). On
the other hand we must search, in Case B, w,; for all terms containing
Uepr (K, 0) L (k—Sf1, 1—1) ((6.11), (6.12) and (6.13)). Assume that ¢(z)
satisfies Cond. I and Cond. II. Then we can see

wi,; =0 for (k,l) such that (k),=0 or I=0

(Cor. 6.4), and we have noting that the sum of all terms containing
such u,, as (k, o)< (k, 1) in Wiys, 141 vanishes (Lemma 6.3)
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Wit gy, 101= ((%o,0)™ (0, 0, 2, Dp(2), D) +7i(2, Do, uo,o))uk,l+Rk+1‘1, 1+1s

where 7,(z, 7, w) is a polynomial of y€C" and u€C, especially, one of
only # if k=0, and Rk+fpl+1 is a polynomial of such u,,’s as (x, p)<(k, 1)
and their derivatives ((6.12), (6.13) and Lemma 6.2). Therefore we can
utilize the equation

(0.7) wk+fl,l+1:01

which is a first order partial differential equation on wu,, to determine
ur,. Let T be any hypersurface noncharacteristic to the equation (0.7)
for any (k,1) € D, whose existence is assured by Cond. II, and take an
arbitrary v.,€O(T) for every (k,l)eD. Then we can solve the dif-
ferential equation (0.7) with initial data

Uk 1|7 =Vk,1

inductively and can determine all u,,’s uniquely. In Case C we can
treat similarly to Case A. On convergence of the formal solution we
shall study in §7. Our main estimate is majorant one on wu, (kI)€
D\{(0, 0)}, such as

(0.8) ux 1 < {exp(a(| k| +1) —b(|k|+1)"*)}(B—¢)~*

with positive constants a,b, R and t=cz,+ --- +2, for some constant
¢>1 (Theorem 2). To prove (0.8) we derive in §7 several a priori
estimates (Lemma 7.8, Lemma 7.9) from a key lemma (Lemma 7.6). (0.8)
is shown in §8 for each three cases making another assumption on v,
in Case B (Ass. B). Once (0.8) is established, it is not difficult to show
that the formal solution is the genuin one which has regular singularities
of exponent ¢ with spiral exponent o, interplitting w=0 in Case C.
Therefore we have Theorem 3 which shall be proved in §9.

Koboyashi [6] was the first which remarked that much more hyper-
surfaces are admissible in the nonlinear equation to carry singularities
of solutions than in the linear case. Ishii-Kobayashi [2] constructed for
semilinear equations a solution with singularities of the maximal charac-
teristic exponent. In the real domain Kobayashi-Nakamura [7] solved
the same problem for semilinear hyperbolic equations with C*-coefficients.
Ishii [3] and [4] are announcements of this work, among which [4] is
concerned with Chap. L
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Chapter I. A necessary condition for propagation of regular singularities.

§1. Notations, definitions and a result.

We consider in a domain £ of C" containing the origin. We say
simply a ‘“subdomain” one containing the origin. Let O(2) be the set
of all holomorphic functions on 2, O"(Q)={¢(z) € O(2); ¢(0)=0, D¢(z)+0
for any z€ 2} and O'(Q)={¢(2) €O0(Q); ¢(2)#0 for any z€ 2}. D= stands
for Dj1- .. Din=(0/02,)%1- - - (0]02,)*» with (ay, * -+, as) € Z7%, denoting Z, the
set of all nonnegative integers, and z=(z, ---,2,) €£2. Now consider a
nonlinear partial differential operator P(u) of polynomial type with
differential order m and multiple order p>2, which we denote
(1.1) Pu) =2 a,(2)(Du))",

HEL
where L is a given subset of the set [*={pg=(p,) € ZY; |)a|:| > 1< p}
al<m
with N=#la€ 2% |a|<m}, a,2)€O@) and (D)= I (Du)s with

@€supp p

supp p={a € Z"%; p.#0}. We assume |p|>1 for every pc L. For every
pre L we put

Yulo)= Iﬂla—kglalﬂa; cEC.

For p,ve L we denote g~y if and only if y,=y, and for a given
7€ L]|~. ¥y, or |z| stands for the common y, or |x| for any ¢ € z, respec-
tively. Put

n(p)=min y,(p); pER.

wer

Then the graph of 7(p) describes a concave polygon which has a finite
number, say J, of summits. We arrange the values of p corresponding
to these summits in the order ¢,<---<o; and call them characteristic
exponents of the operator P. Let Ct={w=exp(i0); —7/2<0<x7/2}CC.

DEFINITION 1.1. (1) For a given ¢€C and a given w€C*, a class
r € L]~ is called the principal class of the operator P for (s, ) if and
only if
Re(wy,(0)) < Re(wy,(s))  for any ve L\r.

(2) For a characteristic exponent ¢,, 1<r<J, the subset {g€_[;
Yu0,)=n(0,)} of L is called the principal class for the characteristic
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exponent ¢, and denoted by =, .
Note that for a characteristic exponent ¢, we have
Re(wn(o,) < Re(wy,(0,))

for any ve L\r, and any w€cC*. For z€C and k€ Z, put [2; 0]=1,
[2;k]=2(—1)---(2—k+1) for k>0, and [z;k]=0 otherwise.

DEFINITION 1.2. (1) Let x be a principal class for some (¢, w) € CXC*.
The polynomial

Pa(s, 2, §) =!‘263ﬁaﬂ(z)(([8 5 lalJE7)"

of s€C and £€C"\{0} is called the characteristic polynomial for the class
7w of the operator P.

(2) For every characteristic exponent ¢,, 1<r<.J, the characteristic
polynomial for the characteristic exponent ¢, of P is defined by the
polynomial

2.,(2,6 )= X au(2)(([o, ; |l JE7) 2™

peET,

of £eC"\{0} and x€C.
Let

(1.2) S={¢(2)=0}

be a regular hypersurface in £ through the origin with defining function
#(2) €O’(2). For a given w€eC* we design a ¢(2) cO(R(2\S)), the set
of all holomorphic functions on the covering space R(2\S) of 2\S, by
the relation

(1.3) $(2)=(¢(2))".

DEFINITION 1.3. Let S be a regular hypersurface satisfying (1.2)
and ¢(z) be given by (1.3). For a given 2/ €S, we say a sequence {z}
in Q\S is spirally convergent of exponent w to z’ if and only if {2} tends

to 2/ with constraint |arg ¢(2)|<K for some K>0, and denote z (—'K)z/'
@,

Moreover, we denote (0, K )—lim f(z)=A if and only if f(z) converges A

for any sequence {z} such that z (;)—»K) 2.

DEFINITION 1.4. Let S be given by (1.2) and ¢(z) by (1.3). For a
given w € C* and a given o(z) € O(2)\{0}, we say u(z) has regular singu-
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larities of exponent o(z) and spiral exponent o on S if and only if u(?)
has the form

(1.4) u(z) =(B(2))7* (Fo(2) + F(2))

where F,(z) € 0'(2) and F,(2) is holomorphic on R(2\S) N {|larg ¢|<K}N{0<
|¢| <0} for any K>0 and some d=0(K) >0 and satisfies (o, K)-l}m Fi(z)=0

for any 2/¢€8S.

Now we consider a solution u(z) of the nonlinear partial differential
equation

(1.5) P(u)=0

which has regular singularities of exponent ¢(z) and spiral exponent w
on S for some o(z) and w. Then what conditions should be necessary
on S?

THEOREM 1. Suppose that the nonlinear partial differential equation
(1.5) admits a solution which has regular singularities of exponent c(z)
and spiral exponent o on S={¢(z)=0} for appropriate ¢(2), o(z), Fy(z),
F\(z) and w. Then we have

(1) If o(2)%oa, for any 1<r<J and if © is the principal class for
(¢(0), ), then we have

(1.6) D:(0(2), 2, Dg(2))=0  on S.
(2) If o(2)=0, 1s a characteristic exponent, then we have
(1.7 D, (2, DP(2), Fy(2)) =0 on S.

REMARK 1. The assumption that |g¢|>1 for any pgc L is not es-
sential. Because, if P(u)=0 is any nonlinear P.D.E., we can find equiv-

alent one which satisfies the above assumption, putting P(u)=P(u+v),
where v is an arbitrary holomorphic solution of P(v)=0.

REMARK 2. Theorem 1 shows that if ¢(2) does not equal to a charae-
teristic exponent and if p.(s(?), 2, £)%£0 the surface S={¢(2)=0} carrying
the designated singularities of the solution must be an integral surface
of the first order homogeneous equation p.(s(2), 2, D$(2))=0 of homoge-
neous order > |a|g¢. which is common to any p€x. Then we can see any

bicharacteristic curve issuing from S keeps staying on S. This phenom-
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enon is similar to that of the linear equation but for dependency of
S on ¢(z). On the other hand, if ¢(2)=0, a characteristic exponent, the
surface S, which is an integral surface of the inhomogeneous equation
D, (2, Dp(2), Fy(2)) =0, intersects to any bicharacteristic curves transver-
sally.

§2. Proof of Theorem 1.

