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The coendomorphism bialgebra of an algebra

By D. TAMBARA

Introduction

If A is a finite dimensional algebra over a field %, the functor
C— AQC from k-algebras to k-algebras has a left adjoint functor, which
we denote by a(A4, —). Namely there is a bijection

Hom,.,,(B, AQC)=Hom,_,4(a(A, B), C)

for k-algebras B,C. The algebra a(A, A) has a natural structure of a
bialgebra and coacts on the algebra A through the adjunction map A—
AQa(A, A). It is characterized as a universal bialgebra which coacts on
the algebra A.

This construction is in the same spirit as Manin’s one, which produces
quadratic bialgebras based on the pair of adjoint functors o and hom on

the category of quadratic algebras [9]. The algebra a(A, B) is also
regarded as a dual object of Sweedler’s universal measuring coalgebra
M(B, A) [12].

In this paper we mainly study a(A, B)-modules, a(A4, A)-module alge-
bras, and a(A, A)-comodules. One of our theorems is that if dim A>1,
the category of right a(A, A)-comodules and the category of chain com-
plexes of k-modules are equivalent as monoidal categories.

In Section 1 we give the construction of a(A, B). We discuss its re-
lations to other universal constructions of algebras and coalgebras. Some
variations and generalizations of a(A, B) are mentioned.

In Section 2 we state various interpretations of a(A4, B)-modules and
a(A, A)-module algebras. For example, a right action of a(A, B) on a k-
module V is equivalent to a right action of B on the left A-module
ARV making AQV an AQB-module. A right action of a(A, A) on a
k-algebra R is equivalent to an algebra structure on A®R such that
(@a@®1)(d'®1)=aa’®1, (1Q7)(1R7") =1KXrr’, (aR1)(1Qr)=a@r for a, a’ € A,
r, v €R.

In Section 3 we first give a tensor product decomposition of a(A, B)
and then show that Ext]. z(V, W)=Extigsn(AQV, AQW) for 1>2 and
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right a(A4, B)-modules V, W. When A=FkXk, this reduces to a special
case of Dicks’ result on the homology of coproducts [4].

In Section 4 we prove the previously mentioned theorem about
a(A, A)-comodules and chain complexes. In fact this is a rather imme-
diate consequence of the observation that the dual algebra a(A, A)Y is
isomorphic to the endomorphism algebra of the complex

— =

— <« —
kA AQA>ARQ AR A --

— <« —

- AN

with the arrows induced by the algebra structure of A, and Dold and
Kan’s theorem that the normalization functor yields an equivalence be-
tween simplicial k-modules and chain complexes of k-modules.

In Section 5 we study action of a(A, A) on full matrix algebras,
using the above interpretation of a(A, A)-module algebras. It is proved
that every action of a(A, A) on the algebra M,(k) comes from a repre-
sentation a(B, A)—M,(k) for some algebra B. The contents of Sections
3, 4, 5 are independent.

I would like to thank M. Takeuchi for helpful comments.

Notation and conventions

We work over a fixed field k. Hom,, ), are written as Hom, .
For a k-module V we write VV=Hom(V, k). For a k-algebra A, A- M
(resp. M-A) denotes the category of left (resp. right) A-modules. For
k-algebras A and B, an (A, B)-module means a k-module having a left
A-action and a right B-action commuting with each other. The category
of (A, B)-modules is denoted by A-M-B. For an (A, A)-module M the
tensor algebra @, M®4"=APMP(MRJM)P--- is denoted by Tu(M).
When A=k, we write T.(M)=T(M). For a coalgebra C, C-Com (resp.
Com-C) denotes the category of left (resp. right) C-comodules. If A is a
k-algebra, we write A=A/k1 and the class of a€ A in A is denoted by
a.

1. The construction of a(A, B)

Let A, B be k-algebras and assume dim A<oco. Define a k-algebra
a(A, B) to be the quotient of the tensor algebra T(AV®B) by the ideal
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generated by the elements
§(1)—éX1
§QY1Y— 12 (£:Q1) R (6:Qv)
for £€ AV, y,, y. € B, where 3 §,Q¢&; is the image of £ under the map

AV—>AVQAY, the dual of multiplication of A. We denote by (£, y) the
class of £Qy in a(A4, B) for £€ AV, y€ B.
Define a map o45: B>AQ®a(A, B) by

oas(y) = Z Q& v)

for ye B, where {x;}, {&] are bases of A, AV respectively such that
&(x;)=0;;, Then 0,5 is an algebra homomorphism.

THEOREM 1.1. For any k-algebra C we have a bijection

Hom,,(a(4, B), C)=Hom,,(B, AQC)
f— (1Qf)04s.

Proof is obvious.
Let A, B,C be k-algebras such that dim A<oco, dim B<co. By
Theorem 1.1 there is a unique algebra map

Aupe:a(A, C)—ra(A, BIQa(B, C)
such that the diagram
C e, B®a(B, C)
GAC 0431
AQa(A, C) ——— AQRua(A, B)Qa(B, C)
1QA48c
commutes. Also there is a unique algebra map
€s:a(A, A)—k

such that the diagram

A, ARa(A, A)

S

A
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commutes. On the generators these maps are given by
Ausc(E, 2) =28, ¥,) Q1 2)

J

€a(§, ) =&(x)

for £ AV, ze(C, xe A with {y;}, {»;} a pair of dual bases of B and B".
The maps Aupc, €4 satisfy the conditions of coassociativity and counit.
In particular a(A, A) becomes a bialgebra with comultiplication A, and
counit €,. The map o44: A—>ARa(A, A) makes A a right a(A, A)-comod-
ule algebra, i.e., a monoid object of Com-a(A4, A).

Example 1.2. Let us describe a(4, ) for two dimensional algebras A.

(i) Let A=kXk. For a k-algebra B, the algebra a(kXxk, B)- is
isomorphic to the coproduct BB of two copies of B. The universal map
B—>AQ(B*B)=(B*B) X (BxB) is given by the two canonical injections
B3 BxB. If we write e=(1,0)€ A and o4(e)=e@e,+ (1 —e)Qe,, then
a(A, A) is generated by e,, e, with relations el=e,, e;=¢,, and its coalgebra
structure is given by

Ale) =e,Qe;+(1—e,)R(1—e,)
Afe) = (1—€,)Q(1—e) +eRe,
€le) =€(e,) =1.

The author computed the Grothendieck ring of a(A4, A) in [15].

(i) Let A=k1kt with t*=0. For a k-algebra B, let 2 be the
kernel of the multiplication map BRB—B and 6 : B~ the map b—1&
b—b®1. Then a(A, B) is isomorphic to the tensor algebra T'5(2) of the
B-bimodule 2, and o, is identified with the map B—>A®7T%(2) taking
b to 1Qb+tRab). If we write cau(t)=1Qx+tQy, then a(A, A) is
generated by z, y with relations #°=0, xy+yx=0. The coalgebra struc-
ture of a(A, A) is given by

Alr)=1Qr+2Qy, Aly)=yQy
€(x)=0, €(y)=1.

The Hopf algebra a(A, A)[y~'] was studied by Pareigis in connection with
the category of complexes [10]. See also Remark 4.7.

The content of the rest of this section is not used in later sections.

