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Principal zeta-function of non-degenerate complete

intersection singularity
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By Mutsuo OKA

Abstract. Let f=(fi, ---, fx) : (C™** 0)—(C¥%, 0) be a germ of an analytic
mapping such that V={zeC"**; f|(2)=--- =f.(2) =0} is non-degenerate
complete intersection variety with an isolated singularity at the origin.
We give a formula for the principal zeta-function of the monodromy of
the Milnor fibration. As a corollary, we obtain a formula for the zeta-
function of iterated hyperplane sections of a Milnor fibration of a non-
degenerate analytic function.

§1. Introduction.

Let f(z) be a germ of an analytic function of (n+k)-variables with
F(0)=0 and we assume that f is non-degenerate in the sense of the Newton
boundary. Let [,(z),---,li_,(2) be general linear forms and we consider
the iterated hyperplane sections of f by L={zC"**; l,(z)= -+ =1,_,(0)=0}.
Namely let f’ be the restriction of f to L. It is known that the Milnor
fibration of f’ is uniquely determined by 7'(f) and the integer k—1 by a
result of Teissier ([T]). However, as far as I know, we do not have any
concrete formula for the zeta-function of the monodromy of f’ in term of
the Newton boundary I(f) as the formula of Varchenko in the case of
k=1. The case that n=1, k=2 is treated by Mima ([Mi]). The main dif-
ficulty comes from the fact that f’ may be in general degenerate on some
faces of the Newton boundary as a function of (n+1)-variables if we elimi-
nate (k—1)-variables using l,= --- =l,_;=0. However the variety f’/%(0) is
non-degenerate as a complete intersection variety {z€C"**; [,(2)= -+ =1;_,(2)
=f(2)=0}. This paper starts from this observation.

Let f=(fi, -, fi): (C*** 0)->(C* 0) be a germ of an analytic mapping
at 0 with £(0)=0. We assume that the fiber of the origin V={zeC"*":
fi(z)= -+ =fi(2)=0} is non-degenerate in the sense of the Newton boundary.
(See §4 for the definition.) We consider the Milnor fibration of £ at the
origin. Then our original problem is reduced to the determination of the
zeta-function of the monodromy along the path fi=--- =fi_,=0, |fil=¢ i.e.,
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the k-th principal zeta-function. (See §3.) A key step for the determina-
tion of the principal zeta-function is to calculate the topological Euler-
Poincaré characteristic of the non-degenerate complete intersection variety
in the affine torus

Z=Yy=, -, Yn) €C*™; hi(y)= --- =hy(y)=0}

in the words of the respective Newton polyhedra {4(h;)};-:..x. This is
done by Khovanskii in [Kh2]. Now using a toroidal resolution of V and a
theorem of A’Campo [A], we obtain our main result Theorem (6.8) which
gives a formula about the principal zeta-function {.(t) as follows.
G()= II II (1—3%0/0)x@,
1112k QEST

Here S, is a finite set which is called the I-data set of V and it depends
only on the restriction of f to C’. y(Q) is an integer which depends only
on 4@ ; [N, -+, 4(Q; fi). This formula is a generalization of the result of
Varchenko in the case of non-degenerate hypersurfaces ([V]). We also
gives a formula about the Milnor number as an immediate corollary. The
zeta-function of the iterated hyperplane sections is obtained simultaneously
(See §8.). This paper is composed as follows:

§2. Minkowski’s mixed volume and a theorem of Bernshtein

§3. Complete intersection variety and Milnor fibration

§4. Non-degenerate complete intersection variety and a toroidal resolution
§5. Euler-Poincaré characteristic of an affine complete intersection variety
§6. Zeta-function and Milnor number

§7. Similar complete intersection variety

§8. Generic hyperplane sections

§9. Irreducible components of a complete intersection space curve

§2. Minkowski’s mixed volume and a theorem of Bernshtein.

We first recall the definition of Minkowski’s mixed volume. For de-
tails, see Busemann [Bs]. Let S, ---, S, be compact convex polyhedra in
R™ and let A,:,A, be positive real numbers. It is known that
Vol (2,S:+ -+ +2,S,) is a homogeneous polynomial of the variables 2, -, 2
where Vol, is the m-dimensional Euclidean volume. Minkowski’s mixed
volume V,(S, -+, S,) is defined by (the coefficient of A,--+2,)/m! in the
polynomial Vol,(4,S;+ -+ +21.S,). It is also known that V,(S,:-+,S,) is
a symmetric multilinear function of the ‘variables’ S, **+, Sm. Vu(Sy, ***, Sn)
is invariant under the parallel translation of each variable S;—S;+a; for
any vector ;. It satisfies the following equality ([B]).
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@.1) MIVa(Sy -+, Sp)= 3 )(—l)m""Voim( = s)

IC(1,--, iel

As a special case, we have
(2.2) VulS, -+, S)=Vol.(S) .

The case that S,=:-=S,=S and S,,;,= -+ =S,=K is particularly impor-
tant. We denote the corresponding Minkowski’'s mixed volume by
Va.m-s(S, K). Then we have the following equality.

2.3) Voln(2S+pK)= 5 (?)xm-msvm,s(s, K).

More generally, let S, -+, S; be compact convex polyhedra such that each
S; is generated by integral vertices and dim(S,+ --- +S,)=%k. By taking
a parallel translation if necessary, we may assume that the affine subspace
of minimal dimension which includes S; contains the origin for i1=1,---, k.
Take a unimodular matrix ¢ such that the respective images a(S,), -*-, a(Sy)
are included in R*={xeR™;x,=0 (j>k)}. We define the generalized
Minkowski's mixzed volume Vi(S,, -+, S:) by the Minkowski’s mixed volume
Vk(U(Sx); Tty U(Sk))-

Let h(y)=32",a.y" be a Laurent polynomial. The Newton polyhedron
4(h) of h is, by definition, the minimal convex polyhedron which contains
v, +,vy. Here we have assumed that a;#0 for each 7. Let P be any
covector. Let d(P; h)=min{P(vy), -+, P(vy)}. The face function hp(y) is
defined as usual by the partial sum Spq,y-aem el Now we recall a
beautiful theorem of Bernshtein which plays an important role in this
paper. Let hy(y), -, ha(y) be given Laurent polynomials and let Z=
{yesC*™; h(y)= - =h,(y)=0}. We say that Z is non-degenerate in the
weak sense if the following condition is satisfied. (a) For any non-zero
covector P, the system of equations {h,r(y)= --* =h.r(y)=0} has no solu-
tion in C*™. We say that Z is non-degenerate if the following condition
is also satisfied. (b) The holomorphic m-form dh,A --+ Adh, is nowhere
vanishing on Z. This condition is equivalent to the simplicity of the solu-
tions of Z.

