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On the l-adic representations attached to some
absolutely simple abelian varieties of type II

By Wenchen CHI

§1. Introduction

Let K be a number field and let K be an algebraic closure of K.
Let A be an abelian variety over K of dimension n>1, and let G=
Gal(K/K). For each prime number [, let V,(A) be the Q,-adic Tate
module of A. One general problem is to study the image of the l-adic
representation V,(4) of G. Let G, be the l-adic Lie algebra of the image
of this l-adic representation. Fix an embedding ¢: K—C, and denote by
A(C) the abelian variety AXKG,C. In [7], Mumford and Tate conjectured
that Q’,:m@Q,, where m is the Lie algebra of the Mumford-Tate group

MT(A(C)) (cf. [4], §3).
As is now well known, in general G, is contained in m®Q, (cf. [4]).
Q

Various results toward this general problem have been obtained for
some classes of abelian varieties. Moreover, some important general
result on l-adic representations attached to abelian varieties have been
established. Especially, one has the following results:

(i) the rank of G, is independent of I (Serre [13], Zarhin [18]).

(ii) G, is algebraic and contains the homotheties (Bogomolov [1]).

(iii) G, is reductive and Endgl(V,(A)):Endx(A)@Q, (Faltings [5]).
These make the determination of G, possible for some other classes of
abelian varieties. For example, when d=dim A is odd and Endz(A4)=2,
Serre has proved that lem@Q,:sp(Zd, Q,)DQ,-id., where id. is the
2d x2d identity matrix (cf. [11]).

The purpose of this article is to determine G, for the following type
II absolutely simple abelian varieties: dim A=2d, where d=1,2 or an
odd number, and End,—((A)@Q:D is an indefinite quaternion algebra over

0. It follows that we have the equality G,=m®Q,. Accordingly, the
Q

well-known conjectures (Hodge, Tate) on algebraic cycles (ef. [9], [17])
are true for such abelian varieties.
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The key idea is to use theorem A in [3], then the situation can be
treated as the case where Endz(A)=2Z with dim A is 2 or odd, and hence
Serre’s method applies.

Finally, I would like to thank the referee for many useful suggestions.

§2. Preliminaries

In this section, we recall some results which will be used later. For
most, we simply give a reference to the proof. Nevertheless, proofs for
some variants of known results are provided.

2.1 Abelian varieties over finite fields

Let F, be a finite field of ¢ elements, where ¢q=p" for some prime
number p and some positive integer a.

We first recall two theorems of Tate on abelian varieties defined
over finite fields.

THEOREM 2.1.A (Tate). Let A be an abelian variety of dimension g
defined over F,. Let m be the Frobenius endomorphism of A relative to
F, and p(t) its characteristic polynomial. One has the following state-
ments:

(a) The algebra F=Q[r] is the center of the semisimple algebra
E=End; (A)QRQ, and 2¢9<[E: Q1L (2g)%
a z

The following statements are equivalent:

[E:Q]=2g

p(t) has mo multiple roots

E=F

E is commutative

The following statements are equivalent:

[E:Q]=(29)"

p(t) is a power of a linear polynomial

F=Q

E=M(g, D,), where D, ts the division quaternion algebra over
Q which splits at all primes l+p, co.

A 1s F-tsogenous to the g-th power of a supersingular elliptic
curve, all of whose endomorphisms are defined over F,.

A 1is Fisogenous to a power of a F-simple abelian variety
if and only if p(t) is a power of a Q-irreducible polynomial,

Q o0
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When this is the case, E is a central simple algebra over F
which splits at all finite primes w of F mot dividing p, but
does not split at any real prime of F.

Proor. Cf. Tate [15], pp. 140, Theorem 2.

THEOREM 2.1.B (Tate). Let A be F,simple, w be a place of F, and
| ll. be the normalized absolute value for w. If |zal.=q7%, then i is the
mvariant of the division algebra E at w. FExplicitly, this is

1/2 , if w is a complex place
{1/2 , if w is a real place
1={ 0 , if wip
M-[FW:Q,,], if w|p.
ord,(q)

Proor. Cf. [6], Theorem 8.

REMARK. Suppose g=p and A is F,-simple. Then E splits at all
finite places of F (cf. Tate [16], pp. 352-02, Theorem 1). Thus, E=F
and Ende(A) is commutative. Under this situation, one can apply
Theorem 2.1.A-(b).

2.2 Representations defined by minuscule weights

Let G be a semisimple Lie algebra over an algebraically closed field
of characteristic 0, and =G, X ---XG, be the decomposition of & into
the product of its simple ideals.

