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Resilient leaves in transversely projective foliations
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By Takashi INABA and Shigenori MATSUMOTO

1. Introduction

A transformation of the real projective line R\U{oo} is projective if it
is of the form z—(ax+b)/(cx+d), ad—be=1. A projective transformation
whose domain is restricted to the real line R is affine if ¢=0. Let < be
a codimension one foliation on a manifold M. We say that $F is trans-
versely projective (resp. transversely affine) if M is covered by a collection
of &F-distinguished charts for which the coordinate transformations are
projective (resp. affine) in the direction transverse to $F. A leaf of &F is
said to be resilient if it is nonproper (i.e., locally dense or exceptional)
and with nontrivial holonomy.

In the previous paper [In], one of the authors has studied about resilient
leaves in transversely affine foliations. The purpose of this paper is to
extend the study to transversely projective foliations.

Let PSL(2, R) be the group of projective transformations of the real
projective line. A transversely projective foliation & on a manifold M
induces a holonomy homomorphism A& : z(M)—PSL(2, R). We call the im-
age of h the global holonomy group of &F. Now the first result of this
paper gives some sufficient conditions for the existence of resilient leaves
in transversely projective foliations.

THEOREM 1.1. Let &F be a codimension one tramnsversely projective
Soliation on a closed manifold. If F satisfies either of the following con-
ditions, then F has resilient leaves.

1) &F 1s not almost without holonomy.

2) The global holonomy group of <F contains a mnon-abelian free sub-
group.

Here & is said to be almost without holonomy if every noncompact
leaf of $&F has trivial holonomy. We remark that in transversely projec-
tive foliations, unlike in transversely affine foliations ([In, Theorem 1.2]),
the existence of resilient leaves cannot be detected completely by informa-
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tions about the global holonomy group. In fact, there exist two trans-
versely projective foliations with the same global holonomy group, one
with resilient leaves and the other without (see §3).

The next theorem generalizes Levitt's recent result ([Lev, Th. III. 2],
see also [Me, Prop. III. 2.10]) on the non-existence of resilient leaves of
exceptional type in transversely affine foliations. In fact, almost all ideas
of the proof have already been contained in [Lev].

THEOREM 1.2. Let <&F be a codimension one tramsversely projective
Soliation on a (possibly open) manifold M. If n (M) does mot contain any
non-abelian free subgroup, then SF does mot have an exceptional leaf.

Let M be a closed manifold and <& a transversely orientable C? codi-
mension one foliation on M. A subset M of M is called a minimal set of
& if it is nonempty, closed and saturated, and if it contains no proper
subset of the same property. A minimal set which is neither a single
compact leaf nor all of M is called exceptional. We say that an excep-
tional minimal set M is Markov if the holonomy pseudogroup on M is
nearly generated by a one-sided subshift of finite type (for a precise defi-
nition, see §5). The structure of Markov exceptional minimal sets has
been clarified considerably (cf., [Ma], [CC2], [CC3]). A pair (M, &F) is called
a foliated circle bundle if M is the total space of a circle bundle and the
foliation & is transverse to the fibers.

Now the third result of this paper analyzes the structure of excep-
tional minimal sets of a certain class of transversely projective foliations.

THEOREM 1.3. Let (M, SF) be a foliated circle bundle, M a closed
manifold and M an exceptional minimal set of F. Suppose that F is
transversely projective. Then M is Markov.

Some of the results of this paper were announced in [IM].

2. Subgroups of PSL(2, R)

Let SL(2, R) be the group of all real 2x2 matrices with determinant 1.
Let PSL(2, R)=SL(2, R)/{+I}. PSL(2, R) acts on the real projective line
SL=RuU{c} as linear fractional transformations: x—(ax+0b)/(cx+d). The
stabilizer Stab(ew) of o is the subgroup of PSL(2, R) consisting of all
upper triangular matrices. It is possible to restrict the action of Stab(eo)
to R. This yields the group Aff*(R) of orientation preserving affine trans-
formations. An element A of PSL(2, R) is hyperbolic, parabolic or elliptic
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if A has 2, 1 or 0 fixed points in SL.
The following is well-known (see e.g. [d1H]).