THEOREM (2.4) ([B]). Assume that Z is mon-degenerate im the weak
sense. Then the number of Z (counting the wmultiplicity) 1s equal to
m! Vau(d(hy), -+, A(hy)). If Z is non-degenerate, Z consists of m!V,(d(hy),
-+, d(hy)) stmple points.
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By the definition, it is obvious that Minkowski’s mixed volume is non-
negative and V,.(S, -, S,)=0 if dim(S,+ --- +S»)<m. However this is
not a necessary condition for V,.(S, --+,Sn)=0. In fact, a necessary and
sufficient condition for the positivity is the following.

PROPOSITION (2.5). Vn(Sy, -+, Sx)>0 if and only if the following con-
dition s satisfied.

(A For any subset I of {1,---,m}, dim X2,;c,S;=|I|. (Here |I| is the
cardinality of I.)

PROOF. First assume that dim 33;c,;S;<|I| for some I. To show that
Va(Sy, -+, Sn)=0, we way assume that each S; is generated by rational
vertices as Vi, (Sy, -+, Sn) is continuous in S,, .-+, S.. Multiplying a suitable
integers and using the linearity of V,(S,-:+,S,) in S;, we may even
assume that each S; is generated by integral vertices. Let h(y), -, hn(y)
be Laurent polynomials in y=(y,, :-, ¥») such that 4(h,)=S; and the sys-
tem of equation h,(y)= -+ =h,()=0 is non-degenerate. Let s=dim 3;c;S;.
Using a Laurent coordinate change if necessary (see §5 for definition), we
may assume that h;(y) contains only the variables y, ---,y, for t€l. By
Theorem (2.4) and the assumption s<|I|, the subsystem of equation
{yesC*; hy(y)=0, 1= I} has no solution. Thus h(y)=--- =h.(y)=0 has no
solution. Again by Theorem (2.4), this implies that V.,.(S;, -+, Sn)=0.
Now we show the opposite direction. Assume that the (A,)-condition is
satisfied. First note that dim S;=1 by the (A,)-condition.

ASSERTION (2.5.1). Assume that (Ag)-condition is satisfied. If dim S,
>1, there exists a codimension one boundary face 4, of S; such that
{S,, -+, d;, -+, S} satisfies the (Ay)-condition.

PROOF OF ASSERTION (2.5.1). We assume that the assertion is false.
Let 4, and 4; be codimension one boundary faces of S; such that
dim(4;+4})=dim S;. Then by the assumption there are subsets I and J
of {1,---, m} such that +&I\UJ and

dim <Ai+ ) S,->§]I|, dim<A;+ ) S,)gm.
JEI JEJ
As dim 3e;nsS: = INJ| by the (A)-condition, we have that
dim(di-}—zﬁ—l— ;Jsj>g|1|+|J|—1mJ|:|IuJ[.
jeIVU

This implies that dim(S;+ = ;e;0sS,) S|IUJ|, contradicting the (A,)-condi-
tion on S, -, Sn.
We apply the assertion successively to obtain one-dimensional faces L;
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of S; respectively for i=1, -+, m so that {L,, -+, L} satisfies (A,)-condition.
Let L,=P,Q, and let L,=P,—Q,. Then it is easy to see that m! V(L -+, Ly)
=|det(L,, -+, L,)|]. The (Ap)-condition for {L,---,L,} implies that
|det(L,, -+, L,)|>0. By the monotone property of Minkowski’'s mixed
volume (see [Bs]), we have the inequality

Vm(Sl.v Tty Sm)g Vm(LI: Tty Lm)>0 .

This completes the proof of Proposition (2.5).

§3. Complete intersection variety and Milnor fibration.

Let f=(f,, -+, fi): (C™**,0)—(C* 0) be a germ of an analytic mapping
such that £(0)=0. We assume that V=f"'0) is a germ of a complete
intersection variety with an isolated singularity at 0. By an abuse of
language, we assume that f is defined in a neighborhood of the origin.
Let & be a sufficiently small positive number so that any sphere S. (¢<¢)
meets transversely with V. Here S, is the sphere of radius ¢ i.e., S.=
{zeC"**; ||z]| =¢}. Let U be a sufficiently small neighborhood of the origin
0 of the target space C* such that S., meets transversely with any fiber
f~Y(s) with s€U. Let B.={z; ||lzl|[<¢} and let D, be the set of the critical
values of the restriction F|F(U)NB,. Let X*=f(U)NB.—f'(D,).
Then by the fibration theorem of Ehresmann (W), f: X*>U—D, is a C*-
fibration. This fibration is called the Milnor fibration of £ at the origin.
Let F' be the fiber. It is known that F' is homotopically a bouquet of n-
dimensional spheres by Milnor for k=1 ((M]) and by Hamm for the general
case ([H1]). See also [L], [Di2] and [Lo]. The Milnor number is defined
by the n-th Betti number of F' and we denote the Milnor number by .
Let p;: mi(U—D;)— Aut(H;(F'; Q)) be the monodromy representation homo-
morphism. For each ge=(U—D,), we associate the corresponding zeta-
function ,(t) by the formula £, (t)=Pyt; g) 'P.(t; g)"""" where P,(t; g)=
det(I—tpi(g)). Note that the Milnor number p can be computed from the
equality :

(3.1) degree{ (t)=—1+(—1)""'p.

Let Vio,={z€B. ; filz)= - =fe1(2)=0}. We assume that V,_, is also
a complete intersection variety with an isolated singularity at the origin.
We are particularly interested in {,(t) where g is represented by the loop
f;=0 (j#1) and |f;|=¢ where ¢ is small enough. The corresponding mono-
dromy is called the i-th principal monodromy ([Da]). For brevity’s sake,
we denote the corresponding zeta-function by {;(t) and we call &;(t) the
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i-th principal zeta-function. If {f;},-1.x, are generic linear forms, {.(t)
is equal to the zeta-function of the Milnor fibration of the function f%
which is the restriction of f; to the (n+1)-dimensional plane L={f,=---
=fi.i=0}. Let n:V,.,—Vi_, be a resolution of V.., and let fi be the
composition fior. We assume that the following conditions are satisfied.
Let V. be the proper transform of V. by = and let fi{(0)=V,UD,\ ---
UD, where D, is assumed to be irreducible. Then (1) z: Vi— V. is a res-
olution of V.. (2) Each exceptional divisor D; is smooth and f;7%(0) has
only normal crossing singularities. Let m, be the order of zeros of the
function f; along D, and let D,=D,—(\U;.eD;)UV:. The following theorem
is due to A’Campo ([Al]).