REMARK 1.3. The coalgebra a(A, B)° in the dual space a(4, B)V is
isomorphic to the universal measuring coalgebra M(B, A) in the termi-
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nology of Sweedler [12]. Indeed, for any coalgebra C there are natural
bijections
Homcoa]g(cr M(B, A))
=Hom,, (B, Hom(C, A))
=Hom,,(B, AQCV)
=Hom,,(a(4, B), CV)
ElI-IOIncoa\]g(Ci a’(A9 B)o)

hence M(B, A)=a(A, B)° as coalgebras. Takeuchi pointed out to me that
a(A, B)V is isomorphic to his universal measuring topological coalgebra
Mes(B, A) as topological coalgebras [14]. This is seen similarly from the
bijection

Homconti.co:clg(cv MeS(B, A))EHoma]g(B: Homconti(Cy A))

for any topological coalgebra C.

REMARK 14. When A=M,(k) the full matrix algebra, a(A4, B) is
the universal coefficient ring v,(B) for nXn matrix representations of
B defined by Bergman [1].

REMARK 1.5. The adjoint between a(A4, —) and AR(—) is a special
case of the following one. Let B,C be monoidal categories and let
1:B—-C,p:C—B be functors such that 2 is left adjoint to p and p has
a structure of a monoidal functor. See Section 4 (a) for the definitions
of monoidal categories and functors. We denote by B,, C,. the categories
of monoid objects of B, C. The monoidal functor p induces a functor
on: Co—B,. Now suppose that C has inductive limits and the tensor
product of C commutes with inductive limits. Then p, has a left adjoint
functor i": B,—C,.. Theorem 1.1 is the case where B=C=k- M, 1=
AVR(—), and p=A&(—) with monoidal structure induced by the algebra
structure of A. The construction of A" is similar to that of a(A4, —).

REMARK 1.6. Here is a graded version of a( , ). Let A=,..4, be
a graded algebra such that dim A,<co for all n. Consider the functor

AQ(—) : {k-algebras}—{graded k-algebras}

where for a k-algebra C the grading of the algebra A®C is given by
(ARC),=A,QC for n>0. Using Remark 1.5, we see that AQ(—) has
a left adjoint functor a’(A, —). On the other hand, for a graded algebra
B=@,sB,, define a graded algebra AoB as AcB=@,5,(4.QB,) with
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multiplication given by (a®b)(a’'®b)=aa’@bb’ for a c A,,beB,, a'€ A,,
b’ € B,.. The functor

Ao(—) :{graded k-algebras}—{graded k-algebras}

also has a left adjoint hom(4, —). We have hom(4, B)=a/(4, B) as al-
gebras. If A, B are quadratic algebras in the sense of Manin, then AoB
and hom(A4, B) are also quadratic algebras and coincide with Manin’s ones
[9]. As another example, if A=Fk[z, ---,2,] the polynomial algebra and
B=K[T])/(T" for m», h>0 with the natural gradings, then hom(4, B) is

Roby’s h-exterior algebra on n variables [11].

REMARK 1.7. The construction of the bialgebra a(A, A) has a general-
ization for X z-bialgebras in the sertse of [13]. Let R be a k-algebra
and A an R-ring, i.e. a k-algebra equipped with an algebra map R—A.
Takeuchi defined the functor

(=) X gA : {[RQRP-rings}—{R-rings}

generalizing Sweedler’s construction. Assume that A is finitely generated
projective as a left R-module. Using Remark 1.5 in an appropriate way,
we see that (—)XzA has a left adjoint functor, which we denote by
ax(A, —). Then ag(A, A) becomes a X p-bialgebra.

2. a(4, B)-modules and a(A, A)-module algebras

PropoSITION 2.1. Let A, B be k-algebras with dim A<co. Let V be
a k-module. There are one to one correspondences among the following
objects.

(i) A right a(A, B)-module structure on V.

(ii) A k-algebra map B—AQEnd(V)®,

(iii) Amn (A, B)-module structure on AQV such that A acts on AQV
by left multiplication.

(iv) A linear map f: VRB—>ARQV such that the diagrams

VBB 25 AR VeB =2, AQAQV
1®us l £a®1
VB ARV
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v
1®ls/ \ a®1

V®B — AQV

are commutative, with ps: AQA—A, pz: BQB—B the multiplications,
ta:k—A, tz: k—B the unit maps.

PROOF. (i)«»(ii): This is given by the bijection of Theorem 1.1
with C=End(V)%. (ii)<>(iii): As dim A<oco, we have AQEnd(V)*=
End,(AQ V)% naturally. Thus an algebra map B—AXEnd(V)® defines
a right action of B on A®V which commutes with left multiplication by
A. (ili)«<>(iv): Given an (A, B)-module structure on AQV as in (iii), we
set f(v@b)=(1Rv)b for v€ V, beB.

For a right a(A4, B)-module V, we call the (A, B)-module AQV in
(iii) the extended bimodule of V and the map f in (iv) the transition
map for V. We have similar interpretations of a left a(A4, B)-module.
We associate with a left a(A, B)-module V a (B, A)-module VXA and a
linear map f: BRV—->VRA.

The correspondences (i)<>(iii)<>(iv) of Proposition 2.1 preserve tensor
products. Let A, B, C be k-algebras such that dim A<oco, dim B<co.
For a right a(A4, B)-module V and a right a(B, C)-module W, VW
becomes a right a(A, C)-module through the map Auzc:a(4,C)—
a(4, B)J®a(B,C). If 4MzsN; are the extended bimodules of V, W and
1 VRB—->ARQV, g: WRC—-BXW are the transition maps for V, W
respectively, then the extended bimodule of V®W is isomorphic to
M@z N and the transition map for VQ W is the composite (fR1)-(1RQg):
VTRWRXC—>VRBRIW—-AQVRQW.

We regard k as a right a(A, A)-module through the counit
€s:a(A, A)—>k. This module k£ has the extended bimodule 44, on which
A acts by multiplication on both sides, and has the transition map
id : A—A.

Let V be a left a(A, B)-module having the extended bimodule M,
and the transition map f: BQV—VX®A. Then the extended bimodule
of the right a(A4, B)-module VV is isomorphic to Hom,(M, A) € A-M-B,
and the transition map ¢g: VVQB—-AR VY for VV is related to f by the
commutative diagram
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VBV L AQVVRV
1Rf l l 1Qm
VVQVRA —=

with 7 : VV® V—k the canonical pairing.

We say that the bialgebra a(A, A) acts on an algebra R on the right
if R is a right a(A, A)-module algebra in the terminology of Sweedler
[12]. The one to one correspondences of Proposition 2.1 induce those for
monoid objects as follows.

PROPOSITION 2.2. Let A be a k-algebra with dim A<oco. For a k-
algebra R there are ome to one correspondences among the following ob-
jects.

(i) A right action of a(A, A) on the algebra R.

(ii) A linear map f: RQA—>AQR such that the diagrams

RRARQA 1%L, AQR®A —2L, ARARR
1Qu4 l l £4®1
RQA - AQR

R
1R, / \\ ta®1
QA4 —— AQR
RQRRA —27, rARR L% AQRQR
12 ®1 l l1®#3
RRQA r; ARR

A
x®1 e \1@,,,

are commutative, where fa, tn, s, tr denote the multiplications and the
unit maps of A, R.
(iii) Anm algebra structure on the k-module AQR whose multiplica-
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tion satisfy the identities

(@®1)(a'®1) =aa’'®1
1Q7) (1) =1Qrr’
(@®1)(1Qr) =aQr

for a,a’ ¢ A, r, v €R.

Proor. (i)«>(ii): f is the transition map of the right a(A4, A)-module
R. (i)« (iii): f(r@ae)=(1Rr)(a®1) for rE R, a € A.

REMARK 2.3. We add one more interpretation of a(A, B)-modules.
If Ue M-A and Ve M-a(A, B), then URQV becomes a right B-module
through the canonical map o4 : B>AQa(A, B). Thus we have a com-
mutative diagram

H-Ax H-a(A, B) —2— H-B

l |

M-k X M-k —= M-k
where the vertical arrows are the forgetful functors. The category
M-a(A, B) over M-k is a universal one such that the functor ® : M-k X
M-k— M-k lifts to a functor M-A X M-a(A, B)—>M-B in the above way.

