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On the Anosov diffeomorphisms corresponding to geodesic
flows on negatively curved closed surfaces

By Norikazu HASHIGUCHI

§1. Introduction.

In this paper, we study Birkhoff’s sections for the geodesic flows of
closed orientable surfaces with the constant negative curvature.

In 1917, Birkhoff defined a surface of section for a flow in his topolog-
ical study of Laglange’s equations of motion ([B]). This surface of
section is called Birkhoff’s section. In [F], Fried constructed explicitly
Birkhoff’s section for the geodesic flows of negatively curved surfaces,
and he showed the way of reconstruction of the geodesic flows from
“first return maps” for these sections. Recently in [G], Ghys proved
that these maps are topologically semi-conjugate to hyperbolic toral auto-
morphisms, and he calculated the traces of these matrices. In this paper,
the author determines the conjugacy classes of these matrices and con-
structs the geodesic flows concretely.

The author would like to thank Professor T. Tsuboi for his patient
advice and continuous encouragement.

§2. Birkhoff’s section.

Let X, be a closed orientable surface of genus g (9=2). We con-
sider a Riemannian metric with the constant negative curvature —1 on
it. (We have the same results as far as the metric has the constant
negative curvature —1. So we use the symmetric one.) Let F, denote
the geodesic flow on the unit tangent vector bundle T\3, of Y,. Fried
defined Birkhoff’s section for F', as follows. Let g,, 9, -+, g.. be the
simple closed geodesics shown in Figure 1. These geodesics divide X,
into four 2¢9+2 gons P,, P,, P,, P, where P, and P, are named so that
they intersect at only 2g+2 vertices. Then for t=1,2, we choose a
family C; of convex smooth simple closed curves which fills the interior
of P, with one singularity o, deleted (Figure 2). Let Sc T3, be the
closure of the set of the unit vectors tangent to the curves belonging
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Figure 1 Figure 2

to C.. Ghys showed that S has the following properties.

1. S is a smooth orientable surface with boundaries which consist of
4g+4 closed orbits of F.

2. The intericr of S is transverse to F,, and the first return map

F:Int(S)—1Int(S)

extends to a diffeomorphism F of S.
3. The Euler characteristic of S is —(4g+4).

From the facts 1 and 3, we see that S is diffeomorphic to a torus
with 4g+4 open disks deleted.

We look at the section S more closely. Put S;=SNp:'(P) (=1, 2)
where p,: T\Y,—2, is the bundle projection. S; is an annulus which
contains the fibre over the singularity of C; as a center circle. Now we
consider the universal covering D of X, (which is the Poincaré disk), and
its unit tangent vector bundle T.D. We use a natural trivialization ¢,
of T\D given by

t, : T\D>v—>(p(v), e(v)) € DXS?,

where p: T\D—D is the bundle projection and e(v) (€ S'=4aD) is the end
point of the geodesic starting at p(v) in the direction of v. We give 0D
the counterclockwise orientation. We fix the lifts of P, to D as are
shown in Figure 3. Then D is divided into infinitely many 2¢g-+2 gons
which are identified with P; under the covering transformations on D.
Let C;, and C;_ denote the curves of C; with the counterclockwise
orientation and the clockwise orientation, respectively. We identify S;
with a lift S,cT\D, and parametrize S; as follows. Let J,, be the
boundary component of S; corresponding to C;.. ;. is divided into 4g+4
edges i, hi,, ---, v h3¥* where h?, corresponds to a half of the
geodesic g,. We obtain S by identifying v,.’s with v,_’s and v,,’s with
v,.’8. S0 {h.}ic1.2.i1,2,-00.20+2 TOrm the boundary of S.
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Figure 3

Now we define the maps m;:S,—S' to be the restrictions of ¢ to S,.
Int(S;) is foliated by open intervals m;*(a) (¢ €S'). So Int(S;) is identi-
fied with (0,1)xS" such that (0,1)x{a} (@€S") is a leaf and {b}xS"
(be(0,1), b~1/2) is the lift of an oriented curve of C,, when 0<b<1/2,
of C;_ when 1/2<b<1. Let k;: Int(S;)—(0, 1) be a projection with respect
to this trivialization. By contracting k. to a point, we define S., which
is also an annulus. S, is identified with [0,1]xS* by k. x i, where F,:
S,—[0, 1] is the extention of k, and #,: S—S! is induced by m,. (#; can
be defined because m; maps each ki, to a point.)