We show, first, that the characteristic polynormial p,.(s,2,&) or
D,,(2,&, %) is invariant under biholomorphic coordinate transformation on
. Let

(2.1) h:Q—> Qcct

be a biholomorphic coordinate transformation and let Z=h(z). For any
a € Z", define p., and q.; € O(Q) with & B € Z* such as |&|=|ea| and |B|<|a|
by the relation

(2.2) ((02/02)&)*= Iy Paa(§)”  for £€Cm\(0},
(2.3) D=3 poDitt B 0o, s D5
with % =wuoh™'. Moreover, put for any pc_[, first,
(2.4) (2 paDiw)) = ; D l(DF0))

and secondly,

(2.5) (Dsw)) = Z,, (Y q,.:(D*w))’

with some p,.; g,;€0(2). Note that |¢|=||=|5|, T|a|fi=3 |a|¢. and
§|B|ﬁ3<2|a|ya. Now the nonlinear P.D.Op. P(u) given by (L.1) is

transformed into another one, say P(@#), by h and, as easily seen, P has
the same differential order m and multiple order p as P. Put
(2.6) Pm)= ¥ a,(&)(D* a)r
BeEL

LEMMA 2.1. Let h be a btholomorphic coordinate tramsformation
given by (2.1) and let P(%i) be the operator obtained from P(u) by the
transformation (2.1). Then we have:

(1) Let = be the principal class for (o, w) ECXC* of the operator P
and let 7 be the principal class of P for the same (s, ). Moreover, let
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D:(8,2,&) be the characteristic polynomial for the class # of P. Then
we have

2.7) Pa(s, 2, E) =.(s, 2, (02/02)),

that s, p.(s, 2, &) is a function on T*(Q), cotangent space of £, with
respect to (z, &).

(2) Amny characteristic exponent o, 1<r<J, is invariant under h.
Further, we have

f’ar(zy év x) :par(z! (65/62)5, x)
where P, (2, &, y) is the characteristic polynomial for the characteristic

exponent o, of P.

Proor. We will show only (1) because (2) can be proved similarly.
As it can be seen that

Yal0)=vyulo) or Re(y:(0))<Re(y,(0)) -1

holds for each terms of the first or second sum of the right hand side
of (2.5), respectively, it follows that

(2.8) 2 0a(@)(D" )= 2 aweh™(2) (X DD W)Y)-

RET

Since P;(s, 2, €) is obtained by substituting [¢; |@|](§)* for Di% in (2.8),
we have

Pel0. 2. 8)= % 0,0h™ @) (S pyallo: 1a1E))
=3 a,oh(E polo : &I
= a,oh™([o : ol (92/02)3)")
Hence we have (2.7) and this completes the proof.

Next, let us find principal behaviour of singularities of P(u(z)) when
u(z) has regular singularities on S.

LEMMA 2.2. Let u(2) have regular singularities of exponent o(z)
and spiral exponent w on a regular hypersurface S={¢(z)=0} with
é(z) €O'(Q), satisfying (1.4) for some Fy(z) and Fi(2). Then we have

Q1) If o(2)#0,, 1<r<J, and if = is the principal class for (¢(0), w)
of the operator P, then there exists a subdomain 2’ such that
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(2.9) (o, K)-lim (¢(2)) 7= P(u(2)) =p: (0 (20), 20, Dp(20)) (Fo(20))™; 20 €SN
for any K>0.
2) If o(z)=0, for some 1<r<J, we have
(0, K)-lim (¢(2)) 7" P(u(2)) =p, (20. D¢ (20), F'(20))

2**20
Jor any z,€S and K>0.

The proof of the above lemma is accomplished by making use of
the following lemma.

LEMMA 2.3. Let weC* and put t=s® for teC\{0}. Let f(t) be a
holomorphic function on the domain R(0<|t|<d)N{largs|<K}N{0<]s]|
<0} for some positive constants K, d and & such that A=(w, K )—1iI§1 f(t)

exists. Then we have

(2.10) (@, K—¢)-lim t*f™ (t) =0

t—0

Sor any ¢>0 and n=1,2, ---..

Proor oF LEMMA 2.3. Let us show this lemma by induction with
respect to meN. Put, first, for any 0<e<K/2 w.={s€C; 0<|s|<d,
|arg s|< K—e} and for any s€w, let C., be a circle centred at s with
radius ¢|s|. Since C,.c{|args|< K} for sufficiently small [s|, it follows
by Cauchy’s integral formula

t=s" and sufficiently small |s].

Then, estimating the absolute value of the right hand side of (2.11), we
can obtain (2.10) for n=1. Next, assume that (2.10) holds for any
1<n<N. Then, as

tN+lf(N+1) (t) :t(th(N))/__Nth(N)

holds, we have (2.10) for n=N+1 by the assumption of the induction
and by application of (2.10) for n=1 to t"f*™. This completes the proof.

Proor oFr LEMMA 2.2. Let = be the principal class for (¢(0), w) of
P. Then we can find a subdomain £’ such that = is the principal class



Propagation of regular singularities 387

for (o(z), w) for any z€ £’. Now, by virtue of Lemma 2.1, we may as-
sume ¢(z)==z, and then we have
(212) (¢(z))—v”(a(1))P(u(z)):Z (1/”(Z)Zl_v'f(a(z))+V“(U(Z))((Zl—"(”+1a]Da(zq(z)F(Z))))’u

rer

with F(z)=F,(2)+ F,(2). For a given z,=(0,2{)=(0,25 ---,2)) €SNQ" we
associate a multi-circle C,,,,():C,,,,gx cee xCo,,g in C**' with so small 6>0
as {0<[2,| <0} XCs,.,,C2'\S, where C,‘zg denotes a circle in C with radius
0 centred at 2). Represent F(z), 2,0, as an iterated integral on
{#.}XCs,.; using Cauchy’s integral formula. Then, since we can see by
this representation

(w, K—e¢)-lim D'"' F\(2) =0 for any ¢>0 and any '€ Z7!

oz
. , . .
- 29 ) n/ o
with D’=(D,, ---, D,), we have applying Lemma 2.3 to the integrand
(@, K—e¢)-lim 211 D" F'(2) =0, ,, D" F(2,)

2z

for any K>0, 0<e<K/2 and y=(r,7)€Z%, where d,, denotes
Kronecker’s delta. Therefore, as it can be easily seen

(0, K)-lim zro@+iel=ath Dii® =G, o [0(20) : B

2z

a=(a, &), B=(B:, B) € Z such that 0<p<a,
it follows from Leibnitz’s rule that

(2.18) (@, K—e¢)-lim 27°@+1e D (21 F(z))

2z

— (0, K—¢)-lim 3 <a)(zl—a(z)+|a|-—a1+ﬁlDﬂzllf(z))X

22 0<B<a
X (27 D Fz)
= Olal,e,[0(20) : || ]Fo(20).
Operate (o, K—e)-lim on the both hand side of (2.12). Then using the

z—z,

equality (2.13) to the right hand side, we can obtain the equality (2.9).
The proof of (2) is left to the reader because it ecan be shown similarly
to (1) and this completes the proof.

ProorF oF THEOREM 1. Since (1.5) holds and F,(0)0, the theorem
can be easily proved by Lemma 2.2.
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Chapter II. Construction of a solution with given singularities.

§ 3. Preliminary considerations.

Hereafter we give and fix an arbitrary o(z) € O(2)\{0} and a subset
r*C_[ so as to satisfy the conditions of one of the following three cases.

Case A. (1) For some w¢c C*, n* coincides with the principal class
7 for (0(0), w). (2) We can find some p= (), ¢/'=(pl) €= and an integer
1, 0<i<m, such that

> taF D M

la|=1 la|=1

holds.

Case B. (1) o(z)=0, a constant, and for some o€ C* n* equals to
the principal class z for (s, w). (2) For any v€ _L\r it holds

Re(wy(0) < Re(w(y,(0) —1)).
(3) For every integer i, 0<i<m, the value
pﬁ: 2:}%

la|=1

is common to any pg=(p.) €.
Case C. o(z)=0, for some 1<r<J and n*=m=, .

Our aim in this chapter is to construet a solution of the equation
(1.5) satisfying (1.4) in the form

(3.1) wE)= @Y T X wale) () (log 6(2)"

M =0
k€Z+

where ¢(z) €O(Q), MEN, d(z) € (O@)*, 1*=|k|—1 and wu,(2) €OR) for
any (k,1) with u,,(2) €0'(2). M and d(z) are given in each case as follows.
Let y..(c(z)) be the function y.(c(z)) (resp. the value ¥,.(c) or the value
p(o,)) in Case A (resp. Case B or Case C). We classify the subset
{Y,.(0(2) —Yulo(z); pe L\}U{1} of O(R2) (resp. C or C) modulo integers.
Let M be the cardinal number of the classified set. From each class
we pick out the element whose real part at 2=0 is minimal and denote
them d,=1, d,(2), ---,du(2) (resp. d,=1,d,, ---,dy or the same as the
last). Put
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(3.2) d(2) = (s, da(2), - - - du(2)) (vesp. (dy dy—1, -+ - du—1)
or (dl, dg, ey, du)).

On ¢(z) we impose two conditions, so called the characteristic con-
dition and the noncharacteristic condition, respectively, the former of
which corresponds to (1.6) or (1.7). Let us introduce still more several
characteristic polynomials in addition to those in Definition 1.2.

DEFINITION 3.1. In Case B the polynomial
q:(2, &)= Eﬂau(z)((é“))"
of £cC"\{0} is called the characteristic polynomial of P for the class ©
in Case B.

Note that it holds in Case B
p(s.2,8) = (11 [s: a2 6)-
DEFINITION 3.2. We call the polynomial

otz 8= Do 3wl oI ey

(Ew [s:]al]

of s,A€C and £ cC"\{0},

te(s, 4, 2,8, ﬁ):(ill [s: i]p,)[”%a#(z)((&a))p{ i [s+2:i—1]

=1 [st1]
X (D;log. TI (€))7} |
of s,2€C and &, »eC"\{0}, or

[o,4+2: |a|] v
[o,: |al]
X (o, : |lalJg)yx
of 2,x€C and £€C"\{0} the second characteristic polynomial of P for

the principal class =, = or =, in Case A, B or C, respectively. More-
over, the polynomial

Sew(8, 2, §)=[s:m]”" 3 a#(z)(lagm#a)(([si|d|]€“))",

pE®™,|supp p|l=m

sze0= T aE 2w

/zef.’ur
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towls, 2 7)=([s:m] " T [s: 3P T a,(a)X

pLE®,|supp pl=m

X(E)“(Delog  TI &%) -7}

a€supp g, lal=m
or

ol &) =[or:m]” X a,2)( 2 pa)((lo: |l

/tew,,r,lsupp/tl':m la|=m

with |supp ¢|= max |a| is called the second characteristic polynomial at
ag€supp pt

infinity for the class 7, = or z, in the Case A, B or C, respectively.
Note that the relation between s.(s, 4, 2, £) and s,,.(s, 2, &) is given by

8z,0(8, 2, &) =1lim 27" 5.(s, 4,2, §),

A—c0

and that similar relations hold also for the other two cases.

