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Applications of the Malliavin calculus to
McKean equations

By Masashi SUZUKI

0. Introduction.

The stochastic calculus for the Wiener functionals initiated by P.
Malliavin—so-called Malliavin calculus—has been applied to various problems
of stochastic analysis so far while its mathematical foundations have been
organized and made clear through the effort of many people.

In particular, one of the most popular applications is to the problem
of regularity of the solutions to a certain class of second order partial
differential equations. Kusuoka-Stroock [2] applied the Malliavin calculus
to time-homogeneous stochastic differential equations (S.D. E. in abbrevi-
ation) and recovered (and also partly extended) Hormander’s basic theory.
After that, Taniguchi [6] investigated the case that the equations have
time-dependent coefficients with looser conditions of smoothness and gave
sufficient conditions for the solutions to be smooth.

The aim of the present article is to extend the method developed in
those articles to the stochastic integral equations of the form:

0.1 X(t,0=aO)+ 5 | Vi[X(s, 0), x5)]odb(s)+ Vil X5, 0), x(s))ds.

The precise notation is given in the second section and here we only note
that z(t) stands for the probability distribution of the solution X(t) itself
on R". The above equation was introduced by H.P. McKean [3] to describe
the motion of a particle (molecule) in the bath of infinitely many particles
interacting with one another. In this case also, the future motion of each
particle depends only on the present state, but not only on its present
location. The future is also influenced by the present distribution of all
the particles, and this property is called ‘Markovian in the sense of McKean’.

Our main problem here is to find the sufficient conditions for the
solutions to McKean equations, whose coefficients depend on the distri-
butions of the solutions, to have smooth density functions. It is true that
McKean equations can be regarded as time-inhomogeneous S. D. E.’s, but
our results contain no time parameter, and in this sense, differ from the
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results by Taniguchi [6], in which, as is mentioned above, more general
types of equations are treated than in this paper. This may sound a bit
strange, but our solutions intrinsically depend only on the initial distri-
butions due to the structure of McKean equations, and so the results here
make sense.

It is also true that our main result could be obtained by means of the
powerful device called partial Malliavin calculus or partial hypoellipticity.
(cf. [2],[5]) as is going to be referred to later. But another aim of this
article is to show how the ordinary Malliavin calculus is carried out
directly on the time-inhomogeneous equations without recourse to such a
weapon.

Although no notation is shown yet, let us present the main theorem
here. This theorem will be stated again in the third section as Theorem
(3.26) under complete notation and formulation.

(0.2) THEOREM. Suppose that span{(V.)wlx,ql; 1Sk<d, ac A}=R"
for any x<=suppq.
(i) Assume in addition that there exists an LEN satisfying that
span{(Vi)wlx, ql; 1£ksd, ae A with |all <L}=R™ for any x<suppq and
d
also that inf { inf <Z‘ > (Vi)eal, ql, 77)2>/\1}>0. Then the wunique

zesupp q L 7€8T-1\ k=1 [al<L
solution to the McKean equation (0.1) has a smooth density function.

(ii) Im particular, if suppq is compact, then the above L exists. Here,
Vil:, - I's are the coefficients of the equation and q 1is the inmitial distri-
bution. (Vi)al:] is expressed as a combination of Lie brackets and a
certain differential operator.

In the first section, we recall some results of the Malliavin calculus
we use later. And then, McKean equations with generalized coefficients
are formulated in the Section 2. Section 3 is devoted to the LP”-estimation
on the Malliavin covariance matrices of the solutions to McKean equations
and our main theorem on the regularity of the solutions is shown there.
In the last section, the main theorem is applied to the original form of
McKean equations and the explicit calculation is executed.

Finally, the author would like to thank Professor S. Kotani and Pro-
fessor S. Kusuoka for their numerous suggestions.

1. Malliavin calculus.

Let us make a quick review of the results of the Malliavin calculus
before going into our topic. The terminology used in this article is from
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Kusuoka-Stroock [1],[2] and Watanabe [7]. Precise definitions and proofs
can be found there.