For any faithful irreducible representation V of &G, V decomposes as
a tensor product of irreducible representations V; of G. Since V is
faithful, none of the Vs is trivial. Moreover, if the representation V
admits a non-degenerate invariant bilinear form, then so does each V..

Further, if V is symplectic (resp. orthogonal), then the number of
factors V; such that V; is symplectic, is odd (resp. even). We say that
the representation V is defined by minuscule weights if the highest
weight of each V., is a minuscule weight in the sense of Bourbaki [2],
Ch. VIII, §7.

It is known (loc. cit., Proposition 8) that the minuscule weights of
simple Lie algebras occur only among the fundamental weights. For
the complete list of minuscule weights of simple Lie algebras, we refer
to Bourbaki [2], Ch. VIII, pp.129. )
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The following results follows easily from the nice information provided
by Bourbaki [2], Ch. VIII, §13, Table 1,2 of pp.213-214.

LEMMA (2.2.1). Let G be a simple Lie algebra of type A, (1>2), and
let 'V be an irreducible representation of G defined by minuscule weights.
If V is symplectic, then dimV s divisible by 4.

PrROOF. From Table 1 and 2 of Bourbaki [2], pp. 213-214; one knows
that the fundamental weight w, (1<r<l) defines a symplectic representa-
tion if and only if » is odd and 2r=[+1. Let »r=2k-1 for some integer
k>0. Then the dimension of the irreducible representation with highest

weight w, is @l]gi%)

It is easy to check that ordzéz)zl. Hence ordgézi%)zz

LEMMA (2.2.2). Let V be a faithful, irreducible, symplectic representa-
tion of a semisimple Lie algebra G over an algebraically closed field of
characteristic 0. If dim V=2d with d odd, and V is defined by minus-
cule weights, then G is isomorphic to the simple Lie algebra of type C,
and V 1s the standard symplectic representation of C,.

Proor. This follows immediately from the list of minuscule weights,
the dimensions of their associated irreducible representations, and Lemma
(2.2.1).

2.3 Theorem of Sen (cf. [10], §6; [12], §1)

Let K be a complete field of characteristic 0 with respect to a dis-
crete valuation, whose residue field k is algebraically closed and of charac-
teristic p>0. Let C be the completion of an algebraic closure K of K.
The Galois group Hy of K over K acts continuously on K. This action
extends continuously to C.

Let V be a Hodge-Tate module over K (cf. [12], § 1), and H, be the
algebraic envelope of H, where H is the image of Hy in Aut(V). Let
hy : Guic—>GLy;c be the one-parameter subgroup of GL, over C defined
by the Hodge-Tate decomposition of V@C(loc. cit.).

P

THEOREM (Sen). (a) H is open in H,(Q,). Equivalently, Lie(H)=
Lie(Hy), so that Lie(H) is algebraic.

(b) The connected component of the identity HS of Hy is the smallest
algebraic subgroup of GLy,, defined over Q,, which after extension of
scalars to C contains the image of hy.



l-adic representations 471

2.4 Theorem of Serre

Let M be a connected reductive algebraic group over a field E of
characteristic 0. Let E’ be a finite Galois extension of E such that M
is E’-split. Choose a maximal torus T of M,z and a Borel subgroup B
of M,z containing T. Then, we have the associated system (X, Y, R, a—a, B),
where X=Hom(T, G,;z), Y=Hom(G,z, T), R is the root system of M,z
relative to T, B is the basis of R associated to B.

Assume that we are given the following data along with M:

(a) a linear representation V of M defined over E.

(b) an algebraically closed field C containing E'.

(¢) an one-parameter subgroup hy : G,c—>M,c of M,; defined over C.

THEOREM (Serre [12,§3]). Suppose that the triple (V, C, hy) satisfies
the following conditions:
(i) V s faithful.
(ii) If N is a mormal algebraic subgroup of M, defined over E,
such that N,c contains Im hy, then N=DM.
(ili) The action of G,ic on Vc:C@V defined by hy 1s of weights
0 and 1.
Then, the representation V is defined by minuscule weights.

§3. Review of [-adic representations attached to abelian varieties over number
fields

Throughout this section, we shall adopt the following notations

R: the field of real numbers l: a prime number

C: the field of complex numbers Q,: the field of l-adic numbers
K: a number field Q.. an algebraic closure of Q,
K: an algebraic closure of K C,: the completion of Q,

G: Gal(K/K) Si {ve 2g|v|l}

G.. the multiplicative group GL,

3. the set of all finite places of K

xi: G—ZF the cyclotomic character
In the following, A will be an abelian variety defined over K of
dimension n>1. We denote by V, the Q,-adic Tate module T,(A)(ZX)Q,

of A. Let p,: G—Aut(V,) be the associated l-adic representation. ’Il‘he
group G,=Im(p,) is a closed subgroup of Aut(V,), hence an l-adic Lie
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group. Let G, be the Lie algebra of G,. Then &, is easily seen to be
invariant under finite extensions of the number field K.