THEOREM (3.2). Under the above assumption, we have the equality :
()= f[ (1—¢™%) 2Dy
1=1

where y(D:) is the topological Euler-Poincaré characteristic of Di.

§4. Non-degenerate complete intersection variety
and its resolution.

Let f(z)=2,a.,2* be an analytic function of (n+k)-variables which is
defined in a neighborhood of the origin. The Newton polyhedron I',.(f) is
the convex hull of the union of {v+R%*} for v such that a,#0. The
Newton boundary I'(f) is the union of the compact faces of the Newton
polyhedron 7',(f). The dual space of R"* can be canonically identified
with R™** itself by the Euclidean inner product. Let N be the set of
integral dual vectors under this identification and let N* be the set of
positive integral dual vectors. A weight vector or covector is a synonym
of an integral dual vector in this paper. We use the column vectors to
show the dual vectors hereafter. Let P=%p, -, Pn+r). For each xe
R"** P(x) is defined by xP= 37! p,x;. P is called a positive (respectively
a strictly positive) dual vector if p,=0 (respectively p;>0) for i=1,---,
n-+k. The notation P>0 shows that P is strictly positive. For a positive
integral dual vector P N*, we define d(P; f) as the minimal value of the
restriction P|[.(f) i.e., d(P; f)=min{P(x); x=I'(f)} and let 4(P; f)=
{xel'.(f); P(x)=d(P; f)}. We define f»(2)=f1r.s(2) Where f4(2)=2Z,csa.2".
We call fp(2) the face function of f with respect to P. We define the
coordinate subspace C? and C*! by C'={z=(zy, -, 24+x); 2;,=0, j&I} and

* ={zeC""; z;,=027j¢&I} respectively. We also use the notations f’/=
fIC* and N;={P=N; p,=0 if 1&I}.
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Let f(z)=(fi(z), -+, fi(z)) be an analytic mapping from a neighborhood
U of the orlgm of C"*" to C* such that f(0)=0. We say that the variety
V={zeU; jl(z - =f(2)=0} is a mon-degenerate complete intersection

ariety at 0 (W1th respect to the Newton boundary) if for any strictly
positive weight vector P= (pl,'-',pﬁk) the k-form dfipA -+ Adfip does
not vanish on V*(P)={z€C*"**; fip(z)= -+ =fip(2)=0} ((Kh1]). Here f,»
is the face function of f, with respect to P. Hereafter we assume that
V is a non-degenerate complete intersection variety and that each f, is
convenient. Namely f' is not identically zero for any a=1,-:-,k and 1=
1,---,n+k. We define an equivalent relation ~ on the space of the posi-
tive dual vectors N* by P~Q if and only if 4(P; f;)=4(Q; f.) for each
1=1,---, k. This defines a conical polyhedral subdivision I'*(f,---,fs) of
N+ Whlch we call the dual Newton diagram of f=(f,, -, fi). If we define
f=fi-*fi, the dual Newton diagram 7"*(f) in the sense of [O2] is equal to
T'*(fy, -, fx). Let 2* be a fixed unimodular simplicial subdivision of
I'*(f, -+, fx) and let #: X—C™** be the associated toroidal modification map
([E], [V], [02])). Let V be the proper transform of V and let =: V—V be
the restriction of # to V. It is well-known that =: V—V is a good res-
olution of V. We assume that the set of the vertices of X* which are

not strictly positive is equal to {R, -+, R,,:} where R,=%0,---, f, -+, 0).
This implies, in particular, that #: X—#"%(0)—C"**—{0} is biholomorphic.
We briefly recall the construction of X. X is covered by affine spaces
C»*" with coordinate y,=(¥,.1, ***, ¥s.n+x) Where ¢ moves in (n+k)-simplices
of ¥*. An (n+k)-simplex is always identified with a unimodular (n+k) X
(n+k) matrix. If ¢=(P, -, Poyx) is an (n+k)-unimodular matrix, the
corresponding cone in 2* is defined by {12t Pi; ty, o, taex=0}. Py, -,
P, are called vertices of the simplex ¢. Let o=(p;;) be an (n+k)-sim-
plex. Then #|C%** is defined by #(y,)=z=(zy, -, 22+x) Where z,=TI%\yl¥,
Let P be a vertex of *. Then P defines a divisor E(P) of X as follows.
Let =(P, -, Py+i) be an (n+k)-simplex of X* such that P=P,. Then
E(P)NC?** is defined by the divisor y,,=0. For an (n+k)-simplex =, E(P)
NC™* =@ iff P is a vertex of 7. If P>»0, the union of {E(P)NC»**;
Psg} for ¢ is a compact toric variety of dimension »+k—1. For the
general properties of the toric varietles see [K-K-M-S] and [Od]. If P>0,
E(P) is an exceptional divisor i.e., #(E(P))={0}. On the other hand, E(R,)
is isomorphic to the hyperplane {z;=0} in the base space C™** by the pro-
jection #. Let E“(P)*:E‘(P)—UQ*PE'(Q). This is isomorphic to the affine
torus C*™*~Y  For finite vertices Q,, -+, Q, of 2*, we define a subvariety
E@Q, Q) of X by EQ)N - NE@) and let E@Q, -+, Q)*=E(@, -, Q)
_UP¢Q1,~--.Q3E(P)- Note that E(Q, -, Q,)* is non-empty if and only if
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Q. -+, Q, are vertices of an (n+k)-simplex of 2*. In this case, we say
tllat {Q, -, Q,} are compatible. E(P) has the canonical toric stratification
{F(P, Q- ,Q:)%; P,Qy, -+, Q,: compatible}. We also define E(@Q, -+, Q,) by
EQ,,Q)NV and let E@Q,, -+, Q)*=E(@Q, -+, Q)*NV. Let a=(P,, -*, Pp1s)
be such an (n+k)-simplex with P;=Q;, 1=1,---,s. Let 4,=Ni-14Q;; fa)
for a=1, -,k and let

n+k
ha(yms+1: Tty ya,n+k):fada(7ro(yo))/ ];[1 yf}(cP“f“) B a= 1, ey, k.