(1.1) Notation. W=(0, B, p) is the Wiener space where O={§<C([0, )
—R?%:60(0)=0}, B is the Borel field over © and p denotes the Wiener

measure on (0, B). H:{hEQ; absolutely continuous and Swlh’(t)IZdt< 00}
oo 0

with IIhH%,:S |h'(t)|%dt. The Hilbert space H is often called the Cameron-
0

Martin space. M(R™) is the space of all the finite signed measures on
R, while (R") denotes the space of the probability measures on R".

(1.2) DEFINITION. Let E be a real separable Hilbert space and @ be
a measurable map from @ to E. Then @ is called to be ‘differentiable in
the semse of Malliavin’ if D® can be defined as a measurable map from
O to H(E)=H.S.(H; E) (the space of the Hilbert-Schmidt operators from
H to FE) satisfying

O(0+th)—D(6)
t

t=0

(1.3) 1im,a([o; H —Dd)(0)(h)“Egs}>=O

for any heH and ¢>0. Following S. Watanabe, we let D(E) denote the
class of functionals @ on which the above D can operate as many times
as desired with D*@e L?(p) for every ke N and 1<p<co,

(1.4) REMARK. This class is called @(L; F) in Kusuoka-Stroock [1]
in connection with the Ornstein-Uhlenbeck operator ., which is not used
in this paper.

(1.5) DEFINITION. Let E be R" and @=(®@*, @% ---,®"). Then DO®*(6)(-)
is regarded as an element of H for any =@ and +=1,2,---,n by Riesz
theorem and so an nXn matrix

(1.6) A(0)=(DD(0), DD(0)) = ((DD*(6)(-), DD(6)(*)u)isi.;5n
can be defined and is called ‘Malliavin covariance matrix’.

(1.7) PROPOSITION (Malliavin). Let &= D(R™) and A=(D®, DD), be
its Malliavin covariance matriz. If d=det A is ‘large’ enough to satisfy

(1.8) 1de N L7,
pe
then the induced distribution p=pc®@' on R"™ has a density function (also

denoted by p) t.e. p(dx)=p(x)dx and p belongs to S(R™) (the totality of
the rapidly decreasing functions on R™).
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Various estimations for the function p are known, but such precise
arguments are not necessary for our problem.

2. McKean equations.

The stochastic differential equations H.P. McKean introduced to de-
scribe the motion of molecules are of the following type and are often
called McKean equations.

@1 Xt 0=a0)+ 3 | ViIIX(s, 0), x5)loat(s) +{ ViLX(s, 0), x(s)1ds,

where (i) a(:) is an R"™-valued random variable independent of the
Brownian motion b(8)=60<®O and stands for the initial state,

(ii) =(t)==(t,dy) is the distribution of the solution X(t) on R™ and

(iil) VZ[x’ p]: SRTL mei(x) Y1y Yoy ym)p®m(dyl; d?/z; R dym) fOI' mERn;
pe M(R"), 1=0,1,---,d and meN (common to all 7's) with V(-,:, ")
eCy(R* ™. R™), 4=0,1,---,d. In the above equation, ‘o’ denotes
Stratonovich integral.

Let us define a differential operator L[p] for pe M(R"™) by

1 a
(2.2) L[p]=§ =z Vil-, pP+ Vi -, p],

where V,;,1=0,1,---,d are regarded as vector fields in the usual way i.e.
V.= éV{B/ax". Then, the infinitesimal generator associated to (2.1) is
J=1

expressed by L[z(t)] and =n(¢t) satisfies
(2.3) ¢ f ey =Ll =)

where feCr(R", R) and <, p>:SRnf(x)p(dx) for pe J(R™).

Now we are ready to apply the method of the Malliavin calculus to
the equation (2.1), but instead of the original form of McKean equations,
we are going to deal with more general type of equations. To do so, a
class of functions on M (R™) should be introduced.