Let G, be the algebraic envelope of G,. By replacing K by a finite
extension, we may assume that Endg(A)=Endg(A). Let Vi(¢) be the
1-dimensional @,-vector space T,(;z)(%)Q,, where T,(y):Liin_ g and e is

!

the group of ["-th roots of unity. Fix a K-polarization on A once and
for all. We denote by ¢: V,X V,—V () the induced Riemann form on
V., and by ’ the corresponding Rosati involution on EndK(A)@Q (cf. [8],

§ 20).

3.1 Some fundamental properties

Since the Galois action on V, is equivariant with respect to ¢ (cf.
[8], §20), we have ¢(ov, ow)=yx(0)¢(v, w), for all ¢€G; v, we V,. Thus,
GyCGSp(V,, ¢), the group of symplectic similitudes with respect to the
alternating form ¢. On the other hand, we have ¢(ev, w)=¢(v, ¢w) for
all v, we V,ec EndK(A)@Q.

By a theorem of Faltings ([5], §5, Satz 3), G, is reductive. Let
G,=[G, G1®C,, where [G,, G,] is the derived subalgebra of &, and C,
is the center of §,. Let F be the center of the semisimple algebra
EndK(A)(ZX)Q. Since the commutant of ¢, in End(V)) is EndK(A)@Ql (5],

§5, Satz 4), C, is contained in F,=F®Q,. Let A~T[ A" be the decom-
Q

position of A into product of simple abelian varieties up to isogeny.
Then, according to Albert’s classification of involutional division algebras
(cf. [8], §21, Theorem 2), we have F=F.XF,, where Fy is a product
of totally real fields, and F; is a product of CM-fields.

To fix notation, let Q,-id be the algebra of homotheties in the general
linear Lie algebra gl(V)).

PROPOSITION (3.1.1). C, is contained in (F,QQ,)+Q,-id.
Q

Proor. Let ©:G,—Z§ be the determinant map. The Lie algebra
Gy of ker ® is an ideal of G, containing [G,, G,] and of codimension 1 in
G,. In particular, G? is again reductive. Let GP=[G?, G?1PC,, where C,
is the center of &r.

It is clear that [G,, G,1=[G?, G?] and C, is a subspace of C, of codi-
mension 1. By the theorem of Bogomolov ([1], Corollary 1), we have

C;:Co+Ql'id.
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Since C, is contained in the symplectic Lie algebra sp(V,, ¢), we
have ¢(cv, w)+¢ (v, cw)=0, for all v, w in V,, ¢ in C,. Therefore, ¢’+c¢=0.
The Rosati involution is trivial on Fp. Hence C,cF;R0Q..

Q

COROLLARY (3.1.2). If A~TI A7, and none of the A;s is of type
(IV), then gl:[gl, gl]@Qlld

Let S, be the connected component of the identity of GyNSLy,
Then S, is a connected semisimple algebraic group defined over Q, If
Gy is connected, then the commutator group [Gy, G,] is closed and con-
nected. In particular, S,=[Gy, Gy]. Further, if A has no factor (up to
isogeny) of type (IV), we have G,=S,-G,.. In fact, after replacing the
base field K by a finite extension, one may assume that G, is connected
(cf. 3.3).

3.2 The Hodge-Tate module V,

For each ve€ S, let K, be the algebraic closure of K, in C,. As a
Gal(K,/K,)-module, it is well-known that V, is a Hodge-Tate module of
weights 0 and 1, each of them with multiplicity dim A (cf. [12], pp. 157,
Raynaud-Tate theorem). We denote by VI%Z)CZ: V6,(0)D Ve, (1) the Hodge-

Tate decomposition. For each v S, let ¥ lbe an extension of v to K.
Then the local Galois group Gal(K,/K,) can be identified with the decom-
position group D, for 7 in Gal(K/K). Let I, be the inertia subgroup of
D.. Then the algebraic envelope of p,(I,) is an algebraic subgroup of
Gy. By the theorem of Sen (§2.3), the one-parameter subgroup h, of
GLyc, defined by

x, if xe Ve, (0)

hV(C)(x)={ cw, if we V(1)

maps G, into the algebraic envelope of p,(I;) over C,.. Thus, hy is an
one-parameter subgroup of G, defined over C,.