Then we can see easily that
(4.1) E@Q, -, Q)*={y, €C* " hy(ys)= -+ = hy(y5) =0}

where ¥, = Yo.s41, ** » Yo.n+x). 10 particular, E(Q, -+, Qs)* is a non-degenerate
complete intersection variety in the complex torus E(Q,, -+, Q;)*=C*"
by the non-degeneracy assumption of V. See Lemma (5.2). E(P) has
also the canonical smooth stratification E(P)=\UE(P,Q, -,Q;)* where
P,Q,-,Q, are compatible and s=0,---,n—2. The necessary and sufficient
condition for E(Q, -+, Q,)* to be non-empty is that {4, -, 4;} satisfies the
(A,)-condition (See Proposition (5.4).).

REMARK (4.2). Let PeX* be a strictly positive vertex and let o=
(P, -+, Pnsr) be a simplex of X* with P,=P. Then by (4.1)
E(P)*={y, €C*"** ™ h(ys)= - =h(y;)=0}

where

n+k

ha(!!:, ) :fap(ﬂ'u(yd))/ 11 yﬁgl’i:fa) .

1=1

Let 7=(P,Q,, -+, Q) be an arbitrary unimodular matrix which is not
necessarily a simplex of X*. It is easy to see ¢7'r can be written as

0 y|
where 4 is an (n+k—1)X (n-+k—1)-unimodular matrix. Thus ¢=m,-1.],,,-0

gives an isomorphism z,: {y.,=0}—{y,=0}. The pullback ¢ (E(P)*) is de-
fined by

(Y. C* "5 g*p(y, )= =¢*hu(y-)=0} .
We claim that
(4.2.1) ¢*ha(y!) = Far(m(y NIy
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modulo a multiplication of a monomial in y,. In fact, the assertion is
easily derived from the composition property =,-i.==;'em.. In later sec-
tions, we have to calculate the topological Euler-Poincaré characteristic
y(E(P)*) to obtain the principal zeta-function of the Milnor fibration of a
complete intersection variety. For this purpose, (4.2.1) gives a practical
way to calculate y(E(P)*) without carrying out the subdivision X2* of

T*(fi, -, £

§5. Euler-Poincaré characteristic of an affine
complete intersection variety.

Let hy(y), -, he(y) be given Laurent polynomials of m-variables y=
(Yy, -+, Ym) and let Z={ysC*™; h(y)= - =h(y)=0}. We say that Z is
non-degenerate if for any weight vector P, the variety Z(P)={yeC*™;
hip(y)= - =hp(y)=0} is 2 smooth complete intersection variety i.e., if
the k-form dh,pA --+ Adhip is nowhere vanishing on Z(P). Here P is not
necessarily strictly positive. Taking P=0, we see that Z is also a com-
plete intersection variety ([Kh1]). Let A=(a;,) be a non-singular integral
matrix i.e., an integral square matrix with non-zero determinant. We define
a morphism m,: C*"—C*" by m,(y)=(y" - Y™ =+, Y1 ™ - yu™™). 74 gives
a |det A|-fold covering map. In the case of det A=+1, we say that =, is
a Laurent coordinate change.

PROPOSITION (5.1). Let Z={ysC*™; h(y)= - =h(y)=0} be a mon-
degenerate complete intersection variety. Let A be a non-singular integral
mXm matrie and let L, ---, L, be integral vectors. Let ZA={yeC*";
h(ma(y))= - =hilma(y))=0} and Z'={yeC*"; y*'h(y)= - =y rh(y)=0}.
Then Z* and Z' are mon-degenerate complete intersection varieties.

PROOF. Let P be a weight vector and let y* be a monomial. Then it
is easy to see that #%(y")=p** and degreer(n%(y”))=degree, »(y’). Thus
we have that (z}h.)p=r%((h.).p). Thus the non-degeneracy of Z4 results
immediately from this equality. It is clear that Z/(P)=Z(P) for any
weight vector P as a set. Let hq(y)=y"eh.(y). Then dhirA -+ Adhip(y)
=yrdhp N -+ Adhip(y)#0 for any yeZ'(P)=Z(P) where L=L,+ -+ +L,.
This proves the non-degeneracy of Z’.

LEMMA (5.2). (i) Let V={zeC"**; fi(2)= - =f(2)=0} be a germ of a
non-degenerate complete intersection variety with an isolated simgularity
at the origin and let =: V—V be a toroidal resolution of V which is con-
structed as in §4. Let P be a strictly positive vertex of X*. Then
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E(P)*C E(P)*=C*™+ b jg ¢ non-degenerate complete intersection variety.

(i) Let Z={ysC*; h(y)= - =h(y)=0} be a non-degenerate com-
plete intersection variety. Then there is a germ of a mon-degenerate com-
plete intersection variety V={zC™"'; fi(z2)= - =fu(2)=0} and a resolu-
tion 7: V-V as in §4 such that Z=E(P)* for P=%1,--+,1).

PROOF. Let o=(P, -+, Pysi) be a simplex of 3* with P=P,. Then
we have

E(P)y*={y, eC*" 2 h(y,)= - =hi(y;)=0}

where Yo =Yos, **, Yomsw) a0nd ha(Y,)=fop(n,(y))/IT73E yi /@, Thus the
non-degeneracy of E(P)* follows from Proposition (5.1). Now we consider
the assertion (ii). Consider homogeneous polynomials h,(z)=2, h.(21/Zms1,
ooy ZnlZmsr) A0 fo(2) =ha(2)+ 27 be,2Y. Here M=max,degree h, and N>M
and the coeflicients {b,;} are generically chosen so that {zeC™*'; fi(z)= ---
=fi(z)=0} is a non-degenerate complete intersection variety. We choose a
unimodular simplicial subdivision X* of I'*(f, ---,fi) and we consider the
corresponding toroidal resolution =: V—V. Let P=%1,---,1) and let ¢=
(R, Rn, P). (Recall that R,=%0,---,1,---,0).) Though P is a vertex
of X*, ¢ is not necessarily an (n-+k)-simplex of 3* Note that f,p=h,
and b (o) =heWor, -+, Yom) Y¥msr. Thus by Remark (4.2), E(P)* is
isomorphic to the variety {y’'€C** . h(y,)= - =h'(y, =0} where y,=
(Yo1, -**» Yom). This completes the proof.