(2.4) DEFINITION. Let V[x, p] be an R-valued function on R*X M(R")
where k€ NU{0} and nN. We define a class C'(R*X M(R"™)) of all the
functions with following properties:

(i) for each M>0, there exists C,>0 such that |V[z, p]|<C, for
any < R* and pe M(R") satisfying ||pllyar. =M, where | -l|l,.,. denotes the
total variation of a signed measure,
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(ii) V[-, pleCs(R*; R) and each derivative satisfies the same property
as in (i) where C, can be different for each index,

(iii) Vlz, -] is Fréchet differentiable i.e. there exists a bounded linear
operator DViz, p]: M(R")—R such that

2.5) | Vix, p+p']1— Viz, pl— DV, pl)/ID lvae.—>0  as [p lvar.—0

for all x€ R* and pe M(R"),

(iv) the convergence (2.5) is uniform in z< R* and

(v) there exists an R-valued function W[z, y, p] on R*X R™x M(R")
with the same boundedness as in (i) and its Fréchet derivative DV[z, p](-)
is expressed by

(2.6) DVlz, p)(p)= SM Wiz, y, plp’(dy) .

We let FV[z,y, p] denote W[z, y, p] here and thus define a linear
operator &F from C!'R*xX M(R")) to the space of R-valued functions on
R*X R" X M(R™).

Suppose that Ve CYR!*X M(R")) and FVeCY(R**" X M(R")). Then
<F can operate on FV again and FF V=%V is a function on R**** X HU(R™).
In this way, F’V is defined inductively so long as SF77'V belongs to
CYRF D" x FH(R™)).

(2.7) Notation.
C*(R*X M(R™))={VeC(R*X M(R"); F'VeC(R"*'"X MR"),jcN}.
C(R*X M(R"); R™)={V=(V,, Vy, -+, V) : Vi€C(R* X M(R")),
1=1,2,+,m}.

Under the above notation, more general type of McKean equations can
be stated as below :

Generalized McKean equations.
d t t
28)  X(t,0=a0)+ £ | VI[Xs,0),x(s)]ed0uls)+ | ViLX(5, 0, wls)ds,
where (i) a(-) is an R™-valued random variable independent of the
Brownian motion b(-),
(ii) =(t) is the distribution of the solution X(¢) on R™ and
(i) Vi, - 1€eC(R" X M(R"); R*),1=0,1,---,d.

(2.9) REMARK. McKean [3],[4] showed the existence and uniqueness
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of the solutions to the original type of McKean equations (2.1) by the
iteration method and also proved that the distribution =(¢,dxz) of the
solution X(¢t) has smooth density function =(t,x) with respect to the
Lebesgue measure when the system is strictly positive, namely, elliptic.

(2.10) PROPOSITION. The equation (2.8) has the uuique solution.

PROOF. We follow the iteration method like in McKean [3]. Let
X%t,0)=a(0) and for £k=0,1,---, define

X*i(t, 0)=al0)+ 3 | VX4, 0), #6)1oab(s)+ ViIX (s, 6), =(5)lds

inductively, where =*(t) is the distribution of X*(,8). TFirst, note that for
Vel*(MR")=C>(R**X M(R")),

[VIz* ()] — VIz* ()]

- ]S:% VI — w8+ ur*(t)dul’

{S:@F VI-, (1 — ) (t) + ur*(t)], 78(t)— 2 2(t)>d|
< SZIE[SF VIXHE), (1— w7t () +uxt(t)]

—FV[X*Ut), A —u)zr* () +ur®(t)]]|%du
<C-E[IX*t)—X*(t)|*]

for some C>0 by the condition (v) of Definition (2.4). And using the
above estimation, we have

E[IX*(8)— X*(¢) 1 n]

_E[

+{vixss, 0), 246 - ViLX* G5, 0), n"”(s)]}ds“ij

SV[Xk s, 0), #(s)]— Vi X*" (s, 6), z*"(s)]}od0(s)

i=1

<0, 3 B [[{ViLX*6,0), 761 — ViLX* s, 0), 7' (5)]

2
Rn]

+C.E

S (VL X¥s, 0), 7(s)]— VL X*" (s, 0), ﬂ""(S)]}dSNZn]
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§C2(1+t)S:E[||X"(s)—X”"(s)ll)’zn]ds for some C,, C,>0.

The rest of the proof is standard and we have a solution to the
equation (2.8) as the limit

(2.11) X"’(t,a):lkimX"(t, 6) a.s. and in L¥*(p).
The uniqueness is also proved in the same way. Q. E.D.