3. Ext of a(A, B)-modules

The main result of this section is Theorem 8.4, which expresses Ext
of a(A4, B)-modules in terms of Ext of AQB°-modules. Throughout this
section we fix k-algebras A, B such that 0<dim A<co and set A=
a(A, B). We use the notation A, B, a,b introduced at the beginning of
the paper. We always identify AV={a € AV| a(1)=0}.

There is a well-defined linear map AVRQB—4:a®b— (a,b) and this
extends to a k-algebra map f: T(AVQB)—A.

THEOREM 3.1. Take &,€ AV such that &(1)=1. Then we have iso-
morphisms of k-modules

T(AYQB)®B S A : u®b— f(u) (€, b)
BRT(AYQB) > A:bQu (&, b) f(u)
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where be B, ue T(AVRB).

ProOF. We may assume B#0. Take k-bases {x.}ic; of A and {¥i}ics
of B such that 0¢I, z,=1, 0€ L, y,=1 and &(z;)=0 for :€I—{0}. Let
{€:}icr be the basis of AV dual to {%:};c;. For the first isomorphism we
must show that the monomials

(Eip o) (&, v), (i Yi) - (& ’!llt) (o yztﬂ)
for 4, -+, 4, €I—{0}, 1), -+, l,;, € L—{0}, t>0 from a k-basis of 4. Write
xixj: Z ijwk
kel
YiYn= 2 diuln
neL

with ¢¥, di, €k. Then cf;=0;. The defining relations of 4 with respect
to the generators (&, ;) for 1€ I, l€ L can be written as

(&0 ¥)) (61 Yum) = -, J_ZG:IC?J'(E&, Y1) (Es Ym) + %)Ld?m(&k, Yn)

(Ekr Yo) =6:(1)

for kel,l,me L. It follows that the above monomials span 4. The
linear independence of them is assured by the diamond lemma [2], once

we check that the ambiguities (&, 1) (o, Ym) (Ers Yn)s (oo Y1) (Eis Yo)s (o Yo) (Eies Yim)
are resolved. This is left to the reader. See the argument in [1, p. 62].
The second isomorphism is proved similarly.

We shall give another proof in Remark 4.18.

COROLLARY 3.2. If B—B’ is an injective algebra map, then the in-
duced map a(A, B)—a(A, B') is injective. If A’—A is a surjective algebra
map, then the induced map a(A, B)—a(A’, B) is injective.

Proof is immediate.
Hereafter we write R=Im f and 0 =045 : B—>A@A the canonical map.

COROLLARY 3.3. The map

t: BRAQR— AR A
bRQaRr—>a(b)(a@r)

18 an tsomorphism of k-modules.

Proor. Let {x}, {&;} be as in the above proof. Then
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t(1QaRr) =aQr
t(bQa®r) =1 z:a®(&: b)r

=a® (&, b)r mod AQR.

By the theorem the map BRQR—A/R taking bQr to (&, b)r mod R is an
isomorphism. Hence ¢ is an isomorphism.

We use the following notation for bimodules. If X, Y ¢ A-HM-B,
Exti 5(X,Y) means Extigson(X,Y) with X, Y viewed as left AQB*-
modules. If X€ A-M-B, Y € B-M-A, XR54Y means XRpgsopY with X
viewed as a right BQA-module, Y as a left BQ A°P-module.

Let q: M-A—A-H-B be the functor taking a A-module V to the
extended bimodule AQV. As ¢ is exact, it induces the maps

Qs : Exty(V, W)—Ext} s(AQV, AQW)
for V, We M-A, 1>0.

THEOREM 3.4. For any right A-modules V and W we have an exact
sequence

0——Hom,(V, W) q—»HomA,B(A® V, AQW)—Hom(V, AQW)
—Exty(V, W)—Extl ARV, AQW)—0

and isomorphisms
0x : Exti(V, W)SExti s(AQV, AQW)

for 1>2. The map r is induced by the maps v—1Rv and a@w— aQw
for veV, weW, acA.

LEMMA 3.5. (i) The functor q has a left adjoint
p: A-M-B—> M-A
M+—(AYQ1M)Qs,4(ARQA)

where we regard AV as an (A, A)-module naturally, AR+ M as an (A, B)-
module by a-(a@m)-b=aa@mb forac A, be B,ac AV, me M, and AR
as a (B, AQA)-module by b-(a@®1)-(a’'®2)=0(b)(aa’®A) for a,a’ €A,
beB, A, 27cA. For V& M-A, the morphism of adjunction

¢: (AYQV)Qs,4(ARN) = (A" QAR V)Qs.4(ARQA) >V
is given by aQvRaQRi— a(a)va.
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(ii) Let Mc A-M-B and Ve M-A and suppose that M 1s projective
as an A-module. Then the adjointness of p and q gives rise to 180Mmor-
phisms

Exti(pM, V)=Ext}, (M, qV)
Sfor 1>0.
Proor. (i) For Me A-M-B and Ve M-A we have
PM=((AQA)Q1AY)QusM=(AYRA)Q4,:M
and

Hom ,((AV®A)Q4,5M, V)=Hom,, 5(M, Hom,(AV®4, V))
=Hom, (M, AQV)

naturally. Thus p is a left adjoint of q. The proof of the second state-
ment is left to the reader.

(ii) By Corollary 3.3 the (B, A)-module ARA is free on 1QR. So
pL=AV®,LRR for any Le A-M-B. Take a projective resolution
F.—»M in A-M-B. As M is A-projective, this resolution splits in A-,
so pF.—pM is also a resolution. Since q is exact, p preserves projectives.
Thus '

Ext,(pM, V)=H* Hom,(pF., V)
=HHom, 3(F., qV)=Ext} z(M, qV)

as required.
PROPOSITION 3.6. For Ve M-A there is an exact sequence in M-A
01— IVQVRA— (AR V)R 4 (AR A) s V—0
where J(aQQvR1) =a@vR1RA.
Proor. By Corollary 3.3 the map

5: AVQVRR— (AR V)R 4(AR )
a@Q@V@r ——a@@vRLRr
is an isomorphism. Put j'=s7"oj, ¢’=¢os. Let ¢(V: AV—k be the map

a~a(l) and m: VQR—V the map v@r+—vr. Then we have a commu-
tative diagram
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0 0
A'QVQR —— A'QVRR
inclu ) inclu
0 —— AQVRL —1 > A'QVRR ——— V > 0
VR1R1 u
0 — A'QVRBRR — VRR — V > 0
0 0

where the first eolumn is the exact sequence induced by the isomorphism
BQR—A/R : b@r+— (&, b)r with & €AY as in Theorem 3.1, the second
column is also exact, and & is a map induced by 7. We show

h(a@vRbRr)=v(a, b)Qr—v@(a, b)r
for ac AV, ve V,be B, re R. Then the bottom row will be exact because
R is a tensor algebra of AY®B, and so the middle row will be also.
Let {1=a,, ®,, - -}, {&. &, ---} be bases of A and AV respectively which
are dual to each other. Then

aQQUR1R (&, b)r
=a@v@a(b)(1Qr) —;} a@vRx;Q (&, b)r

= (a@V)bRIRr— T 2:2QvR1IR(E: b)r
in (AYQV)®z4(AR4). Hence

h(@@vRbRT)
=("R1R1)5’ (a@v& (&, b)7)

@11 (@@)hBr - % 2.a@@(E b)r)
v, )@ — T (v (8 b
v(e, b)Q@r—vQ(a, b)r,

I

as required.

