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Nonlinear eigenvalue problem associated with
the generalized capillarity equation

By Naoyuki ISHIMURA

1. Introduction.

Consider an embedded surface S in BXR* whose mean curvature H

at each point (x, u) € BXR*' is given by —%ku” and whose boundary 8S

is dBx{0}. Here B denotes the unit disk in R%;, R*={x € R|2>0}, ¢>1
and k>0 are fixed constants, and the sign of the mean curvature is
defined so as to be negative at the point of maximum height. The sur-
face S is realized as a solution of the problem (referred to [P] in the
sequel)

(1) 2H+ku'=0 in B,
(2) >0 in B, u=0 on 9B.

The purpose of the present paper is to show the condition for existence
and nonexistence of nontrivial solutions of [P] in terms of the param-
eter k.

As is well known, the equation (1) with ¢=1 deseribes the free sur-
face in a capillary tube under negative gravitational field. In this case
k is called the capillarity constant, given by k=pg/o, where p denotes
the density difference across the free surface, g the gravitational accel-
eration, ¢ the surface tension. P. Concus and R. Finn, in their celebrated
paper [2], studied extensively the radial solution of this equation and
obtained many interesting properties. One of the most striking results
is that the solution is generally a multi-valued function and has an os-
cillatory trajectory; for more physical backgrounds and other informations
see the elegant monograph of R. Finn [3].

Recently, from the viewpoint of the analogue of Laplace operator,
many authors have investigated the general equation nH-+f(u)=0 (see,
for instance, [1][5][6]). Especially, F. V. Atkinson, L. A. Peletier and
J. Serrin studied the generalized ground state solution; that is, a positive
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radial solution which is zero at infinity and generally multi-valued.

In order to overcome the difficulty of multi-valued functions, Concus
and Finn introduce the are length s along the trajectory as independent
variable so as to transform (1) into the system of first order differential
equations, while Atkinson et al. regard w as independent variable and
discuss the single-valued function r=1r(u).

We now return to our problem. First we see from H. C. Wente [7]
that our problem [P] has only the radial solution, possibly multi-valued.
Following the idea of [1] we think of u as independent variable and
discuss the single-valued function r=r(u). The problem [P] then means
the ordinary differential equation

@ (e e
with

(4) r(u) >0 for 0<u<u,=u(0)
(5) r(ug)=0,  lim,,, r,=—o0

(6) lim,_r(u)=1.

Note that the function u(r) satisfies either

1 d U
7 == " 4+ku'=0
@ rodr (1+u?)'? i
or
(8) 1 d TU, —kut=0

7 dr ud®

according as u,<0 or u,>0, respectively.
We now state our main theorem.

THEOREM. (A) Let q=1. Then there exist positive constants k,<k,
such that [P] has only the trivial solution for k¢ (ki k.).
(B) Let q>1. Then there exist positive constants k,<k, depending
only on q such that:
(i) JSfor k<k, [P] has only the trivial solution.
(ii) for amy k>k, there exists a montrivial solution of [P], which
can be represented as a single-valued function u=u(r).
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The part (A) of this theorem is already known (see [3][5]). But our
proof of (B), in its special case, also applies to that of (A) and seems to
give new proof. See Propositions below.

To prove the theorem we set u=k "9y, r=L Y397 and use the
letter w and r instead of # and 7 for simplicity. Then r(u) satisfies (3)
with k=1 (respectively, u(r), (7) or (8) with k=1). The parameter k
appears only in the condition (6): lim,_ ,»(u)=k""*?. After the above
transformation we solve the equation (3) with (4) (5) as an initial value
problem (IVP) with the shooting parameter u,. It follows from [1] that
for any u, a solution =(u;u,) of IVP exists in the interval 0<<u<u,.
Denoting the first zero by R, that is, R=lim,_,r(u;u,), we want to
compare R with £Y“+9, Hereafter we only investigate this IVP and
write r(u) instead of r(u;u,) for simplicity. We also discuss the funection
u(r), the inverse of r(u), which is possibly multi-valued.

In the following two sections we prove two propositions below. It
is easy to see that these propositions imply the theorem.

PROPOSITION 1. When ust'<2(14q) the inverse function u(r) is a
single-valued function for 0<r<R, and we have the estimate

Ci(q)uqs "< R Colq)us 0"
for some constants C,(q)<C,(q).

PROPOSITION 2. When u;™*>8q the inverse function u(r) is necessarily
a multi-valued function and there exist positive comstants 0,(q)<d:(q)
independent of u, such that

d.(q) <R<8:(q).