As is usual in investigating stochastic differential equations with
random initial conditions, we introduce another equation here. Let ¢ and
n(t) be the distributions of a(-) and X(¢,:) in (2.8) respectively. Then
the following equation has the unique solution Y(t,x,8; q):

(212) Y(t,2,05 9=+ 2 | VI¥(5,2,0; 0), x(s)]odd (s

+ S:Vo[ Y(s, 2, 0; q), n(s)]lds, xeR" and t=0.

Here, n(t) is NOT the distribution of Y(¢,x, 8 ; q) but that of X{(¢,80) (the
solution to (2.8)). Since the equations (2.8) and (2.12) are the same except
for the initial states,

(2.13) X, 0)=Y(t,a(8),0; q) a.e. 6(p).
Moreover, the independence between a(f) and {f;} implies
(2.14) z(t, dy)= anp(t’ x, dy)q(dx),

where o(t, 2, dy) denotes the distribution of Y(¢,x,6; ¢) on R™.

3. Estimates of Malliavin covariance.

Following the idea in the last part of the previous section, we restrict
our interest to the regularity estimation of the solution Y to (2.12) for
the moment. First of all, the same method as is used in Kusuoka-Stroock
[2] and Taniguchi [6] leads us to the following two lemmas.

(8.1) LEMMA. Y(t,x; 9 D(R™) and

(32) DYte; =3 | VEIVs 25 0), 261DY(s, 25 0)(R)edd(s)



136 Masashi SuzUK1

+S;V5“[ Y(s,2; q), 7(8)]DY(s, @ ; q)(h)ds

+ 2 (Vi¥s 2; 9, =liis)ds,

where V" is the derivative (an nXn matriz) of Vix, p] with respect to
.

(3.3) LEMMA. Y(t,z; q) is differentiable in x and letting J(t, x: q)
be its Jacobian matriz, we have

B4 Jtei0=I+ 3 | VOV, 0,705 7; g)edbis

t
+{vervs, o5 0, 201 25 0)ds,
and moreover,

t
0

35 T 9=I- 2 (T, 0VELYs, 25 ), xls)ed0 (s)

— SZJ s, w5 QV§[Y(s, x5 q), n(s)lds .

By Lemma (3.1), Malliavin covariance matrix A(t,z; q) of Y(t,x; q)
can be defined. In order to apply the Malliavin calculus, we have to
obtain the LP-estimates of {detA(f,x; ¢)}"*. To do so, define an nXn
matrix A(t,z; q) by

(3.6) Alt,x; q)=(J (t,x; )DY(t,x; q),J ¢, %; ¢DY(t, x: q))u.
Then, the equality

(3.7) At,x; q)=é1 S:{J“(s,x; Vil Y(s, x; q), n(s)}¥"ds

holds. (v®*=v®w for v R".) Using this A, we can express A(t,2; q) by
(3.8) Alt,z; q)=J(t,x; QAR x; QU %5 q).
The boundedness of V& 1=0,1,---,d in (3.5) implies that

E[{ sup J (¢, x ; q)l}p:|<oo for given T>0 and any p>1.
o<tsT

12
(For an nxn matrix M=(M,,), |M|=(z My)") And from this and the
equality (38.8), it follows that

1.j=1
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(3.9) El{det A(t, z; q)} P]1<C (E[{det A(t, x ; q)} 2]

for some C,>0. This makes us realize that it is essential to obtain the
L?-estimates of {det A(¢,x: q)} .

Now, let us proceed to the estimation of the matrix A(t, z:;q) follow-
ing the above reasoning. For this purpose, stochastic Taylor expansion of
the integrand in (3.7) is quite powerful (cf. [2]), but before that, we should
prepare a lemma to handle the integrands with measures as parameters.

(8.10) LEMMA. Let @€ C=(M(R™) and F be the operator defined
after (2.6). Then, for the probability distribution =n(t) in (2.8),

(3.11) L olz0={ L F Oy, x(0))x(t, d).