LEMMA 3.1. Let h:Q — Q be a bikolomorphic transformation with
Z=h(z) and let P(@) be given by (2.6). Let =,z or m, CL satisfy con-
ditions of Case A, Case B or Case C for P(u) for some (0(2),w), (¢, »)
or o, respectively, and %, & or ﬁ,,rc.f' be the corresponding subset for P
for the same (0(2), ®), (6, ®) or o,. Then we have

33) {?i(s, zz E)=s.(s, 4, 2, (02/02)&)
§:.00(8) 2, &) =81..(8, 2, (02]02)&),
8.4 {ii(s, A, 2 E 7)=t.(s, 4 2, (02/02)&, (02/02)7)
’ teo(S, 2, &, 7) =ts.0(8, 2, (0/02)€, (02/02)7)
or

{ﬁar(l, 2,87 =5,z (02/02)&, %)
3,.0(2, &, X) =85, (2, (02/02)E, 7)

where 3: (8;.), T: (fr00) OF 8, (3,,.) 18 the second characteristic polynomial
(at infinity) of P for the class #, & or 7, respectively.

Proor. We will prove only equalities on s, and ¢, and others are
left to the reader because they can be seen similarly. Let us use nota-

tions in (2.2)~(2.5). First, since |@ =|a| for any & of the right hand
side of (2.2), it follows for any p=(u.) that

(3.5) | >op Z B for any fi=(f,) of the right hand side
al=1 la|=1
of (2.4) and any 0<i<m.
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Since, therefore, we have
s+2: |a m s+2:1
[s2:lal] _ 3 5 o [sH2:1]

action ' [8:]a|] =0 jal=i [s:1]

_ s g lstaclal]
aeszuppﬂpa [s: @] ’

™

we can obtain the first equality of (8.3) by similar method as that of
the proof of Lemma 2.1. Next, if = satisfies conditions of Case B, we
can see from (3.5) that class # satisfies also those for the same (¢, ®).
Set for any pex

(2 o DiA)«= > _ pilp 11 (D5@)

. — N £ ~ Ul .
agsupp p,lal=j @ Aj=(R)EL; |@|=j

where _f] is the set of all multi-indices /= (/) with suffices |@|=
satisfying > fi.= Y tt« and p{s €0(2). Since
@ la|=3J

(S pecDiwy= £ Iipd T (Dia)")

= (rt)e®J O.L‘]

=5 ({1 2, )(D* W)

£

holds, it follows that

(s 22,6 0)= (L[5 1P| ST ach™ @I pih) X

BER peET

x (& B g @m0 11 80|

iz1 [s:17] J#i =4 aj=i

= (1T 1s: i) e { S B2

ren i=1 [s:1]
X { I ((02/02)8) (D TI, (02102)2)") -7} } )
=t.(s, A, 2, (0%/02)&, (0%/02)7).
Hence we have the first equality of (3.4) and this completes the proof.
Now we can state conditions on ¢(z).
ConDITION I (Characteristic condition). ¢(z) satisfies
(3.6) p.(0(2), 2, Dp(2)) =0 in Case A,

(8.7 q.(2, Dg(z)) =0 in Case B,
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or that the equation

(3.8) D, (2, Dé(2), x) =0
has at least one solution y=1u,(2) €(0'(2) in Case C, respectively.

ConpITION II (Noncharacteristic condition).
Case A: (1) The equation

8:(0(0), 4, 0. Dg(0)) =0

of 2 has no solutions such that 2=d(0)-k for any k€ Z¥\{0}.
(2) It holds

S; «(0(0), 0, D$(0)) 0.
Case B: We can find an 5 € C"\{0} satisfying following properties.
(1) The equation
t:(0, 4,0, Dg(0), n)=0
of 2 has no solutions such that 1=d-k for any k€ Z¥.
(2) It holds
tr.(0, 0, D(0), n) 0.

Case C: (1) There exists a solution y=wu,(z) €(0'(2) of the equation (3.8)
for which the equation

807(2, 0’ D¢(0)’ uO(O)) :0
of 2 has no solutions such that 2=d-k for any ke Z*\{0}.
(2) It holds

8s,,(0, D@ (0), u,(0)) #0.

Note that Condition II, (2) implies in each case that the principal
class = or =, contains at least one p#=(y,) such that [supp p|=m.

REMARK. The condition of Case A, (2) is necessary for Cond. I and
Cond. II to be consistent. However, it is not sufficient, because s.(s, 4, 2, &)
can be divisible by p.(s, 2, &) as a polynomial of & under particular choice
of a,(z), for example

P(u)=u Du~+u Diu+(Dyu)’+ (Du)’.
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§4. Some differential formulae and its application to formal functional series.

In this and the next sections ¢(z) and ¢(z) denote any functions in
O(2) not necessarily satisfying conditions in the previous section. For
any multi-index k=(k,, - -+, kn), I=(,, - -+, ly) € Z¥, we denote k<! if and
only if k;<l,t=1,..--, N, and k<I if and only if k<! and k=#Il. We
associate for any a € Z%, 0<f<a and 0<i,j<|a| a polynomial N¢f=
N (a(2),1, $(z)) of Do, 0<y<a,l€ Z, and D’$ with 0<d<a, inductively
with respect to («, <), as follows:

(4.1) Nyo=1,
(4.2) NP =(e—j+1) NP, D+ (I+i—5+1)NTIZ* Dig+
+ N2 Do+ D.N%] "+ N?F,
k
where ¢,=(0, - - -, i/ -++,0), k=1, ---, m, is the k-th unit vector in Z*. In

(4.2) and from now we put conventionally

(4.3) Nﬁ’;g_:_O for any a, 8€ Z" and i, j € Z not satisfying 0<g<a
and 0<1,7<a|.

LEMMA 4.1. NP! is determined uniquely by o, 6cO(Q) and 1€ Z,
for every a>0, 0<f<a and 0<1,j<|a|, and we have for any u(z) € O(Q)

]

|
0

[
X ¢ illog ¢

X ( NPo, 1, §)D="P u).

0<p<a

De(($(2)"* (log $(2)) ulz)) = 5

PrOOF. We can prove this lemma by elementary calculus inductively
with respect to a>0, using (4.2), and leave it to the reader.

For any z€C and k,1€ Z put
[z:k 1]= z (f=1)(e—1,)- - (z—u);  k=I>1,

0<iy<ipg< - <ij<k—1

[2:k,0]=1 for any k>0 and [2:k,1]=0 otherwise. Then the following
lemma is clear.

LEMMA 4.2. For any k,l€Z we have
[2:k kl=[z:F]
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(4.4) z—k)z:k 1-11+[z:k U=[z:k+1,1]  if (k,))#(—10).
Let us calculate N¥f(0(2),[, ¢(2)) in some special cases.
LEMMA 4.3. (1) We have

(45)  N/=0 if |BI<ior |[BI<y,

(4.6) “e (0.1, ¢)=[0: |al, L : |a|—i](Dg)",

47  Noh=alo:|a|=1,00: la|-1—i)(Dg)*"*; Kk

(2) If Do=0, we have

(48)  Nif=0 if i>j

1, .-, n.

(4.9) Nita=lo:la|—1,1]1: |a| -1 —i](lﬂZ;z(?)(DqS)“‘TD’qS)

for |al>2 and 1<|a|—1.

Proor. Since these formulae can be proved inductively with respect
to a by elementary calculus, we show here only (4.6) and (4.9) and leave
others to the reader. First, (4.6) is trivial for a=0 and ¢=0, because
(4.1) holds by definition. If for a given a>0 (4.6) holds for any f<e,
we have using (4.2), (4.3) and (4.4)

Nk ™ o, 1L ¢)=(0—|a|) N5, i Dig+ (141 — || ) N5 Dig
={lo—lal)o: |a|, t—1]1: |a| —t+ 1]+ (+i—|a|)[o: |al, 1]X
X[L: |a| =2} (Dg)*
=[o: |a]+1, ][l : |a| —i+1](Dg)**%.
Hence we have (4.6) for a+e¢,. Next, if Ds=0, we have
N¥%*=0  for any ¢

from (4.2). For a given a>0 with |a|>2 let the equality (4.9) hold for
any S<a. Then it follows from (4.2), (4.3), (4.6) and the assumption

N =(0—|al + 1) N5, oo D+ (14— |a| + 1) N1 Dup+ DN

= (r—lal+1)o  lal —1, =1L ol =31 3, (%)) " Dg) +

lr

+o: el =1, 8l : ol =il X (5 )(Dg) 7 Dg) +
ir1=2\T"
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+lo: lal, i)l : |a|—i]( 3 ay(Dg)*"*» DyD,g).