Recall that a connected algebraic group defined over Q, is called
almost Q,-simple if it has no proper infinite normal algebraic subgroup
defined over Q..

By Corollary (3.1.2), if A has no factor (up to isogeny) of type (IV),
then G,=[G,, G,J®Q,-id. In this situation, combining the theorems of
Serre and Sen, we have the following:

PROPOSITION (8.2). If Sy is an almost Q,-simple algebraic group, then
the representation V, of [G,, G,] is defined by minuscule weights.
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Proor. Consider the triple (V,, C, h,) associated to G,. Since Sy is
almost Q,-simple, the condition (ii) of Serre’s theorem holds. By Sen’s
theorem, &, satisfies condition (iii). Therefore, the faithful representa-
tion V, of [G,, §,] is defined by minuscule weights.

3.3 The rank of G,

Let S be the set of all places of K where A has bad reduction.
As is well known, p,; is unramified outside of SUS,. For each ve Yx—
(SUS)), let F', be the conjugacy class of the Frobenius element F,, where
7 is any extension of » to K. As stressed by Taniyama, the characteristic
polynomial of p,(F,) coincides with the characteristic polynomial of the
Frobenius endomorphism =, of the reduction A, of A at v.

Let H, be the Zariski closure of the set {o,(F,)"|n€Z}. As p/(F})
is semisimple, H,CG, is an algebraic group of multiplicative type (not
necessarily connected). The character group of H, is the subgroup I,
of Of generated by the eigenvalues of p,(F,) (or the Frobenius endomor-
phism z,).

For the rest of this paper, we shall assume that A(K) contains all
the [l-division points (if [#2) or 4-division points (if [=2). Then, the
eigenvalues of each element in G, are congruent to 1 modulo ! or 4
respectively. Recall the following elementary fact: Suppose a € QF is
a root of unity and a«—1 is divisible by ! for 1+#2 (resp. 4 for [=2).
Then a«=1. Thus, for each ve X¥x—(SUS,), the subgroup I', of QF is
torsion-free. In particular, each H, is a torus. By the Cebotarev’s
density theorem, G, is generated by the family of its subtori {H,|v€
2x—(SUS))}. Hence G, is connected.

In general, rank I",<rank G,. Furthermore, one has the following
nice result due to Serre.

THEOREM (Serre). The set {ve Xx—(SUS,)| rank I',=rank G,} is of
density 1.

Proor. Cf. [13].

3.4 The Frobenius trace

Let t, be the trace of p,(F,). The following result is useful for our
later discussion.

LEMMA (3.4). After replacing K by some finite extension, the set
vedx—(S4US)| Nv=p, ts a prime number and p,it,} 1s of positive
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density.

PrRoOF. Let K'=K(A[l"]) be the subfield of K generated by K and
the [*-torsion points of A. Denote by G the Galois group of K over
K.

Recall that P={ve 3y —(S4US))| Nv=p, is a prime number} is of
positive density. On the other hand, by the definition of 01, one sees
easily that p¢,, is trivial modulo I". So, for each vc P, one has t,=
2dim A (mod!") and |¢,|]<2dim A-4/p,.

Let m be chosen to be such that [">2dim A. Suppose t,=p,-m
for some integer m. Then |t|=p,|m|<2dim A-p"%. Hence Im|<
2dim A-p;*% If p,>(2dim A)?, then m=0. This contradicts ¢,=2dim A4
(mod I*). Our assertion follows.

§4. Determine G, for some absolutely simple abelian varieties of type 11

Throughout this section, let A be a type II absolutely simple abelian
variety as in § 1. Namely, dim A=2d (d>1) and its endomorphism algebra
D is an indefinite quaternion algebra over Q.

By Theorem A of [3], one has the following result.

Suppose [ is a prime at which D splits. Then there exists a G-
submodule W, of V, such that the following hold:

(i) dim W,=2d.

(ii) The Galois module V, is isomorphic, over Q,, to the direct sum
of two copies of W,.

(iii) ¢wxw, is a non-degenerate S,-equivariant alternating form.

Thus, the representation W, of the semisimple Lie algebra [G,, G)] is
faithful, symplectic, and absolutely irreducible of dimension 2d over Q,.

Now, letve Y,—S, be a place of K where A has good reduction.
We retain the same notations as in §§2 and 3. Let P,,(T)€ Z[T] be
the characteristic polynomial of p,(F,). Then P,,(T) equals the charac-
teristic polynomial of the Frobenius endomorphism =z, of the reduction
A, of A at v. In our situation, we have P, ,(T)=f(T)? where

S(T)=det(1—T-o(F,)| W), f(T) € Z[T], and degree f(T)=2d.