PROPOSITION 2.1. Let I be a subgroup of PSL(2, R) which does mot
contain a non-abelian free subgroup. Then either of the following holds:

1) I' is conjugate in PSL(2, R) to a subgroup of the rotation group
SO(2).

2) I comsists of hyperbolic elements with common fixed point set and
elliptic elements which keep the fixed point set invariant.

3) I s congugate in PSL(2, R) to a subgroup of Stab(co).

A group is wirtually abelian if it has an abelian subgroup of finite
index.

COROLLARY 2.2. Let I be a virtually abelian subgroup of PSL(2, R).
Then I' satisfies either 1), 2) in Proposition 2.1 or 3)' I' consists of para-
bolic elements with common fixed point.

3. Proof of Theorem 1.1

Let & Dbe a codimension one, transversely projective foliation on a
closed manifold M. Let p: M—M be the universal covering of M and let
fF:p“I(S’). Fix a base point &, of M and set 2,=p(Z)eM. Take a dis-
tinguished neighborhood V, of x, and a distinguished submersion f,: V;—SL.
Denote by V, the lift of V, to M which contains &%, f, uniquely lifts to
a submersion fo: V,—S.. By analytic continuation, f, extends uniquely to
a developing submersion D: M—S!. D yields a holonomy homomorphism
h: (M, %)~ PSL(2, R) such that Doy=h(y)eD, for yen(M, x,). We denote
by I' the global holonomy group of &, i.e., the image of k. See e.g., [G,
Chap. III. 8] for more background material.

First we observe the following simple fact.

PROPOSITION 3.1. If I' is virtually abelian, then F s almost without
holonomy.

PROOF. If I' is virtually abelian, then by Corollary 2.2, the set F=
{xeSl| y(x)=x for some yeI', y+#id} is finite. In fact, it either is empty
or consists of one or two points. Hence poD '(F') is a union of compact
leaves of <. On the other hand, it is clear that poD (F) contains the
union of leaves of & with nontrivial holonomy. Proposition 3.1 is proved.
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Now we will prove Theorem 1.1. First we recall the following funda-
mental fact on the structure of open saturated subsets without holonomy,
which is easily proved by using Imanishi’s theorem [Im]. See also [In,
Lemma 3.3].

LEMMA 3.2. Let U be an open saturated subset of M such that SF|U
18 without holonomy. Suppose further that some (and hence every) border
leaf of U has montrivial holonomy. Let U be a connected component of
p Y (U). Then there exists a closed transversal in U, and for every closed
transversal t in U, each lift of © in U intersects every leaf of F|U ex-
actly once.

Let U be as in Lemma 3.2. Note that U is nothing but a maximal
component such that &F|U is without holonomy. See [In] for the definition
of a maximal component.

Let a: I—M be a path such that a(0)=x, and a(1)€ U, and let a: [-M
be the lift of « such that &0)=2, Denote by U® the connected component
of p(U) such that a(1)eU® Let L be any border leaf of U*¢, and let
B:I-M be a path such that F(0)=a(l) and (1) L. Put L=p(L) and
B=pof. Take a loop y: I—L such that y(0)=r(1)=p(1) and that the ger-
minal holonomy along y is nontrivial.

Notation. In what follows, for a loop a and a path b we denote the
conjugation bab™! by a’.

LEMMA 3.3. The developing image D(U®) of U® coincides with a con-
nected component of S:i—TFix h(y®?), where Fix h(y*f) 1is the set of fized
points of h(r*#).