=1

Using the facts
> a,(Dg)" " DDg= £ (. %, (Dg)** D1

p=1 =2\l — €

() G2a)=(7")

we have (4.9) for a+e, and this completes the proof.

and

LEMMA 4.4. NPf(o,1,4) is a polynomial of Dro,l and D’¢ such that
0<r<a, |rILIBl—7, 0<i<a and |0|<|Bl—5+1 with coefficients in Z.
If TI(D7e) 1" T] (D’¢)"® with monzero coefficient appears in this polynomial,

7 8
then we have :

; p,+a<|B
;(Irl +1)p,+ 2181+ 1)< |l + i+

PrROOF. The proof of this lemma can be assured inductively with
respect to @ by elementary calculus using the definition of N{/ and we
leave it to the reader.

Now consider a formal functional series
(4.10) u=(64(2))"? 3 Uy, ¢ *(log )"

(k,heD

where D={(k,l)€ Z¥X Z, ;I<|k|}, w, €O(R) and d(z) € (O(Q))* satisfies
(d(2z)),=1. Moreover, put conventionally u;,=0 for any (k,I)¢D. We
associate % another formal functional series D*u, a € Z%, such that
(4.11) Dru=¢e e 3 ug, ¢**(log @)

(k,l)eD
with
(412)  w=3 X ¥ Nefo+d-k—|al+4, [kl —l+j—i, ¢) X
i=0 j=0 0<A<a
XDa_ﬁuk—(lal-—j)fl,t—tum

k

\
denoting f,=(0, --,1, --,0), k=1, ---, M, the k-th unit vector of Z¥. As
easily seen, if the right hand side of (4.10) converges to a holomorphic
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function u(2) at a z€ R(L2\S), then the right hand side of (4.11) converges
at the same point and coincides actually to D*u(z). Let us consider to
divide each u§, into the “principal part” and the remainder in the fol-
lowing three ways. We put, first,

(4.13) uii=[o+d-k: |a|](D@)* ur,+ Ri,,
secondly,
(4.14) Ui, =S (D)4 Q%,1,

where we denote

(4.15) = é0[|k|—l+i:i][o+d-k:N, N—ilue: for NeZ,,
and, thirdly,

(4.16) u =SE (D) +o+d -k—1: |a| —=11(D@)* Day Un_s,, 1+ B,

where (D¢)*D, , denotes a partial differential operator
(D$)2D, g = kZ::l a, (D)™ D"+|T|Z;2<(;>(D¢)a_r Drg.

LeMMmA 45. (1) R%, ts a linear form of such Dfu,,s as f<a and
(r, p) < (k, 1) with coefficients in O(RQ).
(2) If Do=0,

Q;.,=R;,=0 for any (k, 1) such that (k);=0 or [=0

and, for (k,1)>(fi.1),Q5, or R, is a linear form of such Dfu,,’s as
pB<La and (k,p)<(k—f,1—1), or B<a and (k p)<(k—fy,1—1) with
coefficients in O(RQ), respectively.

PrROOF. Denote by (4.12), the right hand side of (4.12).
(1) If a term in (4.12), contains D*?wu,, then we can see i=j=|al.
Noting that for f<a N3 .=0 by (4.5), we can conclude that the only
term containing wuy, in (4.12), is Nu{ o (c+d -k, |k| —1, §)us, and hence the
assertion follows from (4.6).
(2) Count out, first, all terms in (4.12), containing D*™* %;,_ja4:, 2=0, 1, - -,
||, for which we can see j=|«|. Then, since it holds by (4.5)

N#E =0 for f<a,

we can see from (4.6) the sum of all such terms equals to Si*/(Dg)=
Next, as it can be seen that the coefficient of D*?u,_,, in (4.12),



Propagation of regular singularities 397

vanishes from the fact i=|a| and j=|a|—1 and from (4.8), we have the
first half of the assertion. On terms containing D+ * Uk_s in (4.12),,
we can see 1=j=|a|—1 and that f=a or S=a—e, k=1, ---,n. Calcu-
lating coefficients of these terms using (4.9) or (4.7), for B=aor f=a—e,,
respectively, we can ascertain the latter half of the assertion and this
completes the proof.

COROLLARY 4.6. (1) We have
(4.17) Ui o=[o: |a|1(Dg)*us,o,
(4.18) uf,1=Sp1(Dg)*+[0 : |a| —11(D)* De,g o,

+lo: lal =1, |a| ~213 a(Dg)* Dot

(4.19) ui, =SeiDg)*  for k=(0,K) € ZY.
(2) If Do=0, we have

(4.20) ug o=[o+1: |a|1(Dg)us, 0

w2 o= SENDY)".

Proor. (4.17), (4.20) and (4.21) can be seen directly from the above
lemma. On u%,,, as we may consider only terms corresponding to (3, )
=(|lal, |a|), (la| =1, |a|) or (|a|—1, |a|—1) of the right hand side of (4.12),
we have (4.18) by direct calculus using Lemma 4.3. If k=(0, k'), any
terms except for j=|a| of the right hand side of (4.12) vanish, because
for such k& we have u,,=0, (¢, p)<(k—/f,, 1), by definition. Hence we
have @,,=0 and obtain (4.19). This completes the proof..

§5. Differential-productive formulae for formal functional series.
In this section we define a formal functional series

(Deu)y=($(2)) = > ug, 9" *(log ¢)"
(k,l)eD
from formal functional series D*u given by (4.11) and (4.12) and consider
two kinds of representations of uf, (k, 1) € D\{(0, 0)}, which shall be used
to construct a formal solution of the equation (1.5) in each three cases.
Consider formal power series '
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VX, Y)= ¥ v, XYY"

(k,1)eD

with indeterminants X=(X, -+, Xx) and Y and v,,€0(2). We define
multiplication between K such power series

(51) Vix, V)= ¥ v.Xx'Y"; i=1-.- K,
(k,)eD

as

K
(5.2) nVix Y)= g XEY,

i=1 (k,heD
where

K .
(5.3) Dy = 11 v,
(i b))y i< gECU R, =1
with
K

(5.4) C(K, kD) ={((ki, l:)1<i<x € D¥; '_gl (ki 1) = (K, 1)}

Now let us introduce two subsets of C(K;k, 1) such as
Co(K s k, 1) ={((ki, 1))1<ick € C(K 5 k, 1) 5 (kiyy 1;) = (k, 1) for some 4o},
Ci(K ; k, 1)=C\C,
={((k;, 1.)): €C; (k;, L)<k, I) for any 1},
and denote summation of i[l vi.’s over all ((k,l):€C(K;k1) or
C.(K;k1), v=1,2, simply
(I VX, Yik ) or “Cul IT VX, V)34,

i=1

respectively. Note that it holds
13,‘,,=°C (

=
=

i3k, 1)

i=1

“CTT Vis o ) ="Ci+Ca

When Vi(X, Y)=---=V(X, Y), we provide particular notations of sets
of multi-indices to deseribe (V(X, Y))*. Put

(6.5) B(K; k )=1{(: ki 1))1ci<r € (NXD)";1<r<K, gj,:x
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(0,005 (s, L)< -+ < (ke 1)K, D), 32 il 1) = (k. ),
DK k) ={((Ji, ki, 1): € B(K; k. 1) ; (ki, 1) = (K, I) for some 1},
Bo(K; k, 1)=B\B,
={((Jes ki, L)): € B(K K, 1) 5 (ki, L)< (k, 1) for any i},
where we use another order < on Z¥X Z, such that for any m, n € Z¥**
m=(m, -, My, )<n=My, -+, Ny,)=m+*n and (a) |m|<|n| or
(b) |m|=|n| and m, <n. with i,=min{i; m,#n.}.
As easily seen, it holds

‘Clor C,,v=1,2)(V(X, Y)";k 1)=
:((ji,ki,t,-))lsigem(or B3,)(K;k,) <]1 Y

K \_ K!
(jl...jr ARERN

Now for a given formal functional series (4.10) and for any a € Z* we
set

where we note

(5.6) U/X, Y)= X ui, X*Y"

(k1)

with %, given by (4.12) and put for any g€ _L*
(5.7) (U(X, Y))y= > ui, X*Y",

(k,)eD

using our definition (5.2) with (5.3) of multiplication between formal
power series. Then it is clear that

we ="C((UXX, V)5 k. 1)
="C,+°C..
Since it can be seen from (4.13) and (4.17) that
CUN s D)= 3 pal(w o)) ug,

a€supp p
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=(z n LTt LK g 0 D) 1.0 s+
“ ot lal]

+2 pl(us o)) Riy  for (k1) €D,

where &,=(0ua))a, @ € Z%, With 0., =1 for a’=a and 0..,.=0 for o'+« is
the a-th unit vector of .L* and D,=D\{(0,0)}, we have

5.8 o= ([0l DG o)™,
5.9 = 2wl Y DG ) R
aesupp 1 [o:]al]
(k,l) €D,
with
>:10) Riu= T pllus )R+ Cul (U 1 ..

Note that Rf, is a polynomial of such Dfu,,’s as (k, p)<(k, 1) and B<a
of degree |¢| with coefficients in O(2), by Lemma 4.5 (1).

Next, under the condition Do=0 let us find out in uf, two kinds
of terms, that is, those whic}L contain #,_, -, and their derivatives. or
U0 p<l, respectively. Let Q«X,Y) acZ?, and S"(X,Y), NcZ,, be
given by : '

Qa(X’ Y) = Z Qi-}—flv 1+1 X" Yl*,
(k,l)eD

SYX, V)= % SHX‘Y"

(k,l)eD

and S;, p€_L* be given by
(SUX, V)= > Sk XY"

k,7€D
As it holds under the condition Do=0 that
U(X, Y)=8"I(X, Y)(Dg)*+@Q(X, Y) X,
from (4.14) and Lemma 4.5 (2), we have
(U=(X, Y)))=((S"(X, Y)(Dg)*+Q"(X, Y) X))\

=((S“(Dg))+ > pl(S™ (D))" QX,

@€supp g

= _ (Y Dg (@ X

: {/t'+/t”=)t
|p* 122
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and

uh=SE(DG)))+ 3 pa"C((S™! (D))" @ k—fi, 1-1)+

+ o5 (B CUS DI @I k=11 L= ).