PROOF. In the same way as in the proof of Proposition (2.10), let
u>t=0. Then,

Dlr(w)]— O[=(t)]= ai(l)[(l—s)n(t)—i-sn(u)]ds

O[r(t)+ s(z(u)—=(t))]ds

So.@d)[ﬂ(t + s(m(w) — () l(m(w) — x(t))ds
S KFO[-, n(t)+s(a(u)—n(t) ] —F D[ -, n(t)], m(u) —=(t)>ds

+<LFO[x, n(t)], m(u)—=(t)>.
As for the first term of the last line, the integrand
FO[-, a(t)+s(a(w) =z ()] —F [ -, a(t)], a(u) —=(t)>
=" @IF O, 70+ s(r0) =)~ (LIENF O, 7(0)], 7(6)>d8
and for each x= R™ and &<t u],

|(L[x(&)]F ®)[x, n(t) + s(z(u) —=(t))]— (L[z(¢)]F D) [, =(t)]|

= (LR OIF Dz, 7(t) +v-s(x() —(t) o

= [ (T LT Oz, -, (6)+0-s(x() ~=(0)], x(w) —=(0)>do
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= ISZSS?“LM@W (LA(IF O)Lw, -, 7(t)+v- s(a(u) — ()], 2(n)>dpdw

<sC(u—t)
with a constant C>0 independent of x€R™, u,t and &<[t,u] by (i) and
(ii) of Definition (2.4). Therefore, as u approaches ¢,

1
u—t

<O, 7(0)+ se() — 2(6)]~ FOL-, 2(t)), m(w) — 2(8)>ds
tends to 0 and so, recalling the equality (2.3), we have

L 0lx(t))=1lim(F 0Lz, x(1), i e

={L[x(t)]F D[ -, n(¢)], n(t)> . Q. E.D.
Define”an operator Q on C=(M(R")) by

(3.12)  (QOpl=\ LIpIFlz, plp(dz), zeR", peHR") and 120,
Then, (3.11) is rewritten as
(3.13) 2 o)1= (QO)=(1)].

In view of the definition of C=, the above ( can operate on every
V[, -1€eC*(R* X M(R™); R") as many times as desired.

Let JZ{(D}UO{O, 1,---,d} be the space of multi-indices and for
l=1

a=(a, a, -, ) A, define |a|, lal, @’ and ax by I, 1+%{; a;=0},
(ay, **+,a;-;) and a; respectively. (Ja|=0 if a=@ and a’'=@ if |a|=1.)
Then, V-, -] can be defined for V[-, -1€eC=*(R*X M(R"); R") and ac A
inductively as below :

J Vi, p] if a=@,
(314) V(a)[w: p]: [Vau V(a’)][x: p] 1f a¢¢: a*ioy
l [Vo, VeI, ]+ (Q Vi), p] if a#@, ax=0,

where [V, W]=VW— WV with V and W regarded as vector fields and

(3.15) @V, 1=\ LIpFVis, y, plo(dy).
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The subscript of L,[p] indicates that L[p] acts on FV as a function of
the second parameter y.

We are now ready to execute stochastic Taylor expansion for the
integrand J (¢, x; @) ViI[Y(&, 2 ; q), n(t)] of (3.7).

(3.16) PROPOSITION. For V|-, -1€C*(R"X M(R"); R") and LEN,
B.17) J7t @5 QVIYE 25 @), 2(t)]= 5 0 Veole, ¢J+Rult, 2,0, V),

where 0“(t)=1 if a=@ and =S:0“")(s)°d0m(s) if a+=@ (0,t)=t). Rp 1s

expressed as o sum of multiple Stratonovich integrals of order=L.
(Integral with respect to dt is thought of as of order 2 in terms of
Stratonovich integral.) And for given 0<e<1, there exist positive
constants C and y depending on L and ¢ such that

/
(318) sup y(S: | Ru(s, @, q, V)['ds/tt= 1/KL+H> <Cexp(—K7/(1+ M)
for any K=1, where
M=sup{| Vi[-, pllcz; 0=k=<d, pe P(R™)

Vsup{” V(a)[': p]”C‘%; Ia] §L+1; pEgD(Rn)} .