Note that when ¢>1 Proposition 1 implies R—oco as #,—0 and R is
bounded for wj** in the left vicinity of 2(1+44¢). Thus the continuity
with respect to u, implies the existence of the solution mentioned in the
theorem.

2. Proof of Proposition 1.

First we want to prove that the inverse function w(r) is single-
valued for 0<r<R.

At least for small values of r it is evident that u(r) is single-valued
and monotone decreasing. Integrating (7) we find
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TU, B r 1 q
_W‘Sof’“(ﬂydﬂ > Zrulr)”
and S0,
1 " 1
1w 1w
(9) r (1+ud)? 2 u(r)

as long as u(r) is single-valued.
Let us write (7) in the form

u 1 U,
rr el T q:0.
(10) TERTALE + T +u

Using (9) we find

Wpr 1.,
i T 5w <0.
(14ud) 2

Multiplying %, (<0) and integrating from 0 to r, we obtain

1 1
._._,______I,_l - - 1+q __ 5 1+g .
(1 uﬁ)”z < 2(1 (]) (’M/(T) Uo )

Thus under our assumption u;*'<2(1+4q) we have

1

1 (r)) ,
At < e rg)

from which we conclude that w can be continued as a single-valued
function of r for 0<r<R.
" In order to obtain a lower bound of R we compare u(r) with the

lower hemisphere g whose mean curvature is —%ug. Then, on the
interval 0<r<2/uj, we have

g(r) = ((2/ud)* —r*)""*+u,—2/ug
and

1d rg 1 d 1
r dr (1+¢5)' " r dr (14+ul)'?

with the initial conditions
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9(0)=u(0)=2u,  ¢.(0)=u,(0)=0.
An integration now yields
g(r)<u(r)
for 0<r<2/ui. This implies the desired bound:
B>C(q)uqs eV

Finally we wish to give an upper bound of R. Let us use the nota-
tion R,=u"'(quw,) where we set g=q/(1+q). The lower bound of R,
easily follows as in the case of R. Indeed we have

(11)  RB,>g7'(quo) = (4/(1+q)ui™ — (uo/ (14 q))*)* > 2us~2%[(1+q).
On the other hand,

(12) —u,(’l’) > _H:?éu:((:‘))w:%g;pu(p)qdp
>l5apu(p)“dp
rJo

where 0<a<r. An integration from a to R, yields

(13) R,<a exp(ﬁ%><a(q)uo—umm_

We also integrate (12) from a to R, obtaining

2

R<a exp(W)<oo.

Placing a=R, in this inequality and using (11) (13), we deduce
R<Cz(q)u0“(q—l)/2.

This completes the proof of proposition.

3. Proof of Proposition 2.
Let us begin with:

LEMMA 1. When u;™*>8q there exist a first critical point (ry, u,) on
the graph r(u), with
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2lus<r <Aful,  uo— A ui<us <t —2[us.
Moreover ,,(u,)<—ul/4.

This lemma is the special case of Theorem 2.1 in [1]. Hence we omit
the proof.

Before proving the rest of Proposition 2, we collect some properties
of the graph of solution which are needed later. Proofs of these results
can be found in [1] or [3].

Properties of solutions.

(P1) The solution r(u) has at most a finite number of minima and
maxima over the interval [0, u,]. The trajectory is bounded above by the
curve ru'=2.

(P2) Let {ton}, Usiminy<<Uszm, m=1,2, ---, denote the sequence of minima
of r(w) when we trace it from the point (0, u,) and let

Ugm_y =SUD{U S Usn| 7, >0 o0 the interval (Usm, u)},

then we have

Tom W1 >1,  TenUdn <1, m=>1
and

Tomo1 <Tomsrr  Tem<Tamin, ML
(P3) We have an upper bound of 7, independent of k. Indeed the in-
equality

113 (y/Bjgyeso <o,

q

holds, from which we conclude in particular r,<3.
(P4) There hold —oo<u,(0%)<0 and R=lim,.,r(u)<oo.

We denote the last minimum by (r;, u;) and last maximum by (7., %.).
Notice that by (P4) the solution is monotone decreasing on the interval
[0, u;), and hence the inverse u(r) satisfies (7) for r<r<R.

LEMMA 2. When u,;>m!*® there holds the tnequality
Ci(q) <R<Cilq)
for some constants Cs(q) <Ci(q).
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PROOF. Let us put r.=r(zV"*?). Notice that r, is well defined.