R
Therefore we can conclude
(6.11) ut, =St ((Dg)?)* for any (k,!) such that (k);=0 or [=0.
On the other hand, since it holds for any « € supp ¢
"C(((S" (D)) ** @ 0, 0) = (S5 (D))" QF, .1,
"Co((S™(DG))) Q% k, ) =((SiH(DG))) ™ Qs py 11+
1a((SES(DP))) " QF, ., S{i(Dg)* +

BEsupp #,f+a

+ (= 1)((Ss3(D@))) " Q5,1 Skl (D) (K, 1)>(0, 0),
we have using (4.14)~(4.16) and Cor. 4.6
(6.12) w1 =8 1((DB)))* + (to o) ([0 : || 1(D)*))* X

X<"€§Jw fe [o:]a]] Des uo'“)

(6.13) Wy 1,000 = St 1, 001((DG) )+ (tho,0) * 7 (([0 = || J(Dp)*)) X

[c+d-k:|a|—1] a(tts— Oayp)
X « Da _re\mp AR
{aes;m” [0 |e] W B a—lal 41
Lot k: 8] Duy o,
[o:1B]] Uo,0

} Ui+ Biypi; (k1) ED,
putting
(5.14) Riin= 2 pl(SEDO) ) Byt
+ Eﬂ el 15— 0, ) (SEH (D)) ~*«~* Q5 . Sl (D)P +
+ DG 0@kt 2 ()

1n"| 22

X C((S"™ (D)) (@) 5 k— (|| = 1), I— || +1)
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with
~ﬁ1: ,iv’l—[(f—}-d-k:N]uk,l
N
S [lk|—l4i:ifo+d-k: N, N—ilus, ;; NEZ..
i=1

Then Lemma 4.5 (2) assures us that Rféul,m is a polynomial of such
Dty s as (k, p)<(k,1) and |B|<|supp¢| of degree |¢| with coefficients
in O(2). Hence we have the following lemma.

LEMMA 5.1. Let uf, (k1)€D, be given by (5.7). Then we have:
(1) uf, satisfies (5.9) with Rj, given by (5.10). R}, is a polynomial of
such Dfu, s as (k, p)<(k, 1) and |B|<|supp | of degree |u| with coeffi-
cients in O(Q).
(2) If Do=0, uf, still more satisfies (5.11), (5.12) and (5.13) with R;«l+f1,l+1
given by (5.14). R,’:HP,H is a polynomial of such Dfu,, as (r, p)<(k,1)
and |B|<|supp | of degree |p| with coefficients in O(Q).

Note that, if (4.10) converges ‘at some point 2z € 2, we have a formula

(Dou(2))=(P(@))w "= > uf.(p(z))*™*(log ¢(2))"

(k,l)eD

whose right hand side is also convergent at the same point.

§ 6. Construction of a formal solution.

In this section we revise notations and conditions for ¢(z), =*, d(2)
and ¢(z) which were introduced in §3 and consider to construct a formal
solution of the equation (1.5) in the form (4.10) in every Case A, B and
and C.

Case A: Suppose that ¢(z) and =*== satisfy conditions in Case A,
that ¢(z) fulfils both of the characteristic condition and noncharacteristic
condition, that is, Cond. I and Cond. II and that d(z) is given by (3.2)
for Case A. For every pc L\r we can find unique 7, 1<¢,<M, and
unique n,€ Z, such that
(6.1) Yulo(2)) —y:(0(2)) =d;,(2) +n,
where d; (2) is the i,-th component of d(z). Put

(62) h/z:fiﬂ+n,u.fl'
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Now define a formal functional series P(u) for a given formal functional
series (4.10) by

(6.3) Plu)=(@(2))"= 35 wi, ¢ *(log ¢)"
&€
with
(6.4) Wia= 2 R)UE+ D5 @u(R)Ukp, 1 1nye
pen rELN\T

Then we have using (5.8) and (5.9)

(6.5) Wo.0=Dx(0(2), 2, DP(2)) (%o,0)

(6.6) Wi = (Uo,0)™ 28, (0(2), d(2) - k, 2, Dp(2))us,,+ R i; (k1) €D,
with

(6.7) Ry,.= /‘é a, Ri’,rf'”e;\”au kb 1= 1y

LEMMA 6.1. R,, is a polynomial of such Du,,s as (x, p)<(k,1)
and |a|<m of degree at most p with coefficients in O(Q).

ProOF. This lemma can be seen easily by Lemma 5.1 (1) and the
fact that k,>0 for any p € L\r and hence the proof is left to the reader.

Now let us find a u,, holomorphic on some subdomain so that
(6.8) Wy, =0 for any (k,1)€D

is satisfied. First, give and fix any u,,€0(2). Then, owing to Cond. I
and (6.5), we have always

W(.’o_—_o.
Next, for any (k,1) € D, put

Rk.l

(6.9) o T g 1718, (0(2), d(2) -k, 2, D(z))

Then Cond. II and Lemma 6.1 assure us that all w,,’s, (k, 1) €D,, are
determined uniquely from wu,, by induction with respect to {(, 1), >} and
belong to O(£2’) for some subdomain . Since (6.8) holds trivially, we
call the formal functional series (4.10) with coefficients u,,’s given above
a formal solution of the equation (1.5).

Case B: Assume that o(2)=0, a constant, and #*=r satisfy condi-
tions in Case B and that 4 is given by (8.2) for the Case B. Set for
any p€ L\n
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;pzh/‘ fOI‘ 'i’u=1,
h=h,+f  for 2<i, <M

with k, given by (6.2). Then we define a formal functional series P(u)
by the right hand side of (6.3) with

(6.10) W= 20 @2t D5 @u(2)UEp -1 s (k1) € D,
LET LELN\T
instead of (6.4). First, we can see from (5.11)
(6.11) W= 2 a,(2)Sk (((DP)*)" for any (k,1) such that
RET
(k);=0 or [=0.

Next, let us apply the formula (6.10) to wWi4s,i41, (k, 1) €D. Then, sub-
stituting the right hand side of (5.12) or (5.18) for uj. 141, # €7, and that
of (5.8) or (5.9) for uf,, pem={pe L\r;y.(0)=y.(0)+1}, in the right hand
side of (6.10) for (k,1)=(0,0) or (0, 0), respectively, we have

(6.12) Wr 1= ((Uo,0)'™ (0, 0, 2, DP(2), D) +
+73(0,2, Dp(2), D'P(2), o)) Uo.0t 2 04(2)S7,.(((DG)))
(6.13) Wi rra41=((o,0) "7 t:(0, d -k, 2, D(2), D)+
+7.(0,d-k, 2, D$(2), D(log g,0), D'} (2), Uo,0)) Uie,1 +
+ 2 a,(&)Stsp (DY) + Risppans (k1) €D,

HLET
where we put

73(8,2, &, u)=u"""a, () B3(s, 0, 2, &, §) + 11, (8, 2, &, u),
re(8, 4,2, &1, u)=u""""a,(s)(Bi(s, 4,2, & n)+ B2, 4,2,8,0)+
+B3(s, 4,2,8,0)+8.,(s, 4,2, &, u); 8,2€C, z€2, §neC\{0},
£=(), y€2Z% and |y|=2, €C*™* and uw€0(Q),
and
(6.14) Bisppan= z a#(z)Ri‘m,uﬁﬂéla#(z)Rﬁ,l+
+ ¥ e@)UWis-iaems (KD ED:

RELN\(TUT))

with
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m .
a.(s)= IL [s:iP,
i=

{6, 1,28, 7) = M E LRt Lkdidl,
ﬁ@zﬂ)%%%”ééhwnmﬂ

X (D;log T1 (€))7},

la|=1

s, 4,2,6,0)= % a,,(z)((ga))ﬂ{ y plstailel =11,

ren a€supp g [S: |a|]

(25}

Bl 22.60= Da@Ep| T 3wl ledy

acsuppp =0 s—|a|+1

[s[_ls_zy]‘?] ( 17‘%:'2 ( (; )E_TCT>}’

P26 W)= 3 a,(0)(s: e K,
%Wmm>mmmmwsz£ﬂﬂhw)

nemy @ €supp p [S: |C€]]
putting Rj,=0. Since Z,,>j‘1 for any p€ _L\(rUm,), the following lemma
is clear from Lemma 5.1.

LEMMA 6.2. Let Do=0 and let Riis .. be given by (6.14). Then
EH,I,,H 1s a polynomial of degree at most p of such Du.,’s as (k, p)<
(k, 1) and |a|<m.

LEMMA 6.3. Let ¢(z) satisfy Cond. I for Case B. Then we have
> a,(2)(Dg)*) Sii=0  for any (k1) €D

Hew

Proor. Owing to the condition (3) of Case B, we have

m

(S(x, Y)y=TI (S(X, Y))';  per

Hence we can see that Si,; the coefficients of X*Y" of the above formal
power series, are common to any g €« for every (k,l)eD. If we set this
common value Sj;,;, we have using the characteristic condition (3.7)

> @, (@) (D))" St =5k, ¢:(2, Dg(2)) =0.

NET
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This completes the proof.
COROLLARY 6.4. Under the same condition as in Lemma 6.3 we have
Wi, =0 for any (k,1) € D such that (k);=0 or [=0.

ProoF. We can show easily the above formula from (6.11) and
Lemma 6.8 and leave the proof to the reader.