PROOF OF THEOREM 3.4. For V, We -4 and :>0 we have a factor-
ization

a4 : Extiy(V, W)—Exti(pg V, W)>Exti 5(qV, ¢W)

where the left arrow is the map induced by the adjunction map e: pgV—V
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and the isomorphism is that of Lemma 8.5 (ii). Therefore the theorem
follows by applying Ext,( , W) to the exact sequence of Proposition 3.6.
The description of the map r is left to the reader.

REMARK 3.7. Let V,We M-A. Since ARV is a free A-module,
there are natural isomorphisms

Ext) ;(AQV, AQW)=Ext} 5(B, Hom,(AQV, AQW))
for all ¢:>>0.

REMARK 3.8. We have an explicit free resolution of Ve H-4

s VRAYRBE QAL L VR AVRBR AT VR A1 V—0
with differentials given by

dy(v®2) =v2
d,(vQ@a@b,@2) =v(, b)) QA—v&(a, by)2
dn(v®a®b1® tee ®bn®2)

= ; v(ay, b)) Q@ QbR - « - ®bn®2

+ 3 (~ )RR - - @bybyn® - - - Rb,R2

1

+(~1 £ 1Q0,@b®- - Dby B (e b2

for veV, 2€4, a€ AV, b, ---,b,€ B, n>1, where pV(a)=X a,,Qa,; with

pY  AV—-AVRAY the dual of multiplication of A. Comparing this with
the standard resolution of the B-module ARV [3, p.174], we can derive
Theorem 3.4.

REMARK 3.9. Bergman gave a different basis of tv,(B)=a(M,(k), B)
[1, Section 9]. He also proved that

r.gldim B if r.gl.dim B>0

gldim v, (B)= . .
r-gldim w, (B) {O or 1 if r.gl.dim B=0

where r.gl.dim means the right global dimension [1, Theorem 7.3]. One
can deduce this from Theorem 3.4.

REMARK 3.10. When A=kXk, a(A, B) is isomorphic to the coproduct
B+B by Example 1.2 (i), and Theorem 3.4 reduces to a special case of
Dicks’ result on the homology of colimits [4, Theorem 6]. Write 4=B,xB,
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with B,=B,=B. The exact sequence of Proposition 8.6 for a right A-
module V is identified with the sequence

0—> VR AL VR4 AD VR, A2 V—0

where f(v®2)= (R, —vR1), g(vR, v'R1')=viA+2v'2. This is a special
case of the Mayer-Vietories sequence [4, Section 4 (16)].

4. a(A, A)-comodules and chain complexes

This section consists of subsections (a)-(f). In (a) and (b) we intro-
duce the terminology and notation about monoidal categories and chain
complexes. In (c¢) we define for an algebra A a functor (—)®.Q. from
{chain complexes of k-modules} to {right a(A, A)-comodules}. Our main
result Theorem 4.4 states that this functor preserves tensor products and
is an equivalence if dimA>1. In (d) we review standard facts about
the relation between chain complexes and simplicial complexes. Theorem
44 is proved in (e). In (f) we give an additional result in which the
algebra a(A, B) is expressed in two ways by differential graded algebras
Q41], Q1] and by differential graded coalgebras Q,, Q5.

(a) Monoidal categories

Our main reference is Eilenberg and Kelly [7]. A monoidal category
is a category A equipped with a functor ® : A X A—A, an object I € A
and isomorphisms dyyz : (XQRY)RZ=XRQ(YRZ), lx: IQX=X, ry: XQRI=X
for X, Y, Zc A such that axys lx, rx are natural in X, Y, Z and satisfy
certain coherence conditions. We call ) the tensor product, I the unit
object, axyz the associativity isomorphism and Iy, 7, the unit isomorphisms.
For example, if A is a bialgebra over then field &, then M-4 and Com-A
become monoidal categories with tensor product ), unit object k& and
the obvious associativity and unit isomorphisms.

Suppose given monoidal categories (A and B, whose tensor products
and unit objects are denoted commonly by @ and I. A monoidal functor
from A to B is a functor ¢ : A—B equipped with natural morphisms
try: 9 X)RP(Y)>¢(XRY) for X, Ye A and a morphism ¢:I—¢(I)
which are compatible with the associativity and unit isomorphisms of A
and $. When py,y for all X, Y e A and ¢ are isomorphisms, we say that
¢ is a strictly monoidal functor. Dually, a comonoidal functor from A
to B is a functor ¢ : A—B equipped with natural morphisms Ay y : $(X®
Y)—»¢(X)Q4(Y) for X,Ye A and a morphism e:¢(I)—I satisfying
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similar conditions. A strictly comonoidal functor is defined similarly and
is essentially the same thing as a strictly monoidal functor. If ¢: A—3,
¢: B—-C are (co)monoidal functors, the composite ¢o¢p: A—C has a
natural structure of a (co)monoidal functor. A strictly (co)monoidal fune-
tor is called a monoidal equivalence if it is an equivalence of catego-
ries, that is, fully faithful and dense.

(b) Chain and cochain complexes

By a chain (resp. cochain) complex we mean a complex of the form

Fol——(i—Fli—i—- .- (resp. Fo—d>F1—q—>- .. ).

Let C_ (resp. C.) be the category of chain (resp. cochain) complexes of
k-modules. For Fe(C, and i>0, define F[i]eC. by F[i],=F;.. for n>0
with differentials a part of those of F. Hom-sets in the categories C_,
C, are denoted by Hom,( , ).

C_, C, become monoidal categories in the standard way, which we
review below. For F,G€C(C,, we define FRGe(C, by

(F®G)n= @ Fp®Gq

pt+g=n

d(2Qy)=dz@y+(—1)"2Qdy

for n>0, x€ F,, y€@G, Define kK0]cC, by k[0l,=k, k[0].=0 for n>0.
Then C, is a monoidal category with tensor product ), unit object %[0]
and the obvious associativity and unit isomorphisms.

For FeC(C, we define FVe(C; by (FV),=FY, (dp)(x)=¢(dx) for n>>0,
pEF), 1€ F, .

For FeC_ and GeC, we define FR.G € k- M to be the quotient of
P F.RQG, by the subspace spanned by the elements da®y—zQdy for
te€F,.,, y€G, n>0. For z€F,, ye@,, the class of 2Qy in FR.G is
denoted by z®.y. The functor ®.:C_XC,—k- M is endowed with a
structure of a comonoidal functor by the maps

(FQF)RX.(GRG)— (FR.G)Q(F'R.G')
) 'Ry if n=
(x@x')&(y@y’)|—>{(§®y)®(“®y) i m=m
if n#m

for F,F'eC_, G,GeC,, x€F, o’cF., yeG., vy €G,., n+n'=m+m'
and the map

K01R.A[0]—k : 11— 1.
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(¢) The construction of a monoidal equivalence

Let A be a k-algebra. Let 2 be the kernel of the multiplication
map ARA—>A and 0: A—>Q the map a—1RQa—a®1. The tensor algebra
T.(2) of the A-bimodule £ has the grading such that T,(2),=02%4"
Define a linear map d: T4 (2)—T4(2) of degree 1 by the formula

A(200(a:) Q4 -+ - @ 40(a,)) =6(a0) @40(21) R4+ - R0 (@)
for a,, ---,a,€ A, n>0. Then

(0@ 40) =dw@ 10+ (—1)? 010 for w € 2947, 0 ¢ Q%41
=0

Namely (T,(2), d) is a monoid object of C,. Let @, be the cochain complex

k }A ).Q >.Q®A.Q—>' ..

where the differential is the unit map in degree 0 and that of T,(2) in
degree >1.
For F,G e (C_ defineja map

ttr6 1 (FRQ4)Q(GR.Q)— (FRG)X.Qu

by the formulas

F,G ( (x®c(o>® y®;0))

(

:(w®y)®c(w®,ad0)+(‘x®dy)®c(w®;0') if p,q>0
tr.e(2@.0)Q(¥YQ.1)) = (2 QY) Q.0 if p>0,9=0
tre(2Q.1)R(YR0)) = (xQY)R0 - if p=0,¢>0
tr.e((*@.1) R (YR.1)) = (XY)X.1 if p=qg=0

where € F,, y€ G, 0 € Q84D g ¢c Q®a~h  Tet

¢ k—k[0]R.Q

be the map 1—1X.1.