PROOF. Applying (2.12), (3.5) and (3.13) adequately, we have
ATt @5 QVIY(E, @5 0), 2(0)) |
=odJ!(t, x; QVIY(¢, x; q), n(t)]
+J 7t x5 QVOLY(R, 25 @), w(t)]ed Y(¢, x5 q)
+J 7t 25 )QVIY(E, x5 q), 2(t)]de
a

=— 3 J Ut x; VLY (L, ;5 ), n(t)]VIY(E, x5 @), n(t)]edB(t)

—J Nt x5 Q) VLY (x5 q), e(D)IVIY(E, x5 q), =(t)]dt
+J (¢, 25 q) é VOLY(t, x5 @), n(0)1VIY (2, x5 q), n(t)]edB ()

+J Nt 25 Q VLY (R, 25 q), o)V Y8, 25 @), n(t)]dE
+J 7, x5 NQVIY(R, x5 q), =(t)]dt
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= 152:1 e, ) Vi, VIIY(E, 25 q), m(t)]ed8,(E)

+J Ut s Ve, VIIY(E, 5 q), z(0)]+(QVIY(E, 2 q), =(t)]}dt .
Therefore,

(3.19)  JMt,x; @ VIY(t, x; q),x(t)]

= Vi, ql+ 2 | T 7625 )LV, VIIY(s, 25 0), w(s)odbs

+S:J‘1(s, o QUVe, VIIY(s, 25 @), m(s) ] +H(Q V) Y(s, 2 q), a(s)]}ds

Since both [V;, V] and [V, V]+QV belong to C*(R"x . M(R"); R")
again, (3.19) can be applied to each integrand repeatedly until (3.17) is
obtained. The estimate (3.18) is the same as Theorem (2.12) of [2] except
slight difference in the definition of M and we ‘quote’ only the outline of
the proof. Of course our definition of V(s is also different from that in
[2] in that our Vi, s contain the operator (), but such difference does not
matter in this proof, since all the ingredients are bounded in our case.
First, we divide R, into two terms:

RL(t xr, Q; V)_ 2 S(a)(t Qy V)+ 2 6(3)“) V(a)[m) (]] )
lal=L jai<L.lalzL
where 6> and S are multiple Stratonovich integrals with respect to
db.,d0,,, -+ and db, with a=(aj, a,-+,a) of the constant 1 and
J Nt x5 Q) Vo [ Y(t, x: q), n(t)], respectively. Since it holds that

S”Klf(s)lzdtg 2 (sup|f(s)|2/sL‘5’2>-(t/K)““s’?, 0<t<1
0 ZL—e 0<ss1

for any feC([0,1]), all we have to check is that both

(a) 2/ L-s;’Z?_ &/2
<2L_Eos<upls (s, 9, V)|*ls _K>

and

(a), 2/oL-s/2> JTe/2
W57 sup 1022 K2)

are dominated by the expression like the right hand side of (3.18). And
this is done by using Theorem (A.5) of [2] which states that for any
given ¢>0 and multiple Stratonovich integral S‘“(t,Z) of Z(t)=

t
Z0+§SOka0k,aeJl with |a]|=L=1, there exist positive constants C and
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2 such that

‘a” -< 2L a Ly 2 < 2)
o sup 1S 2 2K, suplz@i <K, 5 | vk

0<tsl

<Cexp(— 1K), K>0. Q. E. D.
For each LN and neS"™!, define

CVL(x; Q; n): é E (( Vk)(a)[x; Q], 7]);2" ]

k=1 lal<L

Vilw, q)=_Inf (Vile, ¢, 7)AL)

and _
At,x; @)= inf (9, A(t,%; @)N)gn -
r]ES"'l

Then, there exist positive constants Cp and v such that for any t<(0,1],
reR™ and Kz=1,

(3.20) p(At/K, x; Q) St K ) <Crexp(—(Vy(w, @) K )2 [(1+M)),

where M=sup{ll(Vi)al-, pllcz; 0k=<d, |a|<L+1,peP(R")}. This ine-

quality is the same as (2.18) of [2] and can be proved by the techniques
used there. Indeed, in view of the previous proposition,

o Ak, as otz £ 2 (Vi d pwoe) ds)”

lalsL-1

—( 5 S”KIRL(S, z,4, V,,)|2ds>m.

k=1 J0

Therefore,

2t/K,z; 00z it 3 (" 5 (s, 0 w6 (o) ds

yesn-1 k=1 lalsL-1

d [22:4
—2 3 " IRus, 2,0, Vi) ls

k=1

tIK

_Z_CVL(x,q)inf{S <|Ia1|§_1b00(“>(s)>3ds; by b§=1}

0 lays L-1

d t/IK .
-2 E SO |RL(s, z, q, Vi)|*ds.