Now let us construct a formal solution in this case. Choose an
n€C"\{0} satisfying Cond. II for Case B and take a ¢(z) €(0'(2) so that

D(0) =7

for which we put T={¢(2)=0}N%. For every (k, l) € D we consider the
following initial data problem for u,, for an arbitrary initial data
v, €O(T) but for vy, €OYT) on T':

(6.15) {(Wo,o) "171t.(0, 0, 2, D, D) +7%(s, 2, D, Dh, U 0))Ue.0=0,
. Uo,0l7="0,05
((1ho,0)! ™t (0, d-k, 2, Dg, D)+
(6.16) +7.(0,d-k, 2, D$, D1og w0, D'$, Uy ) i1+ Rt 4,100 =0,

Wi |7= Vi1 for (k,1) € D,.

Then, since we have a solution wu,,€(0*(£’) for some subdomain 2/, we
can determine inductively every w,,€O(2”) for some subdomain 2" by
Lemma 6.2. Moreover, these u,,’s give us a formal solution of the form
(4.10), because we can see by Lemma 6.3 that (6.8) follows from (6.15)
and (6.16) for any (k+f,,l+1), (k)€ D, using the representation (6.12)
and (6.13) of wiys 1i1.

Case C: Let o(z)=0, and n*=x, satisfy the condition in Case C,
and take any ¢(z) €(O°(Q) and yx=1u,(z) €*(2) so that (3.8) is satisfied.
Let d€C™ be given by (3.2) for Case C. Exchanging = for T, in (6.1)
and (6.3), a formal functional series P(u) in this case is defined by the
right hand side of (6.3) with

Wi,a= E ay(z)u;‘t,l‘*' E a’ﬂ(z)u;(‘_"'u,l_lhﬂl'
;LEIL’UT /lE.L'\"‘,T

Then we have from (5.8) and (5.9)

(6.17) Wo,0="Dq, (2, D&, Uy ,0)
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and

Wi =S8, (d-k, 2, D@, o )i+ R, for (k1) €Dy
with
(6.18) Rii= Y a2 B+ ¥ au@) U s,

nET, HELNE,
The following lemma is clear.

LEMMA 6.5. Ry, ts a polynomial of degree at most p of such D*u,,,’s
as (k, p)<(k,1) and |a|<m with coefficients in O(R).

To construct a formal solution in this case put, first,
(619) uo’o——_uo.
Then from (6.17) we have automatically

@UQ,OZO.
Next, for any (k,1) € D,, set

_ Ry,
(6.20) Uk 1 = 8,,(d-k, 2, Dg(z), Uo(2))

Then, owing to Cond. II for Case C, we can determine inductively any
u €O, (k1) €D,, for some subdomain £’ by the above formula.
Since it is clear that these w,,’s satisfy (6.8) for any (k,1), we have a
formal solution.

§7. Convergence of the formal solution—preliminary estimates.

As any formal solution, obtained in the previous section corresponding
to each case, is a genuin one if it is convergent, we shall investigate
convergence of the formal solution from this section. Our aim of this
section is to obtain the following majorant inequalities for any formal
solution :

(M) ue i {exp(a(|k| +1) —b(|k|+1)")}(BR—t)~*  for (k,I)€ D,
with some positive constants a,b and R and
(7.1) t=cz,+2,+ - +2,

with some constant ¢>1. Put
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(7.2) s=z,+2,+ - +2,.

Then we can find positive constants A, and L such that the estimates

(7.3) a,(z) for any pe L, o(z) and ¢(2) < A,(s)
with

(7.4) do(s)=(L—s)"; seC.

Set

(7.5) di(s)=(R—s)7*; seC, keN

with

(7.6) 0<R<L/2 and 0<R<1.

Then we can see easily the following lemma.

LEMMA 7.1. Let ¢,(s) and ¢.(s), k€N, be given by (7.4) and (7.5)
with (7.6), respectively. Then we have

(7.7) Bo(s) K Hu(t),

(7.8) Bo(8)Bi(t) K (L—R) ™ $,(t),

(7.9) Bi(t) K Brsa(t),

(7.10) D, $.(t)=ck¢pn(t); KEN

with t and s given by (7.1) and (7.2), respectively.
Put

(7.11) go(x) =ax—bzx'?,

g:(x) = —bx~ "2+ m(log x)/x,

g:(x)=—(b/2)x~*+m(log x)/x; x>0
with positive constants a, b satisfying
(7.12) a—b>0.
(7.13) b>16((M+1)(p—1)+m).

Then the following lemma can be seen by elementary calculus and hence
the proof is left to the reader.

LEMMA 7.2. Let g,(x), ©=0,1,2, be given by (7.11). Then we have:
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(1) If positive constants a,b satisfy the inequality (7.12), go(x) is
increasing on x>1.

(2) If b satisfies (7.13), then g,(x) and g,(x) are increasing and
concave for x>1.

Set for constants p>0, ¢>0 and r>0
(7.14) h(x)=x" exp(—gqzx"); x>1.

Then we have the following lemma which can be shown by elementary
calculus and is left to the reader.

LEMMA 7.3. Let h(z) be given by (7.14). Then we have:
(1) If p<qr, h(x) is decreasing for x>1.
(2) If gr>p+1—nr, it holds

[ hio)das @r—p+r—1) exp(—q).

1

ProOF. We show only (2). Putting ¢{==z" and integrating by parts
iteratively, we have

o

rh(x)dx :S ritPmetIT exp(—qt)dt

1 1

< i (rq) {(p—r+1)/rq}.

=0
Consequently we have the result and this completes the proof.
For a given (k,1) € D and 0<j5<|k|+1 put
(7.15) Nk, 1) =#{(x, p); (0,0)<(r, 0)<(k, 1), ||+ p=5}.

LEMMA 7.4. Let Nk, 1) be given by (7.15) and 0<j<|k|+1. Then
we have

Nk, ) < Ax(k| +1—5)"
with a positive constant A, which depends only on M.
PrOOF. Setting #=k—x and g=Il—p, we can see it holds

Nk, ) =#{(F, p); (0,0)<(%, p)<(k, 1), |R|+p=|k|+1—7}
<#{(% p); (0,0)<(%, 0), |&|+p=|kl+1—7}



410 Tan IsH11
M .
£< + k| +1—] >
M

holds. The lemma follows immediately from the above inequality and
this completes the proof.

LEMMA 7.5. For a given K€N and a given (k,1)€ D, let B(K; k, 1)
be the set of multi-indices given by (5.5). Then we have

K
) >£A3(]k]+l)“"“’”“”

0=((5,k;,1;)) € BK;k,1) ( jl < g,
with some positive constant A, dependent only on K and M.

Proor. Put

K
ﬁk,t: Z . .
(ki N EBUGKRD N\ ]y + v+ ],

GX,Y)= X X'Y!

(k,1yeD

and set

with X=(X,, ---, Xx). Then, since it holds
GX,Y) = ¥ Bu.XY!

(k,lyeD
and that
GX, )« Y XY
tknez¥xz,
it follows
1 k JrE 1 1 K
Prass k'l 010 X)" 00 Y) {<£[1 1- X, >< 1-Y >} (X,7)=(0,0)
M [ K4+k—1 K+1-1
(TN tor ket

We can obtain the lemma easily from the above inequality and this
completes the proof.

For any ‘U:((jiy k;, li))lsiSrGQ(K; k1) set
)= 5 .01kl 1)1l +8)+ b1k -+ —m log(1k|+

with a contract 0.¢,(0)=0 and put
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K
(7.16) F(w)=< . . )exp(r(w))-
Jir

LEMMA 7.6. Let K<p, let I'(w) be denoted by (7.16) and let b satisfy
(71.18). Then, for any (k,1)ED, we can find a positive constant A,
dependent only on M, K and m such that

(7.17) Y I(o)<A, exp( — %b)

0€ By(K;k, 1)

with a convention Y =0 if B,=¢ and that
By

(7.18) > INw)<A,+K.
®€ B(K;k,l)
ProoF. Throughout the proof we denote C; 71=1,2, ..., some

positive constants which depend only on K, M and m. For any o=
((jiv ki, li))lsiST 6 @(K’ ky l) put

{ki:‘kil_*'li; 1=1, -,
ko= k| +1.

Then we have by definition k, <k, < --. <k,,

Zi:ljiki:k
and
r(o)= X 3bg,(k) +bk" —m log k.
Set
4= 3 T'(o),
o€ B(K;k,1)
Alz E P((D)
W€ By ¢

with B,,={we€ B,; k.Jk>1/2}. Let us estimate 4, and 4—4,, separately.
The estimate of 4,. Let w=((J; ki, l;))1cicr € Bs.. Then, since

kl2<k.<k-1,
we can see

j=1, S jdi=k—k, and 1<k, ,<k—F,
=1
Put
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_ r—1 ji(ki)z
o= & h—k,
Then, as it holds
= jiki
1<‘0Skr—1‘§1 k—kr
k—'k,,
we can see from Lemma 7.2 (2)
r—1 r—1 > I
(7.19) % ddeigall) = (h— ) 3, ~L%—g, k)

<(
<(k—k.)g.(k—k,)
< —b(1—(2m/be))(k—Fk.,)"

with Napia’s number e. On the other hand, since k,/k>1/2 implies
k7'<(k—Fk,), it holds that

(7.20) ke, g, (,) + bl —m log k< — bkt -+ bk
(b/2)§k - d
k

r

<
<(b/2)(k—k,) k1"
<(b/2)(k—Fk.)"".

Hence we have by (7.19) and (7.20)

(7.21) 7(@) < —b(1—-0,)(k—k,)” for w€ B,,,
where we can see from (7.13)

(7.22) 0,=(2m/be)+1/2<3/4.