We give a lower bound of R first. If r,>z 9"*® then R>zr """
Whence the case 0<r, <z 99*9 needs to be considered.

Let an ellipse of major axis 27~ %“*? with focal points at (r., z'/"*?)
and (2r-9+0 —p, 79+0) roll rigidly downward on a u-axis without slip-
ping. Let #(r) denote the curve swept out by the focal point (r., gl +0),
The curve is called a Delaunay arc and 9(r) satisfies

1 d 79, _
rodr (L+09)" tattre=0

on 7. <r<2r I+ —g with
BD(r,) =w"0+9, D,(r,) = —oo.

For more informations about a Delaunay arc, see Section 4.7 in [3]. We
compare 9(r) with u(r), obtaining

D(r)<u(r)

for 7r.<r<2r Y%9_—p_  on integration. Since  gY4+0 _2g-u+o
XE(1—ra%" >0 we find

R> (,’-c _|_27t—q/(1+q) —7‘,,)/2 —g-u+a),

Here E(k) denotes the complete elliptic integral of the second kind and
we note that 2z Y+OE(1—rxY"*?) is the half circumference of the
ellipse we considered.

Next let us give an upper bound of B. An integration of (7) from
r; to r yields

™, _ [ .
W‘*‘ Ti= —S pu(p)'do

where r,<a<r<R. It follows that
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14 —U, —L _l 2 q
(14) (r)> g > - 2au(a).

On the other hand, let R,=u"!(z""*?/2) and comparing #(») with u(r) as
before, we obtain
(15) . R0>7r—ql(1+ll)_

Observing that (14) and (15) correspond to (12) and (11) respectively, we
can give the rest of the proof on the same line as that of Proposition
1. So we omit the details. []

LEMMA 3. When u,<w'%*9 we have
ri<R<r;cosh(z!/+9[r)).

ProoF. By (P4) it is clear that r;,<R. To prove the opposite side
we compare u(r) with the minimal surface

w(r)=—r;cosh™(r/r) +u;. []

LEMMA 4. When w,<z' 9 we have positive constants 9, C such
that if 0<r; <0 then u,<C.

Proor. Consider a Delaunay arc v(r) which is determined by the
conditions
a=1/(u;+7)*
(16) a—Cc="7;
t=2aE(c/a)

with its lower vertical point at (r;, u;), where 2a is the length of major
axis and 2¢ is the distance between focal points. We find

1 d 0,

r dr (o))" (wi+7)
on r,<r<2/(u;+7)'—r;, with
v(1r) =u,, v,.(r;) =o0.

Suppose that such v(r) exists, then, comparing it with u(r), we have

u(r)<v(r)
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for r,<r<2/(u;+7)"—7r; in particular, r,>2/(u;+7)"—7r..

We discuss the criterion of the existence of this Delaunay are.
Interpreting (16) as the determining equation of z, we introduce the
funetion

Sfle)=(ui+7)c—2E(1—ri(u; +17)7).
In order that f(r) is well defined, there must hold
(17) ril—u,>r.
If we have, in addition to this,
(18) St —w) =@ —w,) [ri—n>0.

Then, in view of f(0)<0, the intermediate value theorem yields the
solution z of the equation f(r)=0. Under our assumption that u, is
bounded above, we can find a positive constant ¢ such that both (17)
and (18) hold on the interval 0<r;<d.

On the other hand,

t(ui+ 1) =2E(1—ri(u,+17)) <,
and so,
(wi+7)'<C[2
for some constant C. This implies, on the interval 0<7;<0,
7. >2/ (Ui +7)'—7,>1/ (U +17)>2/CY,
from which it finally follows that
u, < (2/r)"<C. []

Proof of Proposition 2 concluded.

First we see from Lemma 2 that only the case u,<z'%*? remains
to be considered.

If ;>0 then by Lemma 3 the conclusion follows. We intend to show
that if 0<r,<J then in fact 7, >¢ for some positive constant e. By
‘Lemma 3 the result follows even in this case.

In order to do it, we introduce the functional
T(u) . 1 2

—uir(u).

Fuy=—""___
(T+r.(w)" 2
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Since F,<0 and F(u,)>0, we have
7> F(u;) 2> Fu,) +¢(ua) >e(u),
where

e(u,) = Su“ lu"‘lfr(u)?du.
u; zq

By Lemma 4, u, is bounded above in our present case. This bound of
U, yields the desired constant e. This completes the proof. []
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