PROOF. By the definitions of a and B, we easily see that D(L) is a
fixed point of A(y®#). Since h(ry*f) is nontrivial, h(y*#) is either hyperbolic
or parabolic. Take a small compact arc & transverse to 4 whose interior
is contained in U® and which has f(1) as an endpoint. Let ¢=pos. Since
7 induces a nontrivial germinal holonomy, there are a subarc ¢, of ¢ in U
and a path 7, contained in a leaf and having the same endpoints with ¢,
such that the composite loop o,y, is freely homotopic to y. Let &, be the
lift of o, such that #,C4 and a,7; the lift of oy, such that §,Ca7.. Then
by the construction of a,y,, we see that the developing image of one of the
endpoints of &, is mapped by A(r*f) to the developing image of the other
endpoint of 4,, From this follows that D(a171) coincides with a connected
component of S1—Fixa(y*#). On the other hand, by a usual argument,
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o7, can be deformed to a closed transversal in U. Thus by Lemma 3.2,
we have that D(¢;7;)=D(U%. This proves Lemma 3.3.

Notice at this point that D(U®) does not depend on L, fand y. There-
fore, if we replace L, f and 7 in Lemma 3.3 by other ones satisfying the
same properties, Fix h(r*f) is left invariant. Hereafter we denote it sim-
ply by Fg& D(U? is a proper subset of S. and the developing image of
every border leaf of U“ belongs to F'§.

Next, suppose that there exists a maximal component V without holo-
nomy which is adjacent to U along L. Let a;: I->M be a path such that
a,(0)=a(1) and that ay([0, T))C U, a(T)eL and (T, 1])CV for some T,
0<T<1. Let & be the lift of a; such that &(0)=a(l). By applying
Lemma 3.3 to V, aa, ai'f and 7, we obtain that D(V**) is a connected
component of S!—TFix h(y@erei'®)=S1—Fix h(y?f). In particular, we have

&§=Fge.

PROPOSITION 3.4. If &F 1s almost without holonomy, then I' does not
contain a non-abelian free subgroup.

PROOF. If & is without holonomy, then the classical argument of
Sacksteder (see e.g., [Im]) shows that I is abelian. So let us assume that
< has a compact leaf with nontrivial holonomy. Here we note that since
<F is real analytic, the compact leaves of &F are finite in number and each
of them has nontrivial holonomy. Let K be the union of compact leaves
of . Let U be a connected component of M—K. Then U is a maximal
component of &F. Since the compact leaves are finite in number, every
path that starts at x, can be perturbed to a path transverse to all the
compact leaves. Therefore, it follows from the argument in the paragraph
just above Proposition 3.4 that F§ depends neither on U nor on a. Denote
this set by F. Then, for any connected component U of M—K and for
any lift U of U, D(U) is a connected component of S:—F. In particular,
D(p(K))=FND(M). Since p'(K) is invariant under =,(M), FND(M) is
invariant under I. Thus 7" has one or two points as its invariant set.
Hence I satisfies 2) or 3) of Proposition 2.1, which implies that I" does not
contain any non-abelian free subgroup. Proposition 3.4 is proved.

REMARK. It is obvious that if I" leaves invariant a set consisting of
two points, then [I' is virtually abelian. By this fact and the proof of
Proposition 3.4, we get the following partial converse of Proposition 3.1:
if & is almost without holonomy and if, in addition, I" contains no para-
bolic elements, then I is virtually abelian.
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Now, to complete the proof of Theorem 1.1, it suffices to show the
following.

PROPOSITION 3.5. If F has mo resilient leaves, then F is almost with-
out holomomy.

PROOF. Since & is real analytic, & is of finite level [CC1]. Assume
that & has no resilient leaves and that & is not almost without holo-
nomy. Since & has no resilient leaves, M consists of finitely many maxi-
mal components without holonomy and finitely many proper leaves with
nontrivial holonomy. Since & is not almost without holonomy, there ex-
ists a maximal component U with a noncompact border leaf L along which
another maximal component V is adjacent to U. (V may coincide with U.)
Let U and V be lifts of Uand V respectively such that they are mutually

adjacent. Then by Lemma 3.3, we obtain that D(OUV )=S.l.

Now let F be a leaf of & which is contained in the limit set of L.
Let 6 be a compact arc transverse to & such that one of the endpoints of
0 is on F and that & meets L (and hence also U and V) infinitely often.
Then by the above observation, we see that the projective structure of
Int § induced from the transverse projective structure of & must contain
an infinite number of mutually disjoint intervals each of which is projec-
tively equivalent to a fundamental domain of the universal covering map

Si-Sl But then the projective structure of Inté cannot extend to the
projective structure of the compact arcd. This is a contradiction. Prop-
osition 8.5 is proved. The proof of Theorem 1.1 is complete.