Now, as we have noting that 7,=1 and using Lemma 7.4 and Lemma 7.5

K K-1
m(g < y y >£K (k lZ)S(k 13} {weﬂi(K—1;~k 1-1) < y y >}
{kr=m2'l /R m:’;lz,m’ 5 PN Dl

<L Cy(k—r) M+ E=D for k/2<k<k—1,

it follows from (7.21), (7.22) and Lemma 7.3
4= X > ')

kj2<k<k—1 {coe _182,1

k.=x
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<Cy ¥ (b—r)*+*exp(—b(1—0)(k—r)")

T Tkje<Rr<k—1

<Cof [T exp(—b(1—2)a)da-+exp(—~b(1—0)|

1

<C,exp(—(1/4)b).
The estimate of 4d—4,. Set for any o= ((J;, ki, 1,))1<i<r € B\DBh 1

E= )
Since it holds

we have using Lemma 7.2 (2)

<k(g:(%) —g.(k))
<k(g.(k.) —g.(k))
< —(1/2)k7'"b(1—0,) (k—k.)

7 (o)

with
0,= (dm/[b)e—**<1/5.

Therefore it follows from Lemma 7.4 and Lemma 7.3

4-4< ¥ ¥ I'(o)
:zgklz{zeji:z

<Cy 3 KO exp(— (@/5)kb(k—))

k<k/2

©

gcswwx-n[g {exp(— (2/5)k~*7bx)}dx +exp(— (1/5)blc1/2)]

e
< Cufrsn s (f2) [ {exp(— (1/5)"bt))dt+ exp(— (1/5)bk |
< G+ E=D+012 oy (— (1/5)bk*)
<Cs exp(—(1/5)b).

Consequently, we have

A:AH' (A_Al)
<C, exp(—(1/5)b)

and hence (7.17) is obtained. Next, as we can see

I'w)=4+K,

0€ B(K;k,l)
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we have (7.18) trivially and this completes the proof.
Let Vi(X,Y), :=1,2,---, K, and ﬁ Vi(X,Y) be formal power series
given by (5.1) and (5.2) with (5.3), respectively, such that
(7.23) VoL Aio(s); i1=1,--- K

with A, and ¢,(s) given by (7.4) and (7.2) for some L>0, respectively.
Then let us find a majorant estimate on %, and ‘C,(II Vi(X, Y); k, 1),
(k,1) € D,, under the condition that it holds

(Mi,1) Vi1 < Blexp(a(| k| +1) —b(| k| +1)""+m log(|k|+1))}bu (%)
for any ¢=1, ---, K and any (k1) € D,
for some positive constants a,b,¢>1, R and B independent on 7 and (k, [)
with ¢ and R used in ¢, (t) given by (7.5) with (7.1).
LEMMA T.7. Let Vi(X,Y), i=1, ---, K, and 1[ Vi(X, Y) with K<p be
i=1

formal power series given by (5.1) and (5.2) with (5.8), respectively,
satisfying (7.23). Then for a given (k,1) € D, we have:
1) If vi, satisfies (M,,) for any (k, p)<(k,l) with positive constants
a, b satisfying (7.12) and (7.13), then we have
K
(7.24) "Cz(]:IlV,-(X, Y); k, 1)< A,B* exp(—b/5){exp(a(|k|+1)
—b(| k| +1)""+m log(|k| +1))}Px(8).

(2) Let vi, satisfy (M,,) for any (k, p)<(k,1) with a,b satisfying
the same conditions as in (1). Then we have

(7.25) Dr,1 < As{exp(a(|k| +1) —b(| k| +1)*+m log (| k| +1))}bii(8),
with As=(A,+K)BF.

Proor. (1) Since it follows from the assumption

CZ(il;IlVi(X’ Y): & l><< (ks l,-)%.@z(K;k,l)B (jx R I )X
x| exp{ i@l +1) b1 +Ly ™

+m log(|ki| +li>)}]¢.k.(t)
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<B(__ > T())expalkl+]

—b(|k[+1)"*+m log(|k|+1)}pix (¢),

we have (7.24) using (7.17).
(2) We can obtain (7.25) by (7.17), because we have

©E€ By (K3k,1)

m.l<<B"<

©€ B(K;k,1)

I'(0) fexp(@(lk|+1) (k| +1"*+m log |k +D)}giu 1),

and this completes the proof.

Now let us say simply that “(M,,;) holds for wu,,,” if u, satisfies
(My,) for the prescribed a,b, ¢ and R independent on (k,1). Let u be a
given formal functional series of the form (4.10) for which it holds

(7.26) Uo 0 K Aso(S).

LEMMA 7.8. Let u be an arbitrary formal functional series of the
Sform (4.10) satisfying (7.26) and let positive constants a,b,¢>1 and R
satisfy (7.12), (7.18) and (7.6). Then we can find a positive constant A,
which does mot depend on a,b,c,R, (k,1)€ED and a€Z%, |a|<m, such
that the following properties hold for any (k,l) € D, and a.

(1) Assume that (M.,) holds for any (0,0)<(k, o)< (k,1). Then it
holds
(7.27) ui, and SPI< A exp(a(|k|+1) —b(|k|+1)'"

+ || log (| k[ 1))} (B).

(2) If (M., holds for any (0,0)<(x, p)<(k,l), then we have

(7.28) i and Sel< A {exp(a(|k| +1—1) —b(|k|+1—1)"
+ |e| log(|k|+1))}u ().

(3) Assume Do=0 and that (M.,,) holds for any (k, o)< (k—f;, 1—1).
Then it holds

Qi< A {exp(@([k| +1—2) —b(|k| +1—2)"" + |a| log(|k| +1))}gx (0)-

(4) Assume Do=0 and assume (k,1)>(f,,1) and that (M,,) holds
for any (k, p)<(k—f,l—1). Then we have

Ry < Ae'{exp(a(|k|+1—38) —b(|k| +1—8)"*+ || log (k| +1)) ) (t).
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Proor. In this proof we suppose C;,7=1, 2, - - -, are positive constants
independent on a,b,c, R and (k,I)eD. Fix an arbitrary (k,I)€ D, and
let us estimate each term of the right hand side of (4.12). Putting

(r, p) = (k— (la| =3)f1, L= || +1),
we can see, first, from Lemma 4.4 and (7.3) that
Neflo+d- -k, |k| —p, 8) KCi(|k|+1)"# (o).

Next, as we may assume |k|+|a|—|B8|<|k| from (4.5), we have applying
(M.,,) t0 %,

Dy, , & Coc'1 =141 k| 1«1- 1P\ {exp(a(|x] +p) —b(|x| +0)'")}B1-
Consequently, we can see
(129)  Nufla+d-k, |k|—p, §) D" Pu, L Ce!* " P {exp(a(|x]| +p)
' —b(|x|+ )"+ |a| log(|k| +1))} Bk

(1) Since (7.29) holds by the assumption for any term of the right-
hand side of (4.12) and since

a(le| +p0) —b(|r|+0)""* <a(|k|+1) —b(1k|+1)"

holds from Lemma 7.2 (1), we can see that uf, is a sum of at most
(Ja|4+1)"** terms which are dominated by

Coc'“!{exp(@(|k|+1) —b(|k| +1)*-+ | Tog(|k|+1)}e.

Hence we have (7.27).

(2) As R;, is obtained by taking off all terms containing u,, from
the right hand side of (4.12), it is a sum of at most (ja|+1)*** such
terms as

Nif(o+d -k, || —0, ) D P s (6, 0)<(K, ).

Therefore we have (7.28) easily using (7.29).

(8) or (4) can be shown similarly as (2), because @, or R, is
obtained by taking off all terms containing u,, max(0,!—|a|)<p<l, or
We,pr (16, ) L (k—fi, 1—1), and their derivatives from the right hand side of
(4.12), respectively. This completes the proof.

LEMMA 7.9. Under the same notations and assumptions as in Lemma
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7.8, we can find a positive constant A, which does not depend on a, b, c, R
and (k1) € D, such that following estimates hold for any (k,1) € D,.
(1) If (M,,) holds for any (x, p)<(k, 1), then we have

(1.30)  uf < Ac™“{exp(a(|k|+1) —b(|k|+1)""+m log(|k| +1))}d
(2) If |k|+1>2 and if (M., holds for any (k, p)<(k,1), then we

have
(31)  REAeTAe ey exp(a(|k| +1) —bllk|+1)"
+m log (k| +1))}Pix-

(8) Under the same conditions as in (2) and the condition De=0,
we have

(7.32) Rty p i< Aem# (@49 + e~ {exp(a(|k| +1)
—b(|k|+1)"*+m log (| k| +1))

|kl+1e

)}
Proor. (1) Since (7.27) holds from Lemma 7.8 (1), we can apply
Lemma 7.7 (2) to the formal power series (U“(X, Y))* given by (5.6).
Therefore it holds

ul ="C(U)5 k1) K (At p]) Agliem#

X {exp(a(|k|+1) —b([k| +1)"*+m log (| k| +1))}Bi

and we have (7.30).
(2) Applying Lemma 7.8 (2) or Lemma 7.7 (1) to R;, or
C.((U*); k, 1) of the right hand side of (5.10), respectively, we have
R; <LCi{c exp(a(lk|+1—1) —b(|k| +1—1)""+m log(| k| +1))

+cmivle exp(a(| k| +1) —b(|k|+1)""*+m log(| k| +1))}P ik,

which implies (7.31).

(3) Apply Lemma 7.8 (4), (2), Lemma 7.7 (1) or (2) to the first, second,
third or fourth term of the right hand side of (5.14). Then we have

Ri, 1a < Cofe™ exp(a(| k| +1—1) —b(|k| +1—1)"*+m log(| k| +1+2))
+criile~ exp(a(| k| +1) —b(|k|+1)"*+m log(| k| +1))
et exp(a( k| +1—1) —b({k| +1—1)"+-m log(|k| +1—1))}ir1s:
for (k,1) € D,.

Consequently, we have (7.32) and this completes the proof.
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§8. Proof of the estimate (M) for the formal solution.