We obtain 2-dimensional torus S by éontracting each boundary com-
ponen‘g of S to a point. The diffeomorphism F induces a homeomorphism
F of S. Ghys showed that:

THEOREM A. F is conjugate to a hyperbolic toral automorphism.
That s, there is @ matriz A, € SL(2, Z) with |trace(4,)|>2, and a homeo-
morphism H: T°=R*[Z*—S such that

A,=H'FoH.
(Here A, ts the diffeomorphism of T* induced by A,.)

In this paper, the author determines the conjugacy class of A,.

THEOREM B. Under some basis of S, A, is written as follows:
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29°—1 29(9—1) g g—1\y
A,= (= _
’ <2g(g+1) 29°—1 ) ( <g+1 g >>
In §3, we find the basis of S, and calculate entries of A,.

§3. Proof of the Theorem B.

To compute the entries of A,, we find a nice basis of 7% and examine
the action of A,. The basis <& 8> of T are two simple closed curves
representing generators of the fundamental group =,(7%) of 7"

To begin with, we find two simple closed curves of S which give
rise to the basis of S. Choose an oriented simple closed curve belonging
to C,; which is near the singularity o,. The lift of this curve to T.%,
is the simple closed curve a in S. B is the lift of the simple closed
oriented curve which is a geodesic through u,,, 0, U=V, 05 V,ra="Ugs2
in P,UP, (Where u; and v; are vertices of P, and P, respectively. They
are named counterclockwise as in Figure 3). This geodesic intersects
the curves of C; transversely. This geodesic has two lifts in S. Now we
take the one such that the part over (u,.so0,) is in k7' (0,1/2) and not
in k' (1/2, 1).

LEMMA. The two simple closed curves & and B in S which are the
image of a and B form the basis of S.

PROOF. Because a and S intersect transversely only once in Int(S),
so do @ and B in S. Then they represent the basis of =,(S). |

To obtain S, we identified v,,’s with v,;’s, and contract each boundary
component of this surface S to a point. So we can get S by pasting S,
and S, on their edges 0. which correspond to d,.. The restriction of
7; to 0;, is an orientation preserving homeomorphism. Identifying §;,
with aD=S"' by this map, the pasting maps between 6,, and 6,_, 6,, and
5, are homeomorphisms of 9D. We also obtain a map k:S—S'=
[0, 2]/0~2 such that

{ k. (x) for xS,
Eyx)+1  for z€S.

The curve « is contained in Int(S;) and m,|a is an orientation preserving
homeomorphism because of the convexity of elements of C;. The curve
B starts from d,,, and goes across p*(0,), 0,-=0,,, p '(0;) and d,_=d,, in
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S. p(B) intersects elements of C; transversely, so B intersects k7'(a)
(a € S'=[0, 2]/0~2) transversely. kl,@ is also an orientation preserving
homeomorphism. From this fact, we see the following fact;

If y is a closed curve in S, then the fact that y represents

a[a]+b[B] a,bez

A

in 7,(S) is the same as follows.
1. The image k,(y) winds S'=[0,2]/0~2 b times. (S' has the natural
orientation.)
2. We can choose a closed curve y’ in S, which represents [r]—b[ﬁ].
Then a is the winding number of the image () with respect to
S'=aD.

(Here we identify 7,(S) with a free homotopy class [S!, S1)

Using the above fact, we can calculate how F[&] and F,[B] are
represented by [&] and [8] in 7,(S). We obtain

Filal=(2¢*—1)[a]+29(9+1)[B] )
Fy[B1=2g(g—1[A1+ (29"~ 1)[B] in m(S).

(When we calculate the winding number, p(e) and p(8) in D are con-
sidered (Figure 3). Moving p(a) and p(B8) along geodesics, we observe
through which vertices the images pass in 2g+2 gons corresponding to
P, and P,. This observation gives us the winding numbers.)

So Theorem B is proved.

REMARK. Ghys also showed that the trace of A, is 4g°—2. But the
conjugacy classes of SL(2, Z) are not determined by traces ([S-F]).

§4. Reconstruction of F',.

In this section, we reconstruct F', from A,. Fried constructed transi-
tive Anosov flows on closed 3-manifolds from some pseudo-Anosov maps.
We use his method.