For a more direct toric compactification of the variety Z, see Khovanskii
[Kh1]. In this paper, we want to calculate the zeta-function {(t). For
this purpose, it is necessary to know the Euler-Poincaré characteristic of
a non-degenerate complete intersection variety Z={ysC*™; h(y)= --- =h(y)
=0}. Using the result of Ehlers on the Chern classes of the toric variety
([E]), Khovanskii has determined the Euler-Poincaré characteristic y(Z) in
[Kh2] as follows.

THEOREM (5.3). Let Z={ysC*™; h(y)= - =h(y)=0}. Let 4,=A4(h;).
Then ‘

k A.
p=(f A

Here the right side 1is, by definition, the homogeneous component of degree
m of TI¥-,4;(14+4,)" in the formal series of 4, -+, dr. Namely we have

2Z)=(=1)"" B A Lix
ay,,agpzl
ayt+-Fag=m
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where A% --- A% is the integer defined by the Minkowski's mixed volume
m‘ Vm(AlJ Tttt Al; Tty Akr Tty Ak)~

a, ak
COROLLARY (5.3.1). Assume that dim ¥, 4, <m. Then y(Z)=0.

A non-degenerate complete intersection variety Z may be empty. A
criterion for the non-emptiness of Z is the following.

PROPOSITION (5.4). Z is non-empty 1f and only tf the following con-

dition 1s satisfied.
(Ay) For any subset IC{1,---, k}, dim ;e 4:=|1).

PROOF. This proposition is announced as a result of Bernshtein in
[Kh2]. The necessity of (A,) is obvious by Theorem (2.4). (See the proof
of Proposition (2.5).) Assume that (A,) is satisfied. Let h;(y) (j=Fk+1,
-+, m) be generic polynomials such that dim 4(k;)=m for j=k+1,---,m

and {yeC*™; hy(y)= --- =h,(y)=0} is non-degenerate. Then {4(h)), -, 4(hn)}
clearly satisfies the (A°-condition. By Proposition (2.5) and Theorem (2.4),
we conclude that {ysC*™; h(y)= --- =h,(y)=0} is non-empty. In partic-

ular, Z is non-empty. This completes the proof.

Example (5.5) (Hypersurface). Let Z={yeC*™; h(y)=0} be a non-
degenerate hyper-surface. Then y(Z)=(—1)""'m! Vol,(4(k)). This is proved
by Kouchnirenko ([K], [O1]).

Example (5.6) (Similar complete intersection variety). Let Z.=
{yeC*™; h(y)= -+ =h.(y)=0} and assume that there is a Laurent poly-
nomial h(y) such that 4(h;)=d;4(h) for some positive integers d,, -, dx.
Let d=4(h). As (1+d;4)'=35,(—1)d{4’, we obtain by Theorem (5.3)
that
(5.6.1) x(Zy)=(—1)" 4™ 2 At diEtt,

T+ +ip=m-k
For the later purpose, we define the homogeneous polynomial FF(d,, -, dx)
by

(5.6.2) Fi(dy, -, di)= 3D dpteeditt.

i1+ +ig=m-k

Note that we have the equality:

(5.6.3) (Fisdy, = de- ) FE(dy -, di))de=FE N (dy, -+, di) -
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Assume that d,= - =d;,=1. Then F;(1,:--, 1)=<7]'Z:11> and
m—1

(5.6.4) x(Z)=(—1)""* a™ .
k—1

§6. Zeta-function and the Milnor number.

Let V;={zeC"*"; fi(z)= - =f;(2)=0} (j=k—1,k) be germs of non-
degenerate complete intersection varieties with isolated singularities at the
origin and let #: X—C"** be the toroidal modification map with respect
to 2* which is compatible with I'*(f, -+, fs). See §4 for the construc-
tion. Let V; be the proper transformation of V, by # for j=k—1,k. We
denote the restriction of # to V.., by m.;. The purpose of this paper is
to calculate the k-th principal zeta-function {.(t) which corresponds to the
restriction of the Milnor fibration of F=(f, -, f:) to Vi... Let B, be a
small disc of radius ¢ and let U;={neC; |y| <d} and let Uf=U;—{0} where
d is sufficiently small comparing with e. Let Xi.,=Vi. . NB.Nf:(U;) and
X =V NB.NfE (U¥). We study the fibration fi: X¥ ,—Uf—{0}. Let
X =mii(Xeo) and X¥ =m(XE). As moy: XF,—X¥, is biholomorphic,
the above fibration is equivalent to fi: Xi ,— U} where fi=ni_of.. Now
To-1: Xe1—Xi-; is already a good resolution of X,_, which satisfies the
conditions of Theorem (3.2). Therefore we can apply Theorem (8.2) to this
situation. The exceptional divisors of f;|Xi., are {E._,(P); P€X* P>}
where E._,(P) is defined by E(P)N\V..,, We also define Ek(P):E’(P)th
Ek—l(P)*:Ek—l(P)—UQ*PEk—l(Q) and

E(P)=E,(P)—E\(P)— U E.\(Q).
Q#P.Q»)
Note that EP)=E. (P)N\V, and E(P) DE; (P)*—V,. The multiplicity
of the function fi on E(P)’ is equal to d(P; fi) by the definition of d(P;: fi).
Thus by Theorem (3.2) we have
(61) Ck(t): H (1_td(P;f;.-))—x(E(P)’)‘
PEI*. P
Now the main task in this section is to interpret the Euler number y(E(P)’)
in the words of the respective faces {4(P:; fi); 1=1,---, k}.

(I) Assume first that E\_,(P) does not intersect with any non-compact
divisors Ei4(R,) (j=1,---,n+k). Then E(P) =E.,(P)*—E(P)*. 1If
dim(4(P; fi)+ - +4(P; fi))<n+k—1, both of the Euler-Poincaré charac-
teristics of E;_y(P)* and E.(P)* are zero by Corollary (5.3.1). Thus the
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vertex P does not contribute to the zeta function {i(¢). Assume that
dim(A(P; f)+ -+ +4(P; fi))=n+k—1. Then P is uniquely determined by
AP f), -+, 4(P; fi) and by the property that P is a positive primitive
integral vector. The corresponding Euler-Poincaré characteristic can be
computed by Theorem (5.3) using any unimodular matrix with the first
column vector P by Remark (4.2). By the additivity of the Euler-Poincaré
characteristics, we have y(Ei_(P)*—E(P)*)=y(E:_(P)*)—y(E(P)*). As
y(E(P)’) depends only on P, we define y(P)=y(E)-(P)*—E(P)*).