Hence, for any 0<e<],



142 Masashi Suzuk1

LAEK, x, @) StP[K+)

t/IK

1 2
< — i (a . _ —e
—ﬂ<2CVL(x,q)1nf{So <nau§-1b“0 )(s)>ds,"a"g_lbi—l}gmL/K“‘ )

d (/K '
o 5[ 1Ruts, 00, Vlasz prrcen).

By (8.18), the second term is dominated by d-Cexp(—(K/d)"[(1+M)%) and
the first term is dominated by Cpexp(—{CV.(z, @)K'¢/4}*2) in view of
Theorem (A.6) of [2] stating that given L=1, there exist C, and y;>0
such that for any 0<t<1 and K>0,

#(inf{&i( 5 baﬁ“”(s)>2ds; > bizl}gtL/K>§CLexp(—K”L).

lallsL-1 lalis L -1

Now we can state a proposition on the regularity of Y(¢, x; qQ).

(3.21) PROPOSITION.  Define Up(g)={xsR"; (%, q)>0} for each
LeN and Ulq)= LL=jl UL(q). Then, the distribution p(t,z,dy) of Y(t,x;q)

has its smooth density function for x=Ul(q). In fact, there exists
pE€C=([0, o)X U(q) X R™) such that

(8.22) o(t, x, dy)=p(t, z, y)dy .

Moreover, for any T=1 and ke NU{0}, there exist Gy, 0. and p>0
such that for any me NU{0} and a, B A satisfying m+|a|+|B| <k,

(3.23) Iaz"aga’,’;p(t, z, Y)| £Grexp(—aully — 2|/ (CV(, g)t*2L) ¢,
(t’ X, ?/) € (0, T] X UL(q) X Rn.

PROOF. Let x€U.(q) and CU.(x,q)=c>0. Then, since A(t,x;q) is
non-decreasing in ¢, it follows from (3.20) that

(3.24) p(At, x5 @t" S1/K) S p(Q@ KV, o5 g)[tE < 1/K)
<Crexp(—(c***K)*£[/(1+M)?)

for 0<t<1 and K=1. The last expression of (3.24) can be written as
Crexp(—r.K*L) where r,=c*c*?/(14M)?*>0 is a constant independent of
K. Under this notation, standard arguments yield the estimation:

E[{at, x5 @)} 75 t5A(t, % ; @)= K]<(K*Crexp(— B.K"*)+C ,Bz7/*L) [t "E

with some €, ,>0. And so, there exists B, ,>0 such that
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I1/A(t, %5 @l Lpuy S Br.ye”F*Pt7 .
Noting that det A(t,x; q)=A(t,x; q)*, we have
El{det A(¢t, x; @)} "1 E[A(t, 25 @)7""]
< By 0 "R

for all p N. From the above estimation combined with (3.9), for any
pE N, there exists a positive constant Ay , such that

(8.25) 11/det A(t, x; Q)”ZP(;‘)g-AL.pC_n(L”)t-nL .

Hence, Proposition (1.7) guarantees the existence of smooth density
function p. The smoothness of p in (¢, %) can also be seen easily.

The estimate (3.23) is shown by using the so-called ‘Malliavin’s
integration-by-parts formula’ and the estimate (3.25). (For details, see
Corollary (3.25) of [2].) Q. E. D.

We are now ready to present our main theorem.

(3.26) THEOREM. Let (Vi)ay, kE{L, -+, d}, a= A be the vectors defined
wn (3.14) and assume that

(3.27)  span{(Viwl®, ql; 1sk<d,ac A}=R" for any zEsuppq.
(i) If, moreover, there exists an L=1 such that
(3.28) span{(Viole, ¢1; 1Sk<d,aed, lal < L—-1}=R"

for amy xEsuppq
d
and e, = inf { inf_1< 2 2 ((Vialz, q], 77)2)/\1}>0, then there exists
zEsuppgq (nES™ k=1 lalsL-1

7€C=([0, o)X R") which satisfies
(3.29) n(t, dy)==(t, y)dy,

where n(t,dy) is the distribution of the unique solution X(t,60) to the
generalized McKean equation (2.8).