Now we assume dim A<co. Then we have the bialgebra a(4, A). We
regard Com-a(A, A) as a monoidal category in the usual way. The right
coaction of a(A, A) on A makes @, a cochain complex in Com-a(A4, A) so
that the functor (—)®.Q.:C_—k- M takes values in Com-a(A, A). The
maps grc and ¢ are a(A, A)-homomorphisms. Our main result is the
following.

THEOREM 4.4. If 1<dim A<oco, then the functor
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(—)RLQ4: C_—>Com-a(A, A)
equipped with the maps p_ _,¢ is a monoidal equivalence.

As an easy consequence, we have

COROLLARY 4.5. Suppose 1<dim A<oo. The a(A, A)-comodules A®",
ARA® for n=>0 furnish a complete list of indecomposable objects in
Com-a(A, A). The Grothendieck ring of the category of finite dimensional
a(A, A)-comodules with respect to @ and @ is a commutative ring gen-
erated by the classes [A] and [A] with relation [AF=(1+[A][A]

REMARK 4.6. Taking the dual, we see that if 1<dim A<oo, then
C. and a(A, A)-Com are monoidally equivalent.

REMARK 4.7. Let A=k1@kt with t*=0. Set Q@=Q., v,=1€Q,
V,=t0(t)Q4- - - RA0(t) €Q, for n>1. Then Q,=d(Q,_,)Pkv. and

127,6((£&:V5) @ (YQ<v4)) = (*QY) V44
t(1) =1, v,.

It follows that the monoidal functor (—)®.Q is isomorphic to the obvious
functor ¢: F—@,F,. Therefore we have a commutative diagram of
strictly monoidal functors

c. 228 Com-a(4, 4)

N, /-

k- M

where o is the forgetful functor. In view of Example 1.2 (ii) this is
compatible with Pareigis’ result that the category of unbounded com-
plexes of k-modules is equivalent to Com-a(A, A)[y~'] as monoidal cate-
gories over k- M [10].

(d) The normalization

Define a category S as follows. Objects of S are the ordered sets
n={1<2<--<n} for »n=0,1,2, ---, where 0=¢J, and morphisms of
S are order preserving maps. Define a functor + : SXS—S as follows.
For n,m>0 we set n4+m=n-+m, and for morphisms «:n—n', f:m—m’,
we define a+g:n+m—n'4m’ to be the map taking 4 to a(i) for 1<i<n
and n+j to n'+B(j) for 1<j<m. Then S together with + as the tensor
product and 0 as the unit object is a monoidal category.
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Let S_, S, be the categories of the functors S*—k- M, S—k- M
respectively. Usually a simplicial k-module means a functor (S—{0})*—
k- M (see [8] for example), but most properties of the category of simpli-
cial k-modules hold also for S_. Hom-sets in the categories S_, S, are
denoted by Hom,( , ). For each n>0 we define h, € S_ to be the functor
taking m to k[Homgs(m, n)], the free k-module on the set Homg(m, n).
For Xe€S, and we define XVeS; by XV(n)=X(n)V for objects n and
XV(a)=X(a)V for morphisms a.

The monoidal structure of S extends to S_, S, in the following way.
If X,YeS,, we define XQY €S, by

(XQY)(n)= & X(p)QY(9)

n=p+q

(XQY)(a)= O X(BQY(r)

a=B+7

categories with tensor products @ and unit objects h,, hy respectively
and the obvious associativity and unit isomorphisms.

For XcS_ and YeS, we define X®,Y to be the quotient of
DX ()XY (n) by the subspace spanned by the elements X(a)(x)®
y—2RY (a)(y) for x € X(n), y € Y(m) and morphisms «:m—n in S. For
z€X(n), ye€Y(n) the class of 2Qy in X®.,Y is denoted by z®.y.
Similarly to ., the functor ®,:S_XS.—k- M has a natural structure
of a comonoidal functor.

For each n€S and i€n, let 9°:n—1—>n be the order preserving
injection such that ¢ Im@d', and ¢':n+1—n the order preserving surjec-
tion such that ¢'(i)=¢'(i+1). We write X(0')=d,, X(¢')=s; for X€&,.

The functors N’ : S_—C_, N, :S8,—C, are defined by

for objects » and morphisms « in S. Then S_, S, become monoidal

(N.X),= () Ker(d: : X(n)—>X(n—1))

(N,Y)=Y()/$ Im(d; : Y(n—1)—>Y(n))

for XeS_, Ye§,, n>0 and the differentials of N’ X, N.Y are induced
by the maps d,: X(n)—»>X(n—1), d,: Y(n—1)—>Y(n). There are also

functors N_:S_—C_, N, :S8,—C, defined by

(N_X),=X ()% Im(s, : X(n—1)—X(n))
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(N, ¥),=1 Ker(s;: Y{n)—>Y(n—1))

for XeS_, YeS§,, n>0 and the differentials of N_X, N,Y are induced
by the maps

o

-,
1
-

(—1)~'d, : X(n)—>X(n—1)

(—1)id, : Yin—1)— Y ().

1
-

(4.8) The natural maps (N’ X),"» X(n)—»(N_X),, (N,Y)," Y(n)—
(N.Y), for n>0 yield isomorphisms of functors N.3N_, N.SN,.
(4.9) The functors N_, N’, N,, N, are equivalences of categories.

These are easily derived from the results of Dold [6, Theorem 1.9,
Corollary 1.12] and Kan which state the analogous facts about simplicial
k-modules.

We shall next make N,, N, strictly (co)monoidal functors. Let

N_XQN_Y—>N_(XRY)

k[0]—>N_h,
be the isomorphisms in C_ induced by the natural injections X(p)QY(q)—
(XQY)(p+q) for X, YeS_ and the natural map kh,(0) respectively.

Then N_ together with these isomorphisms is a strictly monoidal functor.
Dually the natural isomorphisms

N,(XQY)—>N,XQN.,Y
N, (hy')—>k[0]

in C, give N, a structure of a strictly comonoidal functor. By the
transport of these (co)monoidal structures through the isomorphisms of
(4.8), N, N’. become also strictly (co)monoidal functors.

(4.10) We have an isomorphism
Qoo (N_X N,)=Q.= Q.0 (N_XN)
of comonoidal functors S_XS,—k- % defined by the maps

N_XQN. Y—XR.Y : 2R y—>2X,Y
N XQN.Y—XR.Y : 2Ry 'R,y

for XeS8_, YeS§,, z€Xn), ye(N,Y), 2 €(N.X),, ye€Y(n), n>0,
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where the bar means the residue class.

This follows from the fully faithfulness of N_, N” and the monoidal
adjointness of &, and Hom,, &, and Hom,.