In this section we will show that every coefficient u,, (k)€ Dy,
of the formal solution obtained in §6 satisfies (M;,) for appropriate
positive constants a,b,¢>1 and R independent on (k,1) under an addi-
tional condition in Case B. We suppose for each three cases that C,

i=1,2, ..., denotes a positive constant which does not depend on a,b, ¢
and (k,1)€D,. Let b satisfy (7.13) and put
(8.1) a=(6/5)b.

Case A: Give any u,,€(0'Q) and determine every u,, (k)€ D,,
using (6.9), inductively. Let us show (M., with ¢=1 for any (k,1) € D,.
Owing to Cond. II for Case A, we may assume that there exists a posi-
tive constant C, independent on k such that

1 -m . M
82) — 500 40) F 2 Do) e LCylk|~"(s); k€ Z¥\{0}

holds in some subdomain 2,. First, find a sufficiently large b,>0 so that
it holds

Uy oK {exp(by/B)}di(s);  i=1, -, M.
Then we have (M, .), 1=1, ---, M, if we take
(8.3) b>b,.

Next, let (k,l)e D, and |(k,1)|>2. Assume that (M,,) holds for any
(0,0)<(r, p)<(k,I). Then applying Lemma 7.9 (1) or (2) to uf_,i—s, oOr

%: in the right hand side of (6.7), respectively, we have noting that
[k, >1

(84) Ry, KCe™""{exp((6/5)b(|k|+1) —b(|k|+1)""*+m log(|k|+1))}d (s).

Now (8.2) and (8.4) enable us to make a majorant estimate of the right-
hand side of (6.9) and then we have

(8.5) s, 1 L Ce™™exp((6/5)b(| k| +1) —b(|k|+1)"*+ m log (k| +1))} x(s)

for some constant C,. Therefore, if we choose b so large that it satisfies
(7.13), (8.3) and

Csexp(—b/5)<1,
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we have (M,,) for any (k,I) € D,.
Case B: Take and fix any regular hypersurface
T={$(z)=0}N 2

in 2 for which »=D¢(0) satisfies Cond. II for Case B, and give any
v €O(T), (k,1) €D, with v,,(0)#0. Then we can determine all u,,,
(k,1) € D, inductively, solving initial data problem (6.15) and (6.16). By
virtue of Lemma 3.1 we may assume

dlz)=2

and hence that »=»=(1,0, ---,0). Moreover, we impose the following
assumption on v, ,, (k,1) € D,.

AssuMPTION B. We can find a positive constant ¢ independent on
(k, 1) such that

Vi, K{exp(@(|k| +1))}g i (s)
with §'=2,+---+2, and ¢ (s')=(L—s")""*' holds for any (k,I) € D,.

Now we may assume that it holds

(8.6) Uyg,o and (uo.o)_1<<A1¢o(3),
(8.7) —{t.(0,d k, 2, Dé(2), 7))} K Cy| k| ™ 'P(s),
8.8) t.(o,d -k 2, D(2), 1) KCilk|"'$o(s); i=2, -+, m,

(8.9) r.(o,d-k, 2, Dp(2), D(logte,), D7@(2), Ue,o) LCi|k|™bo(s); k>0

with 7,=(0, \1/ -.+,0) retaking A, and L if necessary, because (8.7)
follows from Cond. II for Case B. First, take a b,>0 so large that

us o K{exp(b/B)}i(t);  i=1,---, M

holds for any ¢>1. Then we have (M, ,), i=1,---, M, for any c>1,
if we take

(8.10) b>b,.

Next, let |(k,1)|>2 and assume that we can find some >0 and ¢>1 for
which (M, ,) holds for any (k, p)<(k,1). Then we can apply Lemma 7.9
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to each term of the right hand side of (6.14) and have
Riiz,1a < Coe™ e7Pexp((6/5)b(| k| +1) —b(|k| +1)"+m log (|k| +1))}ik 1 (2)-
Now let us transform the initial data problem (6.16) in the form

1
ti(o, d-k, 2, D§, )

(8.11) | Dby, = — {(zt (0.d-k, 2, D¢, :) D

Rk+f1 1+1 }

+74(0,d -k, 2, Dp, D(log ue,0), D', u00)>uk,+ T
0,0

Ui, 1(2) = Vi1 (27).

Applying (8.6)~(8.9) to the right hand side of the above equation, we
have the following majorant differential inequality:

812)  DU.> (Cl)z(¢o(8))2<ézl)i+ lkl)Uk,z+ClCzA{"“‘c'“’e‘““

X (¢o)'*{exp((6/5)b(| k| +1) —b(| k| +1)""*+m log(|k| +1)
— (m—1)logk|)}@ixi +1(t)
Us(2') > {exp(@(|k|+1)}puu (s))-

Let us find a solution of (8.12) of the form
Ui,i={exp((6/5)b( k[-+1) —b( k|+1)")} (t)

for which we can see from (7.10) that (8.12) is equivalent to

(8.13) cPrui+1(t) > (C1)*(o)* (1 —1)@ k111 (2) + Pi (E)
+CCAFH g e L I’I‘ILTl ) e i)

exp((6/5)b(| k|+1) —b(| k|+1)""*) >exp(a( k|+1)).

Then it can be seen from (7.8), (7.9) and (7.6) that (8.13) follows suffi-
ciently if the inequality

(8.14) n(C)*2/ L)% +2"C,C,Al**(2/L)'"ecm e <1
holds. First, put

o= 8nC?

=7

Next, choose b>0 so large that
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2mC,C, A1 (2/L) "em e < 1/2 and b/5>d
holds in addition to (7.18) and (8.10). Then we have
Ui & Uy
and hence we can obtain (M,,) for any (k,I) € D,.

Case C: Since Cond. II for Case C enables us to find a positive
constant C, satisfying
1

—Sa,(z,d-k,Dqs(z))<<Cllk|"”¢o(8); |k|>1

and since we have the same majorant inequality as (8.5) with R, given
by (6.18), we can obtain (M, ;) in the same way as Case A for (k,[) € D,
with sufficiently large b and ¢=1. Consequently we have the following
theorem.

THEOREM 2. Let 0€((2), weC* and n*c_L satisfy the condition
in Case A, Case B or Case C and let S={¢(z) =0} with ¢c(O"(Q) satisfy
Condition I and Condition I1 corresponding to each case. Moreover, in
Case B, let T={¢p(2)=0}NQ with ¢ €O (Q) be an arbitrary hypersurface
such that p=D¢(0) satisfies properties of Condition 1I, and assume that
Vo0 EOMT) and that vy, (k1) € D,, satisfies Assumption B. Let u,, be
gwen by an arbitrary element of OR2), the solution of (6.15) or (6.19)
in Case A, Case B or Case C, respectively. Then we can find positive
constants a, b and ¢ so that (M,,) holds for any wu, (k )€ D, which

satisfies (6.9), (6.16) or (6.20) in Case A, Case B or Case C, respectively.

§9. Convergence of the formal solution.
Now we can prove the following theorem.

THEOREM 3. Under the same conditions and notations as in Theorem
2, let w(z) be any formal solution of the form (4.10) whose coefficient
Ui, (k, 1) €D, is given in the same way as wn Theorem 2 in each case.
Then u(z) 1s a genuine solution of the equation (1.5) which has regular
stngularities of exponent o with spiral exponent o, interpreting w=0
wn Case C.

ProorF. We shall prove this theorem only in Case A because the
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other two cases can be treated similarly. As it follows from the condi-
tion in Case A (1) that there exists a positive constant ¢, such that

Re(wd;(z) >cy; zeR, j=1,---, M,

we can see the nonnegative value

_ Im(wd - k)
cz—kei?am Re(wd - k) |
is finite. Let ¢(2) satisfy
P(2)=(¢(2))

Let K be an arbitrary positive constant and put

61 — e—2c2K'

Then, since it holds

|4 | = gt |
=exp{(Re(wd-K))log | ¢| — (Im(wd-k)arg ¢},

we have

dk|_ od- _ Im(wd-k) arg¢
(9.1) | ¢ l—eXp{(ﬂe( d k))(10g|¢'|)<1 Relod k) Tog|d] )}

<[g|tmakl ke ZEN{0},
if |¢|<d, and |argp|<K. Choose a 9,>0 so small that it holds

9.2) x(|log x|+ K)<1; 0<2<0,
and put
(9.3) 0=min(d,, 0,, (e™*5R[2)*),

Now take any r>0 so small that
(9.4) 0<r<R/2 and R({s|<r\S)CcR(2\S)
with |s|=|z,|+ - - +|2.| holds and let

2. xo=R({Is|<rINS) N{larg ¢|<K}N{|$]<5}

be a subdomain of R(2\S). Since, owing to Theorem 2, every u;,,
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(k,1) € D,, satisfies (M,,) with a, b satisfying (7.13) and (8.1), ¢c=1 and
any 0<R<L/2, we have using (9.4), (9.1) and (9.2)

05) |3 wa g (0g §)'|< L expl(6/5)b(1kI+1) —b{ k|+1)'")
x| 1016)1 1644 log '
<35 et (R ) | [914 [log ¢ |+ K
< C, e O (RJ2)- | g [ on @,

with some positive constant C, independent on |k|. As it holds from
(9.3)

(9.6) (2/R)e™®PF| ¢t 1 for |¢|<o,

we can see that the formal solution u(z) is absolutely convergent and
is a holomorphic solution of (1.5) on 2., Further, it is clear from
the same estimates as (9.5) and (9.6) that u(z) has regular singularities
of exponent ¢(z) with spiral exponent @ on S, if we put

Fy(z) =wu0,0(2),
Fiz)= > uku(2)(6(z))" *(log $(2))".

(k,l)eD+

This completes the proof.
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