(II) Assume that E,_,(P) intersects with a non-compact divisor E;_,(E;)
for some 4. Then the contributions from the lower dimensional coordinate
plane seéctions may be non-trivial. Thus we cannot ignore the vertex P
even if dim 3¢, (P f)<n+k—1. Let IC{l,---,n+k} and we define

E(PY*'=E,(P)NE/R)— U E;Q— UE/R,).
i€l Q+P.Q>0 i€l
If I={1, -,n+k}, E;(P)*" is simply equal to E;(P)*. The family {E,(P)*’}
gives a regular stratification of E;(P)—\Ugx.pr.0»f;(Q). Thus we have a
canonical stratification of E(P)’

(6.2) E(P) = KIJ (Ep_(P)*' — Ey(P)*7).

Assume that E,_(P)*!+@. This implies that there is an (n+k)-simplex
¢ which contains P and R; (¢¢1I). For brevity’s sake, let us assume that
I={s+1,---,n+k}. Changing the ordering of the vertices if necessary, we
can assume that ¢=(Q,, -+, @,+:) Where Q,=R; for 1=1,---,s and Q4,=P.
Then ¢ can be written as

I, =
(6.3) UZ( ) .
0 y|

Here I, is the sXs identity matrix. In particular, 4 is an (n+k—s) X
(n+k—s)-unimodular matrix. Let 4,=Nigi<:+:14(Q;; fo). It is easy to see
that 4, (fI). Let P,=N; be the I-projection of P. (Under the above
assumption, P;='(Pss1, ***, Pasr) 1if P=%py, -+, Pass).) Then we have
A(P;; fH=4,. As 4 in (6.3) is a unimodular matrix and P, is the first
column vector of 4, P, must be a primitive weight vector. Let

n+k
(64) ha(ya,s+21 ) ya,n+k) :fadu(ﬂa(ya))/ i1=11 y;(iQi;fa) .

As ¢ is a simplex of 2*, it must have the property that N\ 4(Q, : f.)+ D
for a=1,---, k. Therefore 4(Q;; fo)N4d,+@. Thus we obtain the equality :
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n+k
ha(ya,s+2: E) ya',n+k) =f'{P1(7rA(y:: ))/i};[+1y550i1:f{1) .

Here we use the notation ¥, =(Y,.e+2 ***> Ys.nsx). Then by (4.1), we have:
Ei (PY*' ={y, € C**** 0 hy(y,)= -+ =hi_i(y,) =0},
E(P)y* ! ={y, e C*™** >0 p(y,)= - =h(y,)=0}.

Note that dim(4,+ -+ + 4)=dim(4(h,)+ -+ + 4(hs)). Thus if dim(4,+ -+ +4i)
<n+k—s—1, both of the Euler-Poincaré characteristics of E._,(P)*’ and
E/(P)*' are zero by Corollary (5.3.1). Assume that dim(4,+ ---+4)=
n+k—s—1. Then P, is uniquely determined by the property that A4(P; ;f%)
=4,. Conversely we claim:

LEMMA (6.5). Let Q be a primitive strictly positive weight vector in
N; such that dAim(4(Q ; fH+ -+ +4Q; fi))=|I|—1. Then there is a unique
vertex PeX* whose I-projection is equal to Q.

PROOF. We assume that I={1,---, s} for simplicity. Let W={PeN;
AP; f)D4Q; fH, a=1, -+, k). As dim(ZE,4(Q; f1))=s—1 by the assump-
tion, W is a polyhedral cone of dimension n+k—s+1. Note that R,e W
for i=s+1,---,n+k. Let Q@=%qy,--,q,) and define S=%(sy, -+, Sz) EN*
by s;=gq; for 1<s and s;=M otherwise. If M is a sufficiently large posi-
tive integer, it is easy to see that S€ W and A4(S:; f.)=4(Q: fi) for a=
1,--, k. Therefore WNN*#@®. Note that the interior of WNN* is an
equivalent class in the dual Newton diagram I'*(f,---,f:). See §4 for
the definition. As X* is a unimodular subdivision of I'*(f, -+, f:) and
dim W=mn-+k—s+1, the above observation implies that there is unique
vertex P of WN2X* such that {P, R;1y, -+, Rpix) is an (n+k—s-+1)-simplex
in ¥*. This completes the proof.

Let @ and P as in Lemma (6.5). Then the following equality results
immediately from the inclusion 4(P; f)D4(Q ; f5).

ASSERTION. d(P; f)=d(Q; fL).

Now we can formulate our result as follows. Let &; be the set of
primitive strictly positive weight vectors @ in N; such that (a) (Non-
emptiness) {4(Q; f{); 1=1,--+,k—1} satisfies the (A,)-condition and (b)
(Maximal dimension) dim(4(Q ; fI)+ -+ +4(Q; fiN=|I|—1. We call S; the
Idata set of f. Let P be as in Lemma (6.5). The condition (a) implies
that E,_(P)*'#@. If (b) is not satisfied, we have y(Ei-(P)*')=y(E(P)*’)
=0. Let f(z2)=fiz)--* fi(z) and S;={QeN,;Q>»0, dim4(Q; f')=I[I|—1}
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As AQ; FH=MQ : fD+ -~ +4Q; fH, S, is a subset of &;. Therefore &,
is a finite set. Let QES, and let 6=(Q,, -+, Q1)) be an arbltrary |1 % |I}-
unimodular matrix with @,=Q. Let 4,=4(Q; f/) for i=1 ,k and let
hiyy) = f1a(m )y where Yo =(Yo, -+, Yon). Let us deﬁne an in-
teger X(Q) by

k-1 ] LA 4
(6.6) 1@ = ( i+ 4 +A;)>.u-1

where 4;=4(h;). By Remark (5.2), y(Q) depends only on @ and f1, e, IR
For notation’s simplicity, we define

Lo BE=(I=D! Vigoldy, oo, By oy Dy -0, di)
| S —

i i

where the right side is the generalized Minkowski’s mixed volume defined
in §2. Then Air--- dix=(d4y)1---(4:)"* by the definition itself. The equaliy
(6.6) can be written as

k-1 A, k A
Loy -13(1+A)>u.-1'

Note that the I-data set S; is independent of the choice of X* and that
S;=0 if |I|<k.