Fix an integer m>0. Let S, be the full subcategory of S consisting
of the objects 0,1, ---,m and S_,, S,, the categories of functors SoP—
k- M, S,—k-M respectively. Let C_, (resp. C,.) be the category of
complexes

Fye—F«—»- ..«—F, (resp. F)—>F,(—> - . >F,)

of k-modules. Hom-sets in S,,, C.. are written as Hom,(,), Hom,(,)
respectively. We can define functors N, :S,,—C,,. similarly to N.:
S.—C. and these are also equivalences. There is also a functor ®,:
C_wXCin—k- M defined analogously to ®,:C_xC,—k- M.

(e) Proof of Theorem 4.4

The proof consists of three parts. First we define a cochain complex
@, for an algebra A and show that (—)®.Q%:C_—Com-a(A, A) is an
equivalence if 1<dim A<oco. Secondly we define on @} a comonoid
structure, which makes (—)®.Q%4:C_—k- M a comonoidal functor. We
prove that this is strictly comonoidal. Finally we give an isomorphism
Q.=Q,, and show that through the induced isomorphism (—)®.Q.=
(—)®.Q%4 the monoidal structure of the left side defined in (c) and the one
of the right side defined here coincide, which finishes the proof of Theorem
4.4. The reason why we adopt Q, instead of @) in the statement of the
theorem is that the monoidal structure maps of (—)X.Q4 have a simpler
form.

Let A be a k-algebra. Define P=P,c S, as follows. For ne€S we
set P(n)=A®". For a morphism a:n—m in S we define P(a): A®"—A®"
by

Pa)(e,®- - Qa.)=bR- - Rbm, bj= TI a;

a(i)=j

for a,, - - -, a, € A, where we multiply a; in the increasing order of 7, and
the empty produet means the unit element 1, of A.
Define @' =Q, €, as follows.

(QA)o:k _

(QA)n=A®A®(”—1) n>1

d1)=1,4

d(a1®dz® e ®dn) = 1A®dl®d2® e ®dn n=> 1,
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where the bar notation introduced at the beginning of the paper is used.
The complex @, is exact if A=+0. The natural surjections A" AR

A®=-1 induce an isomorphism N,P5Q’ in C,.
Now assume dim A<oco. Let B be a k-algebra. We have isomor-
phisms of k-modules

(4.11) a(A, B=P{Q.P»=Q,' Q.Q5.
Indeed, the first isomorphism is given by the correspondence

EL ) G ) —(EQ - Q)R- - - QYa)

for &, ---,&, €AY, ¥y, -+, Y, € B, n>0. That this map is a well-defined
isomorphism follows from the construction of a(A, B) in Section 1 and
the definition of &,. Use the fact that every morphism of S is a com-
posite of @, ¢' in the notation of (d). The second isomorphism is induced
by the second isomorphism of (4.10) as

Pi®.Py=N_(PY)Q.N\ Ps= (N, P.)"Q.N, Py =Q} ®.Q5.
Taking the dual of (4.11), we have
(4.12) a(A, B)Y=Hom,(Ps, P,)=Hom,(Q%, @)

as k-modules. The first isomorphism is the restriction of the natural map
T(AV®B)v:<@(A®")V®B®n)VSH Hom(B8", A8")

and the second one is induced by the functor N’,. Thus, if A=B, (4.12)
are isomorphisms among the dual algebra a(A4, A)Y of the coalgebra a(A4, A)
and the endomorphism algebras End,P,, End,Q,.

Since P=P, can be viewed as a functor S—Com-a(4, A), @' =Q\=
NP is a cochain complex in Com-a(A, A). Thus (—)Q.Q :C_—k-M is
a functor into Com-a(A, A).

(4.13) If dim A>1, then the functor (—)®.Q :C_—Com-a(A, A) is an
equivalence.

PrOOF. For each integer m>0, let a(A, A), be the subspace of a(4, A)
spanned by the monomials of (£, z) of degree <m with £€ AV, z€ A.
Then a(A, A), is a subcoalgebra of a(A, A). We use the notation in (d).
Let P, €S, be the restriction of P to S,, Q/m €, the truncation of
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Q' in degree <m. We claim that there is a commutative diagram of
k-algebras

a(A, A)Y = End,P = EndQ’
J ¥ )
a(A, A)Y = End P, = EndQ.

where the top row is (4.12) with B=A and the vertical arrows are the
restriction maps. In fact, the fully faithful functor N, :S.,,—C,. and
the natural isomorphism N/ (P)g,=N,(P.,) induce an algebra isomor-
phism End,P,,=End.Q/,, making the right square commutative. The
isomorphism a(A, A)V=End,P induces an injection a(A4, A)y—End,P .,
such that the left square of the diagram commutes. Since the complex
Q@ is exact, the restriction map End.@Q—EndQ/. is surjective. Hence
the map a(4, A)Y—End, P, is bijective.

The functor (—)®.Q :C_—Com-a(A, A) restricts to the functor
(—)RQm) : C_n—>Com-a(A, A),. Since (—)®.Q is an inductive limit of
(—)R.Qm) as m—+oo, it is enough to show that (—)®.Q., is an equiv-
alence for each m. This functor is identified with the ecanonical func-
tor (—)®Qm : C_n—End Q- M through the algebra isomorphism
a(A, A)Y=End.Q,. Since A+#0, Q. is a projective generator in (..
Therefore (—)®.Q/m, : C_n—End,Q/,- M is an equivalence by the Morita
theorem. Thus (4.18) is proved.

From now on dim A is arbitary again. We make PecS,, Q' €C.
comonoid objects. Let A: P»PXP, ¢: P—>hy be the morphisms whose
components A, ,: P(p+q)—>P(p)QP(q), &: P(0)—k are the identity maps.
Then (P,A,€) is a comonoid objeet of S,. Since N, :S,—C, is a co-
monoidal functor, N, P becomes a comonoid object of C, and so is @’
through the isomorphism N, P=()'.

For X,YecS_, F,Ge(C_, let

(XQY)Q,P—(XQY)Q.(PROP)— (XQ.P)Q(YR.P)
b, P—>hoQ i —k

(FRG)Q.Q— (FRG)RQ.Q'QQ)— (FR.L)Q(GRL)
K0IR.Q—k[0]R.k[0]— K

be the maps induced by the comonoidal structures of ),, &, defined in (d),
(b) and the comonoid structures of P, @’. With these maps, (—)X.P:
S_—k-M, (—)RQ : C_—k-M become comonoidal funetors.
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(4.14) (-)R.P, (—)R.Q" are strietly comonoidal functors.

PRrOOF. The comultiplication maps (XQY)®,P—(X®,P)Q(YX,P) for
X=h, Y=h, and the counit map h,Q.P—Fk are isomorphic because
through the natural isomorphisms h,Qh,=h,,, h.Q,P=P(n), they are
identified with the maps 4,,: P(p+q)—P(p)QP(q). & : P(0)—k which are
the identity maps. Since ., @ commute with inductive limits, the
comultiplication maps are isomorphic for all X, YeS_. Thus (—)Q,P is
a strictly comonoidal functor.

By (4.10) we have an isomorphism N’ (—)®.Q =(—)&,P of comonoi-
dal functors on S_. Since N’ is a monoidal equivalence, it follows that
(—)R.LQ’ is also a strictly comonoidal functor. This proves (4.14).

We must relate (—)®.Q" and (—)X.Q of (¢). We first claim that the
natural injections 0Q®4"C (ARA)®4*=A®"+D induce an isomorphism

QSN,P in C,. Indeed, by the definition of N, and the fact that @
is a direct summand of AQA as a one-sided A-module, we see that the
induced map Q—N,P is a bijection. We must show that this is a cochain

map. We already have the cochain isomorphisms N+P:>N’+P of (4.8) and
N’+P:>Q’. So it is enough to show that the composite f :Q—N,P>

N’+P:>Q’ is a cochain map. Clearly f(1)=1 in degree 0, and an easy
induction on n shows

S(0:0(0) Q4+ - - Qa0()) =R - - - Q@

for n>1. Hence f is a cochain map. This proves the claim.