In the following, we will show, by examples, that the existence of
resilient leaves cannot be characterized in terms of the global holonomy
groups.

Define p, g=Stab() by p(x)=x+1 and q(x)=2x. Denote by I" the
group generated by p and q. Let (M, &F,) be a foliated Sli-bundle over a
closed orientable surface X of genus greater than one which is determined
by a homomorphism @ : z,(2)—PSL(2, R) such that Image®=1I (such a @
clearly exists).

Next, foliate S*x[0, 1]x S by S*x[0, 1]x{x}, x=S., and consider the
quotient manifold Q=S'x[0, 11X S.t/(s, 1, )~ (s, 0, p(x)). Denote by & the
induced foliation on Q. Let 7, and =, be mutually disjoint closed trans-
versals to &€ such that the projective structure of r, (resp. 7,) induced
from & is R/<{p> (resp. R/{p®»). Turbulize & along 7, in such a way that
the obtained foliation &, is still transversely projective. r, is contained
in the resulting Reeb component and is still a closed transversal. Let N,
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(resp. N,) be a small open tubular neighborhood of 7, (resp. z.) such that
G\|IN, (resp. Gi|N,) is a product foliation by disks. Identify two boundary
components of @ —N,— N, by a foliation preserving diffeomorphism dN,—dN,
such that the induced map between their leaf spaces coincides with g.
The existence of such a diffeomorphism is guaranteed by the fact that
gop=pPoq. We denote by (M, F,) the resulting transversely projective
foliation. Now the following is obvious.

PROPOSITION 3.6. 1) The global holonomy groups of F, and F, both
covncide with I'. 2) SF, has resilient leaves, while F, is almost without
holomomy.

4. Proof of Thecrem 1.2

First we prove the following.

PROPOSITION 4.1. Let <F be a codimension ome, transversely projective
foliation on a (possibly open) manifold M. If the global holomomy group
I of &F does mot contain any non-abelian free subgroup, then either of the
following holds:

1) & s almost without holonomy.

2) There exists a discrete family {L,} of closed leaves in M such that
in each connected component U of M—\J,L,, the restricted foliation F|U
18 transversely affine.

PROOF. By the assumption, I satisfies the condition of Proposition 2.1.
If I’ satisfies 1) or 2) of Proposition 2.1, then by Proposition 3.1, & is
almost without holonomy. If I' satisfies 8) of Proposition 2.1, then we
may assume that I is contained in Stab(cc). We see that poD () is a
discrete family of closed leaves and that the developing image of M —
D7!() is contained in R. Thus the global holonomy group of each con-
nected component of p(M —D (o)) is a subgroup of Stab(e) whose action
is restricted to R. This means that &F|p(M — D }()) is transversely affine.
Proposition 4.1 is proved.

DEFINITION 4.2 [Lev]. Let & be a codimension one foliation on a
manifold M. Let L be the normal subgroup of =,(M) generated by all
free homotopy classes of loops contained in leaves of & and with trivial
holonomy. Then the fundamental group n(M|SF) of the leaf space M|F
is the quotient of = (M) by L.
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The following result on transversely affine foliations is obtained by
Levitt [Lev, Th. III. 2]. (We notice that a similar result is obtained also
by Meigniez [Me, Prop. III. 2. 10].)

THEOREM 4.3 [Lev]. Let <F be a codimension one, transversely affine
Sfoliation on a (possibly open) manifold M. Suppose that m,(M|F) does not
contain any non-abelian free subgroup. Then SF does mot have any excep-
tional leaf.

Theorem 1.2 is a generalization of this theorem.