For d=1, [G,, G|] is of rank 1. Hence [G,, §/]=sl(2, Q,), and we have
G,=sl(2,0,)PQ,-id. For d=2, [G,, G|] is either of rank 1 or 2. If [G, G]
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is of rank 2, then it must be one of the following Lie types: A,XA,,
A,, C,, or G,. In this situation, [G,, ] admits a faithful, symplectic, and
absolutely irreducible representation of dimension 4. By the Weyl's
character formula, it is easy to eliminate the cases A,X A, 4,, and G..
Thus, we have either [G,, G]=sl(2, @)) or [G,, §/]=sp(4, Q). Furthermore,
we have the following result, which is a simple variant of Zarhin ([19],
Theorem 0.3.1):

LEMMA (4.1). If Lie(S,(Q)=sl(2, Q)), then d=1.

Proor. Note that WL®Q, is an irreducible 2d-dimensional symplectic
representation of sl(2, Q). So W,®Q, must be the (2d—1)" symmetric

power of the fundamental representatlon of sl(2, Q).

By the theorem of Serre in §3.3, we can choose a place ve XS¢—S,
such that (i) A has good reduction A, at v (ii) rank(l",) =rank(Gy)=2
Let Nv=q=p™, and let 0 be the algebraic closure of Q in Q,. Put u=
q 'o(Fy)’. Then detu=1. Since Sy is of finite index in GyNSLy, after
replacing u by a power of 4, we may assume that uwc Sy(Q,). Let f(T)=
det(1—T-u|W,). Then f(T)=q *h(qT), where h(T)=det(1—T-po,(F,)*| W,).
Since 72 is the Frobenius endomorphism of A, (X)qu, we have h(T) € Z[T].

Consequently, £(T) € Q[ T1.

By our hypothesis, there exists a € 0* which is not a root of unity,
such that A={a® & - -, a,a”,a™® ---, (@ V)*"} is the complete set
of roots of £(T). Since f(T)€Q[T], A is a Gal(Q/Q)-set. In fact, we have
the following:

SUBLEMMA. For each 1,1=1,83, ---,2d—1, the subset {a’, @™} of A is
Gal(Q/Q)-stable.

PROOF. Let a’ be a conjugate of « over Q. Then a' o, --- are
conjugates of « over Q. Since « is an algebraic number which is not
a root of unity, the set {j, % 7% ---} must be finite. Therefore, j=1 or
—1. This implies that {«', a™'} is Gal(Q/Q)-stable.

Now, by the preceding sublemma, A®F : is Fpe-isogenous to a

product of elliptic curves over Fjpz (cf. [19] Lemma 1.0.3). Since
rank(/",) =2, these elliptic curves must be ordinary. Let w be a place
of Q(«) dividing p. By the theorem of Tate (Theorem 2.1.B), we have

ord,(ga* ") /ord,(¢*)=0 or 1 (i=1,---,d).
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Thus, ord,(a*7")/ord,(¢°)=1/2 or —1/2 (i=1,---,d). In particular,
ord,(a*')==+ord,(a). If ord,(a)=0, then & is a root of unity. Hence
we have d=1.

COROLLARY (4.2). If d=2, then G,~=sp(4, Q,)PQ,-id.
Proor. This follows immediately from Lemma (4.1).

For the remainder of this section, we assume that d is odd and that
d>3. The key step in determining &, is the following result:

THEOREM (4.3). The connected semistmple algebraic group Sy is almost
Q,-svmple.

To prove this theorem, it suffices to show that the Lie algebra
Lie(Sy)=[G,, G,] is simple. In order to apply classical representation
theory (over an algebraically closed field of characteristic 0), we extend
the base field from Q, to C,. Let W= W®Cl, S=Syc; and G=Lie(S).

Then W is a faithful, symplectic, lrredumble representation of S and &G
(cf. [3], Theorem A).

Suppose that G is not simple. We may assume that §=G,XG, is
the product of a simple Lie algebra &, and a semisimple Lie algebra
G,, such that W=W,QW,, where W, (resp. W,) is a faithful, symplectic
(resp. orthogonal), irreducible representation of &G, (resp. G,). Let
dim W,=2s, and dim W,=t. Then st=d, and s,¢ are odd numbers. Let
S, S,, S, be the connected, simply connected algebraic groups with Lie
algebras G, G,, G, respectively. Thus, we have S=S§,xS,. The repre-
sentations W, W,, W, of &, G,, G, integrate to representations p, p;, p, of
S,5.S, on W, W, W, respectively. Further, we have p=p,RQp; on
S=8,x8..