Through this isomorphism Q= N,P we transport to @ the comonoidal
structure of N, P induced by the comonoidal structures of N, and P. Let
A Q—-QR0Q, €: Q—k[0] be the comultiplication, counit respectively. Then
€ is the identity in degree 0 and the components A,,:Q,,,—Q,QQ, of
A are given by the formulas

(4.15)

where o € Q84071 ¢ Q®4@b g A, p, ¢>0.
Similarly to (—)®.Q’, the comonoid structure of @ makes the functor
(—)R.Q: C_—k-M a comonoidal functor. Let
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AF,G : (F®G)®0Q__)(F®DQ)®(G®aQ)
€ k0IR.Q—k

be the structure maps. The isomorphism f: Q5Q' of comonoid objects

induces the isomorphism (—)®,:Q:>(—)®CQ’ of strictly comonoidal func-
tors.

(4.16) The maps pr ¢ and ¢ defined in (¢) are inverse to Ay and e respec-
tively.

Proor. This is clear for ¢ and e. Let F,Ge(C_. Since Ap; is an
isomorphism, it is enough to show prcAre=id. If p,¢>0,2€F, y€q@G,,
© € QBAPD g QB46~b g ¢ A then

1r.6Ar.c(TQY) R (0R40(a) R 40))
= tr,6((2Q.0) Q) (¥RX.00) — (r&).0a) D (y&.9))
= 2QY)®.(0&4d(ad)) + (2@ dy) Q. (0@ 1a6)
— (#QY)&.(0a® +db) — (x&QdY) Q. (wa® +0)
= (QY)Q.(0&Q49(a)&40).

The remaining cases are trivial.
By (4.13), (4.14) and (4.16) the proof of Theorem 4.4 is completed.

REMARK 4.17. Hom,(Ps, P,) in (4.12) is the underlying k-module of
Takeuchi’s universal measuring topological coalgebra Mes(B, A) [14].
Therefore the isomorphism a(A, B)Y=Hom,(Ps, P,) of (4.12) follows also
from Remark 1.3.

REMARK 4.18. We can deduce Theorem 3.1 from the isomorphism
a(A, B)=QVR.Q5 of (4.11). Indeed, take & € AV such that &(1)=1. The
complex Q' is exact and the subspace @ &X(AV)®" of @) is a comple-

n>0

ment of d(Q)). Therefore we have an isomorphism

B QA" @BRE*=QrR @ =a(A, B)
which takes £,Q8Q- - - QEQUQNR: - - QF. to (&, vo) (61 %) - - - (€w ¥a) for
Sly o ',E.,,GAV, Yoy =+ *» yn€B~

REMARK 4.19. We have defined for a k-algebra A the strictly monoi-
dal functor (—)®.Q4:C_—k-M. It is also true that every strictly
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monoidal faithful functor C_—k- M is isomorphic to (—)&Q.Q, for a k-
algebra A with dim A>1.

(f) Two presentations of a(4, B) by differential graded (co)algebras

Let A be a k-algebra. We made Q,1]1=T,(2) a monoid object of
C. in (¢) and Q, a comonoid object of C, in (¢). We assume dim A <oo.
In this subsection we prove two propositions below.

PROPOSITION 4.20. The comonoidal functor QJ11V®.(—):C,—k- M
induced by the monoid structure of Q1] is strict.

Admit this for a moment. Let B be a k-algebra. Then the k-
modules QY¥®.Qz Q[11VR.Q:1], Hom,(Q,, @s[1]) become Fk-algebras by
the comonoid structure of @, and the monoid structures of Q1]

(=)L, QU1TIR.(—).
PrOPOSITION 4.21. We have algebra isomorphisms
a(4, B)=QYQ.Q:=Q.[1]'Q.Q:[1]
and an algebra injection
a(A, B)—>Hom,(Q,, @5[1]).

Before the proofs we introduce some notation. Let F,Ge(C,. De-

note by Hom}(F, G) the set of morphisms % : F—@G such that dim u(F)<oco.
Define

tF, G): F¥Q®.G—Hom,(F, G[1])
t'(F, Q) : F[1]V®.G—Hom,(F, G)

by the formulas

t(F, G)(EQy)(x) =&(x)dy +&(dx)y
t'(F, G)(E'Qy)(x)=¢(x)dy +&'(dw)y

for x€ F,, y€G,, E€F), & e (F[1Y),=FY,,. We note that if F is a

projective object and dim F,<oco for all m, then ¢(F, @), t(F,G) are in-

jections onto the subspaces Hom!(F, G[1]), Hom!(F, G) respectively.
Write Q=Q,. Let

A:Q—QRQ €: Q—k[0]
¢ Q[1IRQ[1]—Q[1] ¢: k[0]—Q[1]
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be the (co)multiplication and the (co)unit. Let

Aﬂ.« : Qﬂ+q_"Qp®Qq €& : Q—k
U Qp+1®Qq+1_’Qp+q+x t: k—Q,

be the components of A, €, g, ¢ Using the description of A,, in (4.15),
one can verify that the following relations hold.

(1) Hp—1,0-185,,=0 for p,q>1

(i)  fp-1,,(1Qd)A,,,=id for p>1, ¢>0
(iil)  fp,01(d®1)A,,,=(—1)%id for p>0, ¢>1
(iv) ﬂp.q(d®d)Ap.q=d for p,¢>0
(V) we=d.

These relations imply that for any F,G e, the following diagrams are
commutative.

(4.22)
(F'RQARG'RQ) Y Hom,(F, Q1) ®Hom.(G, Q[1)

Ax

(FYRGYQ.Q "

(FgG)V&Q Feed Hom,(FRG, Q[1])

HOIRRQ — ke
HOV®Q o> Hom. (01, @11]
@I'RF)RE1T®.6) TET2eD) Hom, (@, F)QHom,@, G)
Q[l]vp®T,<F®G> e Hom, (@, ;’®G)
k

Q[l]v®ek[0] —tTQTO])) Homc(Q. k[O])
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Here A*, €*, - - - are the maps induced by A, ¢, - - -. The proof is straight-
forward.

Proor oF PROPOSITION 4.20. We have to show that g*, ¢* in the lower
half of the diagrams (4.22) are bijections. This is clear for (*. As for
#* we may assume dim F', dimG<o. Then the rows of the third dia-
gram are bijections. Since (—)®.Q is strictly comonoidal and Hom,(Q, (—)V)=
(—)R.Q)V, A* is a bijection. Hence p* is a bijection.

PrOOF OF PROPOSITION 4.21. We first show a(4, B)=QYX.Qz as
algebras. Since (—)®.Ps:S_—k- M is a monoidal functor and P,€ S,
is a comonoid object, PY®.Pz becomes a k-algebra. Asin (4.11) we have

a(A, B)=Pi@,Py=N_(P})®.N.Ps=QiQLs

and each isomorphism preserves algebra structure.

Let 7: Q[11VQQ:[1]-Q¥®.Qs be the map £R.y—£R.y. We have
a commutative diagram

QU1 RQ:(1] s QIRQs
VAN Qs
Homc(QA, Qs[l])-

By the lower half of the diagrams (4.22) with F=G=Q[1], #(Q., @5[1])
is an algebra map. By the upper half of the diagrams (4.22) with F=
G=Q, and Q replaced by Qs t(Q4, @s) is an algebra map. Moreover
t(Q4, @), t'(Q4, Q[1]) are injections onto Hom?(Q,, @5[1]). Therefore r is
an algebra isomorphism. This proves the proposition.