Let x, 2, -+, 2,4 € T® be the fixed points of fl,: T*—T¢, T, be
TA{,, Ts, - - -, X454} and T be the natural compactification of 7; obtained
by adding boundary circles. A,|7, induces a homeomorphism A,: T—T
which maps each boundary circle onto itself. We consider the suspen-
sion flow ¢¥: M*—>M* where M* is the mapping torus of A, The
boundary of M* consists of 4g-+4 tori «f, «¥, ---, x¥,, where x¥ corre-
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sponds to x;. x¥ is given a fixed system of coordinate of H,(x}) as fol-
lows.

a) The first generator, meridian m, of H,(x¥) is one of the closed
orbits of &F|x¥.

b) The second generator, longitude [, of H,(x}) is the boundary of
fibre of the mapping torus M*—S' with the clockwise orientation (Figure
4).

x¥ is foliated by circles which are transverse to all orbits of ¢f|a¥
and represent m+! in H(x}). Collapsing each leaf of the circle foliation
on x¥, we obtain a new flow ¢,: M—M which is topologically conjugate
to the geodesic flow F,: T\Y,—T.2,.

Figure 4 Figure 5

REMARK. From a topological point of view, M is obtained from the
mapping torus of A, by (1,1)-Dehn surgeries.

To begin with, we choose x,, 2, ---,%,,,, from the fixed points of
A, (A, has 4g°—4 fixed points). For this purpose, it is useful to know
why A, is written as the square of Bg:—<g il‘g g1> Let V be a
plane which includes g, g,, « -, gss. (Figure 5). So V divides X, into
P,UP, and P,UP, Consider the reflection t:23¥,—2, with respect to V.
We may assume ¢(P,)=P, and t(P,)=P,. We define the family of simple
closed curves in P, and P, as C,=t(C,) and C,=t(C,) respectively. For
1=38,4, as in the case of C, and C,, we get sections S;c T.Y, for F, over
P,. S§'=8S,US, is also Birkhoff’s section for F,, SUS’ is a closed surface
and F:SUS'—-SUS’ is the “first return map” for F,. Because of the
convexity of elements of C;, F(S)=S"and F(S')=S. Clearly, F=F|S-F|S.
t induces 4 :T,Y¥,—T.5, Then ToJ=idrs and T(S)=S. Because
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F,od=9F, we can see the following.

LEMMA. F and 9 commute i.e. Fod = oF.
By this lemma, we get
FIS' =T |SoF|Se(T)|S'=T | F|S-T | ',
So F=F|S'oF|S=T|S'cF|Sod'|S'oF|S=(T'|S'sF|S).

We obtain 2-dimensional torus S’ from S in the same way as we
get S. Let I IS’ and F|S be the map induced by I'|S’ and F|S, respec-
tively. Then F'=(J|SoF|S).. In order to see that HoT|S'cF|ScH=B,,
we need the next proposition.

PROPOSITION. h : T*>—T* is a hyperbolic toral automorphism induced
by he SL(2, Z), and f: T*—>T* is an orientation preserving C' diffeomor-
phism. If f?=h? then f==xh.

PrOOF. Let &*(¥*) be the (un)stable foliation for & and ¥’* (¢=s, u)
be the foliation induced from <F° by f ie. F"=f"*(¥°). Because f=h’
preserves <’°, we have the following lemma.

LEMMA. f preserves F° (o0=s,u) i.e. F"*=F".

2 and %— (]2|>1) denote the eigenvalue of h. Since F° is ergodic in

T? there exists the unique transversal measure p° up to positive mul-
tiples. f*p’=p*° is also the transversal measure of F°. So p*’=c°p’

2
where ¢’ is a positive constant. Clearly (hﬂ*y’:(%) poand (R*)*pr=2p"

These imply (c*’)zz(%>2 and (¢*)*=2. 8o ¢'=|1/2] and c¢*=|4|.

Let = : R°—T" be the orientation preserving universal covering. Put
z*pr=p°. Then n*p* =c’@i’. Let 4 be the lift of ¥° and f: R*—R* be
the lift of f.

Now we transform the coordinate of R® as follows;

_We take % as the x-axis and &} as the y-axis where &5 is the leaf

of &° containing the origin. % (resp. &) is measured by 7 (resp. f*).
(i.e. we take the coordinate of which basis are the eigenvectors of #.)