Let P=2X* and let P»0. By the additivity of the Euler-Poincaré
characteristics and by the above argument, we have (1—¢%F/®) 1 EEP)—

:Hb(l—td“‘?;fi’)‘l(@) where the product is taken for Q= S,, |I|=k, such
that P;=Q and {P, R;;1¥I} is compatible in ¥*. On the other hand,
for a given Q& §; there exists a vertex P2 such that the term
(1—t‘“Q;fi>)‘1‘Q’ coincides with to a factor of (1—t%F/®)~2EP" jp the gbove
product expression where P is uniquely characterized by Lemma (6.5).
Thus by (6.1) we obtain the following theorem.

(6.7) 2@ =(11

MAIN THEOREM (6.8). (i) The k-th principal zeta-function Ci(t) is
determined by

Ck(t): I 11 (1_td(QifIIc))—1(Q)_

1112k QES)

(ii) The Milnor number p of f is determined by
1+H(=1)p= 2 dQ; fMx@).

\Iizk QESy

In the above formula, we can replace S; by S; as every vertex Qe
S;7 — S, contributes trivially to {i«(t). Note that the above formula does
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not depend on the choice of a unimodular simplicial subdivision 3* and it
is a generalization of Varchenko’s formula for the zeta-function of a non-
degenerate analytic function ([V]). In general, £,(¢) depends on ¢ but g
can be computed through any {;(¢) using (ii). See Theorem (7.2) and Ex-
ample (8.4). It should be mentioned here that Morales has determined the
o-genus of a non-degenerate complete intersection variety ([Mo]).

Now we give a practical method to compute the integer 4it--- 4/%. Let
us consider the polynomial ¢(z)=TIf..fi(2)** where n,, -+, n; are variables
in the positive integers. Then g§(z;)=IIi-f1e(z;)**. Let o be as above.
Then we have

k
9b(mo(y.) =y IT by, )™
where d(Q; ¢')= 2 nd(@; f7). For a compact polyhedron 4 in R'', we
denote the cone of 4 with the vertex at the origin by C4. Note that
C(2kimid)=351n:C4,. Thus we have the following equality.

[I]! Vol (CA(gh))=1I]! VoLu(C( él nf"f))

Ii-1

é}lnid(Q ; ﬁ-’)( 2 M%)

(1/=1!
!

iy tig=111-1 ’Ll' ’Lvl-.

nite mE () ()

Il
||MR‘

K dQ : f)

Therefore replacing 4; by 4; we obtain
k
(6.9) 111 Vol 3 miC4,)

Iﬂ

v R D
1+ +ig=1I1-1 %1 h-.

I

=2 A(Q; fl
The above equality say that |I|!Vol (2, n.C4,)/ =k nd@; ff) is a poly-
nomial in n,, ---, 7, and the integer 4i1--- 4/ is equal to (i,!---4:!/(|I]—1)!)
X (the coefficient of the monomial nit---n¥*). For example, we have the
following important formula :

(6.10) 4" =|I1!Vol 1,(C40)[dQ; f) .

The equalities (6.9) and (6.10) enable us to compute y(Q) without calculat-
ing h(0), -+ hello).
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§7. Similar complete intersection variety.

In this section, we consider a germ of a non-degenerate complete inter-
section variety V={zC"**; fi(z)= -+ =fi(z)=0} where the respective
Newton boundaries {I'(fi)}:-1..x are similar. Namely we assume that there
is a polynomial f(z) such that I'(f;)=d.[(f) for some positive integers d;,
1=1,---, k. Then the I-data set &, is simply the set of the primitive I-
weight vectors which corresponds to the (]I|—1)-dimensional faces of
I'(f"). Let Q=S,;. The number (Q) can be explicitly computed as fol-
lows.

(7.1) Q)= (=D F(dy, -+, dddit 4@ ; £
=(=1)"FFIdy, o, diddit [T Vol (CAQ s f1))/AQ; f7).

Here the first equality is derived from (5.6.1) and (5.6.8) and the second
one is derived from (6.10). Thus we obtain the following formula.

THEOREM (7.2). Under the above assumption, we have

(i) Ct)= TT  TI (1@ D)x@
1112k QESy
i) p=S(=D"IFE, o, d) 2 IVOLA(CAQ; £+ (— 1)
1112k QEST

where y(Q) is defined by (7.1) and p is the Milnor number. In particular,
assume that d,= -+ =dy=1. Then

[I|—1
x(Q)=(—1)“""<

)llllVolm(C(d(Q P SINA@; f1)

and

171—1 :
p= 2 (-—1)"”"“( )2 [I1!Vol(CAQ; f))+ (—=1)"
111zk k—1 /9€SI
We can easily see that ;(t)#,(t) if d;#d,. However p is certainly
a symmetric polynomial in d,, -, d;.

Example (7.3). Let us consider the case where f(z)=z{'4 -+ +2nli*
and I'(f,)=d.l'(f), a=1,---, k. This case is studied by Hamm ([H2]) and
Greuel-Hamm ([G-H]). They have determined the y,-genus of the corre-
sponding quasi-projective complete intersection variety. Dimeca also studied
the monodromy of the S'-action ([Dil]). In this case, S;={P(I)} where
P(I) is the weight vector of f’. Namely let a; be the least common
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multiple of {a;;i=I}. Then P(I)=%p;)ic; Where p,=a;/a; (1€I). Thus
the contribution of P(I) to the principal zeta-function Z,(t) is (1 —g%eI) - xPU»
where

(7.3.1) x(PD)=(=1)"""*F(d, -+, di)dic'ar T a; .

el
Let gi(ay, -+, ansr) be the i-th elementary symmetric function of a,, <+, @psx
defined by

n+k

l} (t_at):trﬁk_(fltn”_l‘}' v (— 1)n+k0n+k .
Then by Theorem (7.2), we have the equality :
(73.2) y: sgt(_l)nHC—SF-’?c (dl,v ety dk)os(al) ctty, a/n+k)+(_1)n_1 .

Assume that d,= - =d;y=1. Then Milnor number is determined by the
following simple formula which is a generalization of the formula of
Orlik-Milnor ([Or-M]).

s—1
(7.3.3) u= 2(—1)”““3( >as(a1,---,an+z-)+(—1)"'1.
sk k—l

§8. Generic hyperplane sections.