5. Action of a(A, A) on full matrix algebras

We fix a finite dimensional k-algebra A throughout. Let B be a
finite dimensional k-algebra and V a left a(B, A)-module such that 0<
dim V<oo. As in Proposition 2.1, V corresponds to an algebra map p:
A—B®End V and a linear map f: AQV—V®B. Define

p,: AQEnd V—-BXEnd V

by p(a@z)=p(a)(1Qx). Also let ¢: VVQA—->BXVY be the transition
map for the right a(B, A)-module VV.
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ProposITION 5.1. (i) p, is bijective if and only if f is bijective.

(ii) Suppose f is bijective. Then the algebra End V admits a right
action of a(A, A) such that p, is an algebra isomorphism, where the
algebra structure of A®End V comes from the action of a(A, A) on
End V as in Proposition 2.2 (iii) and BRQEnd V is the standard tensor
product algebra. The transition map for End V corresponds to the map
(fTR1)e(1Q9) : VRVVRA—>VRBRVV—-ARQVRVY through the canoni-
cal isomorphism End V=VRVV.

Proor. (i) We have a commutative diagram

Avevy Y veBovv

el |
Q®EndV — BXREndV

D

where the isomorphisms are the canonical ones. Since VV+0, (i) follows.

(ii) The first assertion is clear from (i) and Proposition 2.2. Let
P, : End VQA—BXEnd V be the map 2®a—(1Qz)p(a). Using the rela-
tion of ¢ and f given in Section 2, we see that the diagram

vvVeds 2% veBRQVY

EndzJ/@A — B®]§}r’1'd 1

is commutative. The transition map for the right a(A4, A)-module End V
is pilop,. By the above two diagrams, pi'op, is isomorphic to the map

(fR1)'(1®g). This proves (ii).

PROPOSITION 5.2. Let V be a k-module such that 0<dim V<oco. Then
every right action of a(A, A) on the algebra End V is obtained from an
algebra B and a left a(B, A)-module structure on V having the invertible
transition map as in Proposition 5.1 (ii).

ProorF. Suppose given a right action of a(A4, A) on the algebra
End V. It makes AQEnd V an algebra by the correspondence (i)<»(iii)
of Proposition 2.2. Let 4,: A>AREnd V, ,: End V-AQEnd V be the
natural injections. Let B be the centralizer of Im i, in AQEnd V. Then

we have an algebra isomorphism p,: AQEnd V:B@End V, where the
right side is the usual tensor product of algebras. The algebra map
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p=p,ot,: A>BREnd V makes V a left a(B, A)-module. By Proposition
5.1 (i) the transition map for V is invertible. This proves the proposi-
tion.

We next consider morphisms between a(A, A)-algebras of the form
End V. Let V be a left a(B, A)-module and W a left a(C, A)-module
such that 0<dim V, dim W< co and their transition maps are invertible.
Then End V, End W become right a(A, A)-module algebras.

PROPOSITION 5.3. (i) For a left a(C, B)-module U and an a(C, A)-

isomorphism 1 : UR VW, define an algebra map jy.,: End V—End W by
Jua(@)=lo(1Qx)ol™". Then jy,. is a(A, A)-linear.

(ii) For left a(C, B)-modules U, U and a(C, A)-isomorphisms [: UQR
VW, I:UQVSW, we have jy.=jy. if and only if there is an

a(C, B)-isomorphism m : USU such that 1=l o(m@1).
(ili) Every a(A, A)-module algebra map End V—End W is of the form
Jua for some pair U, | as in (i).

ProorF. Let p: A—>BXREnd V, p,: AQEnd V—B®End V be the maps
defined at the beginning of this section, and ¢: A—>CREnd W, ¢q,: AR
End W—CQEnd W the similar maps for the a(C, A)-module W. The
actions of a(A4, A) on End V, End W make AQREnd V, AQEnd W algebras
and p,, ¢, are algebra isomorphisms.

(i) Let r: B>CQEndU be the algebra map corresponding to the
a(C, B)-module U. Then we have a commutative diagram

AQEnd V 18iv.. AQEnd W

y4t l l a1
BXREnd V Tg{f CREnd UKXEnd V 176517 CXREnd W,

where I, is the map 2@y~ lo(xQy)ol™ for € EndU, ycEnd V. Hence
1®jy, is an algebra map, so jy,; is an a(A, A)-module algebra map.

(ii) This is left to the reader.

(iii) Let j:End V—=End W be a map of a(A4, A)-module algebras.

Then there is a k-module U and an isomorphism [: UR VS W such that
J=Jv,. We must show that U has a structure of a left a(C, B)-module
and [ is a(C, A)-linear. Set s=¢,o(1Q7)op': BREnd V—-CXEnd W. Then
s is an algebra map and the diagram
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EndV —1 > Endw

(2 iy

is commutative, where 7, are the natural injections. Considering the cen-
tralizer of Im(soi,) in CQEnd W, we see that there is an algebra map
r: B>CQEnd U such that s=(1Q1)-(r®1). The map r makes U a left
a(C, B)-module, and by g=sop, lis a(C, A)-linear. This proves (iii).

We finally consider a smash product. Let V be a left a(B, A)-module
such that 0<dim V<oco and having the invertible transition map. The
bialgebra a(A, A) acts on the algebra End V on the right as in Proposi-
tion 5.1 (ii), so we can form the semi-direct product algebra a(4, A)Q
End V, which is also called the smash product in Sweedler [12].

PROPOSITION 5.4. There is an algebra isomorphism
a(A, A)RQEnd V=a(A, B)®End V
where the right side is the usual tensor product of algebras.

ProoF. Set A=a(A4, A). For X€Com-A and Me M-A, define fyu:

MRX—>XKXKM to be the composite

MR x-25 M x 1285 x@ MR 4225 XM
with ¢: X—>X®A the coaction, a: MQA—M the action, t: MR X—>XRQM
the map mQx+—xXm.

If R is a monoid object of -4, i.e., a right 4-module algebra, the
map fx.r defines an (R, R)-module structure on X(XR in the same manner
as in Proposition 2.1 and the functor ¢ :(Com-A—R-M-R taking X to the
bimodule XQR preserves monoidal structure. Therefore ¢ takes a monoid
object of Com-A, i.e., a right A-comodule algebra, to a monoid object of
R-M-R, ie., an R-ring. This is called a generalized smash product (see
[6]). The smash product AQR is nothing but the R-ring ¢(4), where 4
is viewed as a right 4-comodule algebra naturally.

Now let R=End V. Then there is an equivalence of monoidal cate-
gories {: R-M-R—k- M given by {(X)={x € X|rz=xr for all € R}, and
we have X=R®{(X) naturally for X€ R-M-R. We must show {$(4)=
a(A, B) as monoid objects of k- M. We shall show more generally that
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¢d(a(C, A))=a(C, B) as monoid objects for any algebra C with dim C<oo,
where a(C, A) is viewed as a right 4-comodule algebra naturally. By
Proposition 5.1 we know {¢(A)=B as monoid objects. Also {o¢ : Com-A—
k- M commutes with inductive limits and &. It then follows from the
construetion of a(C, —) in Section 1 that {d(a(C, A))=a(C, B) as k-algebras.
This finishes the proof.

REMARK 5.5. The general theory of the action of Hopf algebras on
Azumaya algebras has been developed by Doi and Takeuchi [6]. Some
of our result might be deduced from their theory.
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