LEMMA (4.4). Under the preceding situation, Ker(o) =Ker(p,) X Ker(po,)
in S=8,x8S,.

PrROOF. Let Z, (resp. Z;) be the center of S, (resp. S,). Then Z=
Z,X Z, is the center of S. Since Lie(p), Lie(p,), Lie(o,) are faithful, the
kernels of p, p,, p;, lie in Z, Z,, Z, respectively. The restriction of p (resp.
o1, 02) to Z (resp. Z,, Z;) is a character x (resp. xi, ). We have

Y (21, Z2) = %1(24) %A2(%2) for all 2,€7Z, z,€ 2,

Because p, (resp. p,) is a symplectic (resp. an orthogonal) irreducible
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representation of S, (resp. S,)), we have p,(Z,)CZ(Sp(W,)={%1}, and
0:(Z,) C Z(So(Wy))={1} (since dim W, is odd). Hence y, is trivial. Thus,
11(2)x2(2:) =1 if and only if xi(2) =2.(2:)=1.

Now, let p:S—GL(W) be the faithful, symplectic, irreducible repre-
sentation of S, which was obtained (by extension of scalars) from the
original l-adic representation p,:S,—~GL(W)) over Q..

LEMMA (4.5). If G=Lie(S) is mot simple, then we can decompose S
as S, XS, where S, is a connected, almost simple algebraic group; and S,
is a montriviel, connected semisimple algebraic group. Moreover, p=
0:Rp, on W=W,QW,, where p, (resp. p.) is a faithful, symplectic (resp.
orthogonal), irreducible representation of S, (resp. S,).

Proor. In the situation of Lemma (4.4), we have S=S/Ker(p). If
we take S;=S;/ker(p:;), i=1,2; then our assertion follows immediately.

LEMMA (4.6). If G=Lie(S) is mot simple, then there exist integers

s>1, t>8 with the following properties:

(i) st=d, and hence s,t are odd integers.

(ii) G=sp(2s, C) X I, where sp(2s, C)) is the simple Lie algebra of type
C,, and 9 is a nontrivial semisimple Lie algebra.

(iii) The representation W of G is the temsor product W,QW, where
W, is the standard representation of sp(2s,C)), and W, is an
1rreductble orthogonal representation of Y of dimension t (odd).

ProoF. Suppose G=Lie(S) in not simple. By Lemma (4.5), we can
write S=S,X S, (S, is almost simple), and W=W,QW,. It suffices to
show that Lie(S;)=sp(2s, C,), where 2s=dim W,.

Note that W has Hodge-Tate decomposition W= W¢,(0)DW¢,(1) with
dim W, (0)=dim We,(1)=d (ef. [3], Lemma (3.2) and Theorem A). By
Sen’s local theory, one has an one-parameter subgroup h:G,—G,.-S
defined as follows:

, if 0
h(C)(m):{ o M o€ (o)
cx, it we We(1).
Let ¢ : G,—~GL(W) be the group homomorphism defined by
cx, if xeWe(0
sow={ T el
¢ ', if z¢ Wcl(l).

The image @ of ¢ is contained in (G,-Imh)NSL(W), and hence is a
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subgroup of S=S,xS,. Let p, be the projection of S onto S; where
1=1,2. Then ¢,=p.$ is an one-parameter subgroup of S; where i=1, 2.
We have the following result:

SUBLEMMA. The G,-action on W, defined by ¢, is of weights —1
and 1.

PRrROOF. Since the S-module W is isomorphic to the S,XS,-module
W, QW, we have é(c)(w,Qw,)=a(c)(w,)Q¢.(c)(w,), for all ceqG,,
w, € W, w,€ W,. W, is an orthogonal representation of S, of odd dimen-
sion. Hence 1 is an eigenvalue of ¢,(c) € GL(W,), for all c€G,. By the
definition of ¢, both of ¢ and c¢™' are the eigenvalues (with certain
multiplicities) of ¢,(c) € GL(W,). Our assertion follows.

Now, consider the connected reductive algebraic subgroup M=G,.-S,
of GL(W,), where G,,CGL(W,) is the group of homotheties of W, W,
is a faithful representation of M. On the other hand, by the preceding
sublemma, G,-Im ¢ CM/c, contains an 1-dimensional torus of weights 0
and 1. Thus, there exists an one-parameter subgroup ¢ of M, such that
the G,-action on W, which defined by ¢ is of weights 0 and 1.