In this section, we consider the Milnor fibration of the generic hyper-
plane sections of a non-degenerate function. Let f(z)=fi(z) be a given
germ of a non-degenerate analytic function. Let fi(z)=1i(z) t=1,---,k—1)
be generic linear forms. Thus we may assume that [(z)=a; .2+ -
4@ nex2ner With a;;#0 for any 4=1,---,k—1 and j=1,---,n+k. Let
Q< Nf be a strictly positive I-weight vector. Let Q@=%q.)ic: and let gmin
=min{g;;t€I} and I(Q)={i; ¢;=qmin}. Let 4=4(Q;1) and F=4Q; f).

Note that 4 is generated by the vertices ei=(0,---,i,~-,0) for 1€ 1(Q).
Now it is easy to see that Q= S; if and only if (a) |(Q)|=2 and (b)
dim(d+)5=|I|—-1. Let QeS,;. Using the notations defined in §6, we
have

Ax-t A5
(8.1) X(Q):<(1+A)’~‘—1+ (1+A)"‘1(1+5)>|1|—1

=(—1"* 5
k-2

=0

m_k<k+i—2> , _
Ak+1—15|ll—k— i .
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The integers {4'57} can be computed using (2.3) and (6.10). Let us ex-
amine several important cases.

(I) k=2. This case corresponds to a hyperplane section. Let m-+1
=|I|. Then (8.1) says that

(8.2) Q)= (=D (A 4™ 1E 4 o 4 45

For instance, assume that n=1. The case n=1, k=2 is studied by Mima
((Mi]). Then |I|=3 or 2 and we have

‘ —(L445)  if |I|=3

@)=
! 4 if [I1=2.

(IT1) k=3. Let m=|I|—1 as above. Then

(8.3) @)= (=1D)™(m—-1)d"+(m—2)4" 154 --- 4 LZ™72)
For instance, assume that n=1 and £k=3. Then |I|=4 or 3.

— (L84 £5) if |I|=4

@=
f [ Vig if |I1=3.

Example (8.4). Let l(z2)=z+2+2 and fz)=20+20+2}+212:%25°. We
assume that p>s,+s,+s;.. Then S .5 contains four vectors P, P, -+, P,
where P=%(1,1,1) and P; is characterized as the weight vector such that
fr(2)=3,.:78+21'23°2. For instance, we assume that ¢=1. Let 7, be the
greatest common divisor of p—s,—s; and s,. By an easy calculation, we
can write P,.="%ay, b, b,) where a,=(p—s,—s;)/r, and b,=s,/r,. For I with
|I|=2, &; consists of a single weight vector P, where P, is the I-projection
of P. The weight vector P contributes to {.(¢) by (1—t*1*%2*%3), Now we
consider y(P;). Using (6.10), we have

W P)=—48=—((4+5)—LF—-EY2= —s/bj=—7,.

Thus P, gives the term (1—¢?*V"1)t, The weight vector P, contributes by
(1—t?)"'. Thus we obtain that

L) =(1 —tﬂ“z*sa)( 1 —t””’”)’i>(1 _ 7).

In particular, pg=(p+1)(s;+s;+s;)—3p+1.
If we eliminate 2, in f(z) using the equality [,=0, we have

s
Fli=olz, 2) =20+ 23+ (2 —2) P +21' 2" (— 2 —2)s° .
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Thus if s;>1, fr is degenerate (as a function of 2, and 2,) for P=%(1,1).

Now we consider £,(t). The corresponding data are Si.s={P, P, Ps}
and S;={P,} for |I|=2. This time P, contribute to ;(t) by (1—¢sV/r1)1(P*+D,
If |I|=2, P, gives the term (1—¢t)"?. Thus

Li(t)= <i1§:11(1 —t"i/"i)ri(p+1)>(1 —t)-ep,

Thus C(t)#&(t) but they give the same Milnor number as degree {(t)=
degree L(t).

§9. Irreducible components of a complete
intersection space curve.

In this section, we consider the case n=1. Thus V={zeC""; fi(z)=
- =fi(2)=0} is a curve. Let S=Sy,...en and S;={1, -+, k+1}—{1}. Then
the zeta-function i(¢) is determined as

(9.1) Cut)= TI (1—t&PI0) 1@ T[] (1— Q)10
pPes i=1 QES;

Note that y(@)=(F—1)!Vii(4Q: f), -+, 4Q; fi-). Now let us consider
the number of the irreducible components 7(V) of V at the origin. We
consider a toroidal resolution m:V—V. Let < be the set of the
positive vertex PeX* such that EW(P)# @ i.e., (a) {4(P; f), -, AP; fu)}
satisfies the (Ag)-condition. Note that Ei(P) consists of finite points.
It is obvious that 9cS. Let V=U;%2C, be the decomposition into
irreducible components of V and let V=U;%C, be the proper transform
of V. For any C, there is a unique P€9 such that E(P)NC,#d.
Therefore the irreducible components C, which intersect with E(P) cor-
respond bijectively with the points of Ew(P). The number of E(P) is
characterized by Theorem (2.4) : y(E(P))=k! Vi(d(P; f), -+, A(P; fi)). Thus
we obtain the formula:

(9.2) r(V)= Z k! Vild(P; f), -+, 4P fi) .

rPed

Example (9.3). Assume that I'(f;)=d.['(f),t=1,---,kasin §7. Then
=S8 and S corresponds bijectively to the maximal faces 4 of I'(f).
Thus by (5.6.1) and (6.10) we obtain the formula :

(9.3.1) 7( V)ngsd1 s do(k+1)! Vol (CU(P 5 H)IAP: ).
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In particular, (9.3.1) implies that »(V)=1S|.
(I) Assume that k=1 and d;=1. Then V is a plane curve. By (9.3.1)
we have

(9.3.2) 7( V)=p252 Vol.(C(4(P; f)A(P; 1) .

Now it is easy to see that 2 Vol,(C(4(P; f)))/d(P; f) is equal to the num-
ber of the integral points on 4(P; f) minus 1 by (6.10). Thus »(V) s
equal to the nmumber of integral points on I'(f) minus 1. Here f is as-
sumed to be convenient. I believe that this formula is well-known to
specialists. See for example [O2] or [Br-Kn].

(II) Assume that f(z)=z{'+ --- +2c57'. Let b be the least common
multiple of ay, -+, ;. Then we have r(V)=(I1%., d;11i*!a,)/b. In partic-
ular, 7(V)=1 if and only if d,=1 for ¢=1,---,k and b=a,* az,; i.e.,
{ay, ***, ax+1} are mutually prime.
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