PROOF OF THEOREM 1.2. Since =;(M) does not contain any non-abelian
free subgroups, neither does the global holonomy group I" of &¥. Hence
Proposition 4.1 applies. If &F satisfies 1) of Proposition 4.1, we are done.
So let &F satisfy 2) of Proposition 4.1. Then we have a discrete family
{L,} of closed leaves such that in each connected component U of M—\J,L,,
the restricted foliation &F|U is transversely affine. By the same argument
as in [Lev, Lemme III. 3], we see that the homomorphism z,(U/SF)—m,(M/F)
which is induced from the inclusion map U— M is injective, and hence that
7 (U/SF) does not contain any non-abelian free subgroup. Thus we can
apply Theorem 4.8 to &F|U and obtain that &F|U has no exceptional leaves.
This proves Theorem 1.2.

REMARK. As Levitt’s theorem, Theorem 1.2 in fact holds if we replace
the assumption on =, (M) by that on =,(M/F).

5. Markov exceptional minimal sets

First of all- we give a precise definition of Markov exceptional mini-
mal set.

DEFINITION 5.1. Let I" be a pseudogroup of local C? diffeomorphisms
of a compact 1-dimensional manifold 7. Let C be an exceptional minimal
set for I” such that 0TNC=@. C is said to be Markov for I' if one can
find elements 7y, >+, 7= of I" and closed intervals I, --+, I, of T such that

1) IntI,’s are pairwise disjoint,

2) CcVUiil,

38) CNIntI,+D for each k,

4) the domain of 7, contains I, for each £,
5) 7:./I:N\C’s generate I'|C, and ’
6) if y.(I)NInt I;# @, then y.(I,)DI,.
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We call the collection {yy, -**, rm; Iy, =**, In} & Markov system for C.

DEFINITION 5.2. Let & be a transversely orientable, C? codimension
one foliation on a closed manifold and M an exceptional minimal set of
F. We say that M is Markov if there exists a compact 1-manifold T
transverse to & such that MNT is Markov for the holonomy pseudogroup
of & induced on T.

A similar definition can be found in [CC2]. However their definition
of Markov exceptional minimal set is more restrictive than ours. They
impose the condition that any two of the intervals I, be disjoint in
Definition 5.1. There are a multitude of examples of exceptional minimal
sets which fail to be Markov in this sense. On the other hand, one
might even ask whether every exceptional minimal set is Markov in our
sense.

The same terminology of different usages may cause some confusions.
However we adopt the name Markov, since our definition seems to be more
natural and parallel to the definition of Markov maps ([Bo 1], [BS]) and
Markov partitions ([Bo 2]). We hope to investigate in future structures
of Markov exceptional minimal sets by using symbolic dynamics. Compare
[Ma], [CC2] and [CC3].

6. Fuchsian groups of the second kind and Markovness

We denote by G the group of orientation preserving isometries of the
Poincaré disk 4={zeC||z]<1}. It is well-known that G is naturally iso-
morphic to PSL(2, R). A discrete subgroup of G is called a Fuchsian
group. Denote by Lr the limit set of a Fuchsian group I. It is a closed
subset of the circle at infinity S!. The cardinality of Ly is 0, 1,2 or o,
I' is called elementary, of the first kind or of the second kind if Lp is
finite, Lr=S., or neither. In the last case, L, is a Cantor sat. For
further informations about Fuchsian groups, see [Bel.

In this section we prove the following result which is the key to the
proof of Theorem 1.3.

THEOREM 6.1. Let I be a finitely generated Fuchsian group of the
second kind. Then Lr is Markov for the pseudogroup generated by I

Given a Fuchsian group I' of the first kind, Nielsen introduced a
method that assigns a symbol sequence to each point of S1. This method
is called a Nielsen development ((Bo 1], [BS]). The above theorem is re-
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garded as a Nielsen development for Fuchsian groups of the second kind.

PROOF. Let I be a finitely generated Fuchsian group of the second
kind. Put 2=4/I". Then the quotient map 4—2 is a branched covering
with a finite number of branch points, say, e, ---, e, of order m,, ---, m,.
Y is homeomorphic to a closed orientable surface of genus g with finitely
many punctures ke, *:+, ks, Dy, -+, P:. The covering transformation corre-
sponding to a small oriented loop surrounding h; (resp. p;) is hyperbolic
(resp. parabolic).