Since S, is almost simple and M=G,,-S,, the triple (W,, C,, ¢) attached
to M satisfies the conditions (i), (ii), (iii), of the theorem of Serre (cf.
§2.4). Therefore, W, is defined by minuscule weights. Moreover, W,
is a faithful, symplectic, irreducible representation of dimension 2s, where
s is odd. By passing to Lie algebras, our assertions follow from Lemma
(2.2.2). This completes the proof of Lemma (4.6).

Now, we are ready to prove Theorem (4.3). The method essentially
follows the line of Serre’s method in [11].

Proor. Suppose that S, is not almost Q,-simple. In the notations
of Lemma (4.6), the Lie algebra G,®C, is isomorphic to
Q

(sp(2s, C,)PC,-id) X I

Further, the representation W, QC, of G,QC, is the tensor product

Q Q
W, QW,, where W, is the standafd represenltation of sp(2s,C), and W,
is an irreducible orthogonal representation of 4 of dimension t. st=d,
and hence s,t are odd numbers.
The following steps lead to a contradiction:
(1) By the theorem of Serre in §3.3 and Lemma (3.4), we can choose
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a place v€ 3x—(SUS,), such that we have the following properties:

(a) A has good reduction A, at v.

(b) v is of degree 1, and the prime number Nv=yp is large enough
such that the conclusion of Lemma (3.4) holds.

(e) rank(l",)=rank(Gy)=(s+1)+rank(4).

The characteristic polynomial P, ,(T) of =, equals f(7)?, where
f(T)=det(1—T-po(F,)| W), f(T)€ Z[T], and degf=2d. Because W,
is an orthogonal representation of 4 of odd dimension, 0 is a weight
for W,. Let A be the set (counting multiplicities) of all eigenvalues
of o/(F,)|w,€ GL(W)). By Lemma (4.6), A can be expressed as the
set (counting multiplicities) @-¥ of pairwise products of

O ={Aay, Aait, - - -, Aa,, Aa;'} (corresponds to W,) and
w:{ﬂh cccy, ‘B(g_l)/g, 1, /91—1, ey, ‘8(71_1)/2} (COI‘I‘eSpondS tO Wz)

Here 2, a; (1<1<5s), B; <1gjg%>, are in C¥. Let O be the

algebraic closure of Q in C,. Since f(T)¢€ Z[T], ® and ¥ are contained
in Q*. Note that @ is a subset of A. In other words, @ consists
of eigenvalues of =,.

Let I', (resp. I';) be the multiplicative subgroup of Q* generated
by @ (resp. ¥). Since @cA,I') is a free abelian subgroup of I,.
Consequently, I', is also a free abelian subgroup of I",. Recall that
W, and W, are faithful (cf. Lemma (4.5)), and the weights of W,
and W, are linearly independent over Q. By property (c) of (1),
we have the following properties:

(a) rank(l",)=rank(G,-Sp.)=s+1. In particular, all the elements
in @ are distinct.

(b) rank(l,)=rank(4{)>1.

(e¢) I''=I'®rI, in Q*.

Note that A is a Gal(Q/Q)-set. For each y €A, let T, : A—~Q* be the
map defined by T,(¢)=7¢"" for all p€A. We have the following
result:

LEMMA (4.7). The cardinality (counting multiplicities) of T,(A)NA

1s at least t if and only if y€®.
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ProoF. Let x€®. For each Bc ¥, we have T,(z8)=x8€A. Hence
the cardinality of T.(A)NA is at least t. Conversely, suppose that the
cardinality of T.,(A )ﬂA is at least ¢t for some z€® and Be¥. If
T.p(2'B)=(xB)*(x'f')* € A for some 2’ € ®—{x} and p’' € ¥, then the condi-
tion (xB)*(x’f’)~' € A yields a nontrivial relation between certain elements
of Iy and I',. This contradicts property (a), (b), (c), of (3). Thus, we
must have (xB)’(xf’)"'€A for all g/ €¥. This shows that p*-¥c¥. ¥
is a finite set, hence B is a root of unity. Since I, is a free abelian
group, we have f=1.

(5) Recall that the characteristic polynomial P, ,(T) of =, equals (f(T))%
Let q,(T)= 1] (T—=x). Then we have the following:

z€D

LEMMA (4.8). (a) q(T) is @ monic polynomial over Z.
(b) Y xeZ
€D
ProoF. For each o€ Gal(Q/Q), r €A, it is clear that T,(A)NA and
T,;,(A)NA (counting multiplicities) have the same -cardinalities. By
Lemma (4.7), @ is stable under the action of Gal(Q/Q). (a) and (b)
follow immediately.