In this coordinate system of R, we can see that f is affine. So
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-~ a
f'=-_L-< h b) a,bc R. We can take the universal covering 7:R—T"
001

such that a=b=0. Hence f==+h. This implies f==+h. |

Now we fix the universal covering = :R*—T? which satisfies that
H(z(0,0)) is the fixed point of F' corresponding to +g,. (Each g; cor-
responds to two oriented closed geodesics +g;.) Then, from this proposi-
tion,

H“oglgoFISoH:iB, where =+ B, is induced by =+B,.

EAZ'IS’oF‘]S fixes 2g+2 points corresponding to closed geodesics =+g,,
igh i‘gs, cry, igzﬂ+2. And

# Fix(B ) |Trace(B,) —2|=2¢g+2,
¥ Fix(—B,) =|Trace(— B,) —2| =29 —2.

So H'J |8 «F|SeH=B,.

Let V'’ be a plane which includes gy, g5, g5, - - -, 95,41 (Figure 5) and
t':Y,—2, be the reflection with respect to V’. In the same way used
in the case of V, we get I’: T3, —T.%, E[’IS’ is induced by I’|S.

We also see that the lift of HoG"|S'«F|SoH with respect to r is
the affine map. So

a
B,(a,b)= By (a,b€(0,1), (a,b)=(0,0)).
001

(G"18F|S=F, so (H9"’|8'<F|SoH)*=A4, Hence

(B,(a, b))2=< 4, B <§>+<§>>

00 1

and A, induce the same diffeomorphisms of 7% Therefore,

B”<Z>+(Z>E<g> mod Z* i.e. ﬂ(Z)EFix(—f?,).

Fix(B,) and Fix(—B,) are as follows;

Fix(—B,):{n(g—m——,O , n<g’m1 2) m=0,1,2, --,g—z} (g odd)
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:{rc( m ,O>, n( 2m+1 1> m=0,1, 2, ---,g—Z} (g even)

g—1 2(9—1)
Fix(B,) = {”(ﬂf“)‘ n(ﬁ_ %) m=0,1,2, - } (g o0dd)
:{n(g_mﬁ, 0), 7—( 2(1::11) ;) m=0,1,2, - } (g even).

Fix(B”) corresponds to the oriented closed geodesics =+g,,. Each +g,,
is mapped to the reversely oriented closed geodesics F¢,. by I’|S'oF|S.
So —B,(a, b)(Fix(B,))=Fix(B,), especially

n-(—Bg(a, b)( g >>=7r< Z ) e Fix(B,).

e )1 (1)) won v (5)- () r (5

r (ﬂ%) when gisodd. InS, +¢.Cd,. and —g,Cd,_. So +g, is actually

moved to the y-direction by <’|S’oF|S. Then (1(42> is not valid. Let

a, be the oriented arc which connects +g¢g, and —g, in S, such that
the image m,(a,) goes in the direction of the orientation of S'=8D and
does not wind S* any times, and a, be the oriented arc which connects
—g, and +g, in S, such that the image m,(a,) goes in the same direction
and does not wind S! any times. a,Ua, is an oriented loop in S when
we choose edges of a; properly. The image e(a,Ua,) winds S'=8D once
because p(a,Ua,) moves in D such that

U0, > Ui 4y = Vi > —V; (for some 1)

where u; and u,,, are vertices of P, v, and v,,, are vertices of 2¢g+2
gon which corresponds to P, by an isometry of D, and ¢ is the singura-
lity of this 2¢g+2 gon (Figure 3).

Hence -+g, is actually moved to the z-direction by <’|S’-F|S. So

(1(;2> is not valid too. Even if g is odd, ( ) Gg)

{24, gy - -+, Tygya) ©T? correspond to {=£g,, *¢, - -, +gy}CS. And
{9, xg5 -, igZ‘Q“l}AcOgr?Spond to Fix(d'|SoF|S), {i‘gz, =/ PRI /ey
correspond to Fix(<|S'oF|S).

So

[ T, - - - Baysa) =Fix(B,) U Fix<}f?,<_;_, %))
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m 1
= 7r——,1>; 1=0, 1, m=0,12 .- 20+1\.
f <2(g+1) zr ™ o+1}

Therefore,

THEOREM C. The geodesic flow F, can be reconstructed as follows;
1. Make the suspension flow ¢¥ from A,.
2. Operate Fried’s (1,1)-Dehn surgeries around 4g+4 closed orbits of
¥ which correspond to 4g+4 fixed points of A,

m 1
_m z); 1=0. 1, m=0,1,2 ---,29+1.
{”(2(g+1) g ™ o+1}
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