As is well-known, there is a unique deleted neighborhood H; of A,
which is homeomorphic to a cylinder and is bounded by a closed geodesic.
We can choose as a deleted neighborhood of p; a set P, which lifts to a
horodisk in 4. By taking P, sufficiently small, we may assume that P;’s
are mutually disjoint and do not intersect H,’s and e;’s.

Now choose mutually disjoint curves a;, 8; (1<1<g), &; (1S5=7), M
(1£k<s) and =, (1£1<t) so that

1) 0H, intersects ay, Bi, ai, B, ***, g By g, By &1, 0ty Er N1y **7 5 Nes By,
.-+, m in counterclockwise order.

2) every connected component of the intersection of each curve and
each H, (resp. P,) is a geodesic of infinite length orthogonal to oH, (resp.
opP),

3) ¢, joins H, to ey,

4) %, joins H, to H,, and

5) m joins H, to P,.

See Figure 1.

Figure 1.
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Cut X along these curves and lift it to 4. Then we obtain a compact
polygon F' in D? (=4US.}) whose sides, which are not necessarily geodesic
segments, appear in the following order (see Figure 2):

(ﬁ[l “ifﬂif“51f571f><]1i{ 6:‘5?‘f><,:1_11 77kf77;1f><£[1 mf‘f) :

Here all free sides (i.e., sides lying on Sl) are labeled f, and the side

which is identified with s by some element of I" is denoted by s

Figure 2.

Throughout this paragraph, we let X be one of the following: a, B,
¢, 7p, @ Denote by g(X) the element of I' which maps X to X' Then
g(X) is hyperbolic if X=a;, B; or 7, elliptic of order m; if X=e¢; and
parabolic if X==x,. ' is the free product of cyclic groups generated by
these elements. Let I, be the finite subset of I" consisting of all the ele-
ments of the form g(X)° where 1<6<m;—1 if X=e;, and d==+1 other-
wise. For ¢g(X)’eI, which is not elliptic, we define I(g(X)’) to be the
closure of the connected component of S.—F which has the same endpoints
with X°. For g(e;)°, we denote the point ¢;,N\S1 by ¢,, and define I(g(e;)°)
to be the closed interval in SI—F having g(e;)°*'c; and g(e;)%c; as end-
points.

Then {I'; {I(9)}ser,} is a Markov system for L,. In fact, the condi-
tions 1), 2), 3) and 4) in Definition 5.1 are obvious. 5) easily follows from
the fact that /7, generates I'. 6) is verified if we observe that

g(X)P(I(9(X)°)=Si—1I(g(X)™?)
if g(X) is not elliptic, and
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0 (T (gle)) =52 Tgle,)").

The proof of Theorem 6.1 is complete.

7. Markov exceptional minimal sets in transversely projective
foliations

PROOF OF THEOREM 1.3. Let n: M—B be an S'-bundle and let & be
a transversely projective foliation on M which is transverse to the fibers
of = and which admits an exceptional minimal set M. Fix a fiber C of
z. C is transverse to &F. Recall that the class [C] lies in the center of
m(M). This implies that the holonomy image A[C] is the identity. In
fact, otherwise, the global holonomy group /" is contained in the centralizer
of R[C]. That is, I is abelian. Then, by Proposition 3.1, & is almost
without holonomy, contrary to our hypothesis.

Now, since A[C]=id, the developing map D|C projects down to yield a
finite covering map ¢:C—S.), where C is a connected component of the
inverse image of C by the universal covering map M—M. The image
TN=qg(MNC) is a Iminimal Cantor set. From this follows that I" is a
Fuchsian group of the second kind such that Lr=Jl. Notice that the only
point which needs proof is that /" is a discrete subgroup. If not, however,
Il is kept invariant by the connected subgroup of the closure of I°, which
is clearly impossible.

By Theorem 6.1, one gets a Markov system for J7, which can easily
be lifted to MNC. This completes the proof of Theorem 1.3.
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