LEMMA (4.9). Suppose that p>0. Then we have the following:
(a) X x#0 (mod p).

z€EQ

(b) For any prime P of Q lying over p, there exists x €@ such that
orde(x)=0.
Proor. Suppose that ¥ o=0. Then Tr(s(F))=23 ( zw) 0.
T€

This eontradicts our choice of the place v (cf. step (1), condltlon (b)).

So we may assume that > x+#0. Our assertion (a) follows easily from
2€P
Riemann hypothesis. Now, suppose that P|p and orde(z)>0 for all
x€®. Then we have ords( X x>>0; hence Z:,Dx is divisible by p, which
T€ED =€

contradicts assertion (a).

(6) Now, for any prime & of Q lying over p, letxz, be an element of
@ such that ord,(xs)=0. For any p in ¥, we have

orde(re) =1/2 (orde(xe- B)+orde(ze-£7))=0.
Thus, we have ord,(8%)=0 for all P|p. By Theorem 2.1.B, we con-
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clude that B is a root of unity. Hence p=1 for all fc¥, and
rank(%)=0. This contradicts our hypothesis and completes the proof
of Theorem (4.3).

To sum up, for primes I where D splits, we have the following
main result:

THEOREM (4.10). If d=1,2 or an odd number, then
Gi=sp(2d, Q.)DQ.-id.

ProOF. This follows from Corollary (4.2), Theorem (4.3), Proposition
(3.2), and Lemma (2.2.2).

REMARK. For prime ! where D doesn’t split, we shall discuss the
result in §5 (cf. Theorem (5.2)).

§5. The main theorems

In this section, we let dim A=2d with d=1,2 or an odd number,
and Endx(A)®Q=D an indefinite quaternion algebra over Q. For sim-
z

plicity, we call them abelian varieties of type (IQ).

As in 8§38, let us fix a polarization on A and let ¢ be the nonde-
generate alternating form (associated to the chosen polarization) on V=
H,(A(C), Q). Denote by M=MT(A(C)) the Mumford-Tate group of A(C),
and H=Hod(A(C))=(MNSL,)° the Hodge group of A(C). We have M=
H-G, and Endg(V)=End,(V)=D.

Let Vo= V(QX)C and ¢, be the C-linear extension of ¢ to VX V.

As we have pointed out in [3], the C-linear extension ’ of the Rosati
involution on DRC=M,(C) is the usual transpose (up to conjugation).
Q

By the same arguments as Theorem A in [3], we have the following:
PropPoSITION (5.1). There exists an M, c~submodule WoC V¢ of dimen-
ston 2d, such that (a) the representation V. of H, is isomorphic to the

direct sum of two copies of the representation W, of H,c over C. (b)
G| Wex Wi is a nondegenerate H,c-equivariant alternating form.

PrOOF. The same as Theorem A in [3]. O

On the other hand, it is well known that the representation V of
M is defined by minuscule weights (cf. [9], [12]). By Lemma (2.2.2), we
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have M,;;=GSp(W¢, ¢c). Let m=Lie(M).
THEOREM (5.2). G,=m®Q, for all abelian varieties of type (IQ).
Q

ProOF. Since G,cm®Q,, it suffices to show that §,QC,=(mRQ,)RC..
Q Q Q Q

Recall that the rank of G, is independent of I. For pxl'imes l Wherel D
splits, the equality has been established by the results in §4. For
primes [ where D does not split, by extension of scalars to C,, the same
arguments as in the case where D splits, Sy, is an irreducible subgroup
of Sp,; of rank d. We conclude that Lie(Sy¢,) =sp(2d, C;). This completes
the proof.

It is well known that a theorem of S. G. Tankeev (Theorem 5.1,
[14]) and a result of Serre [12] imply the Hodge conjecture for simple
abelian varieties of type (IQ) except when dim A=4.

For dim A=4, one sees that the Lie algebra m=sp(4, 0)Q-id. By
the same calculation of invariants as in [9], it is easy to check that the
(1, 1)-criterion holds for such abelian varieties A(C). Thus we have the
following:

COROLLARY (5.3). The Hodge conjecture is true for A(C), where A is
an abelian variety of type (IQ).

COROLLARY (5.4). The Tate conjecture is true for abelian varieties
of type (1Q).

Proor. After Faltings proved his theorems ([4], §5, Satz 3, Satz 4),
it is well known that if §,=m®Q,, then the conjecture of Hodge, Tate
Q

on algebraic cycles (ef. [9], [17]) over A(C), A respectively are equivalent.
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