(ii) In particular, if suppg is compact in R", then only the first
condition (3.27) is required for the above density function n(t,y) to exist.

PROOF. First note that (3.27) implies that suppgqcC U(q) from the
definition of U(g). And so the smooth density function p(¢,%,%) of ¥
exists for any (¢, x,y)=(0, ) XsuppgX R* by Proposition (3.21). Using
the equality (2.14) and Fubini’s theorem, we can see the existence of the
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density function z(t,y) defined by
(3.30) At )=\ plt, 2. y)(da).

All we have to show is the smoothness of the function z(t,7) defined
above. Since p is smooth, it suffices to see that the derivatives of
p(t,x,y) are integrable with respect to q(dx). In the case (i), the condi-
tion (3.28) is equivalent to saying that suppqC U,(q) and by the estimation
(3.23) and the definition of ¢;, the estimate

(8.31)  |0703050(¢, x, Y)| S Ga(eZ*t")"#*, (¢, x,y)<(0, T]xsuppg X R

holds. In the case (ii), the compactness of suppq guarantees the existence
of L satisfying the conditions in (i). Q.E.D.

(3.32) REMARK. The sufficient conditions in Theorem (3.26) do not
look like those on Lie algebra because (V,).,s contain also the operator
(. But with the help of partial hypoellipticity which is mentioned
before, the result in the theorem are regarded in a sense as the projection
of the conditions on Lie algebra (cf. [2],[5]): For a time-inhomogeneous
stochastic differential equation

4Z,= é Wi Z,, t)od0u(t)+ Wi(Z., t)dt,

define
L(z, t)=span{{Wy, [--+, (Wi, W] 1l(z, 1) ;

1=k=d,0=k,;=d,1<1<3,5=0,1,---},
where W,=W, if k=1,2,---,d and = W,+9/ot if k=0. If the equality
(ms)ee. 0l L2, 0)]=R"

holds for any z& R™ with the natural projection z:[0, )X R*—R", then
the distribution of the solution Z, has a smooth density function. Applying
this sufficient condition to W,(x, t)= V[, n(t)], the same result as Theorem
(3.26) can be obtained. From this point of view, what is shown in this
section is how the ordinary Malliavin calculus on R™ is carried out directly
to the time-inhomogeneous equations like McKean equations not by handling
them on the manifold [0, )X R™ as is done in the argument of partial
hypoellipticity.
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4. Application to the original McKean equations.

In this section, the results of the previous section are applied to the
original type of McKean equations of Section 2, that is, the equation (2.1)
with

(41) Vi[x, p]:SRnmei(x: yl,-"':ym)pgm(dyl;”')dym): /L.Zl,"',d,

where xR, p P(R™) and m< N.

Since the above V,[-,-]s belong to the class C~(R" X M(R"); R"),
Theorem (3.26) holds also in this case, and the operator (J can be written
in more explicit forms.

Let us now introduce the classes of functions in C=(R™ X M(R"): R™)
which have the expression like (4.1) with some me N. That is,

4.2) JI™R™)
:{VEC""(R"XJ?M(R");R"); with some VeCp(R™ ™+ : R,

Vie,pl=\ Vi, y, -, 4a)p® (A, -, dym), € R, pe PRV

For a vector V[-, -]Je I™(R"), its Fréchet derivative is

(4.8) DVx, p)(p’)

=2 Sm Vi@, yy, e, )@ @ P (dys, o, dym)

and so,

m

(4.4) FV[x,z pl= z

=1 SRnx(m—l)

V(xr ?/1; Tty yk-l: 2y Yrer, ym)

X pg(m_l)(dyl) ) dyk-l) dyk+1,' Tty dym) .

In this way, ' V[x, 2, -+, 2;, ], 7<m can also be defined as the sum of
all the vectors obtained by integrating V(x,y,, -+, ¥») in (m—j) parameters
out of {y,, -, y»} With respect to p and replacing the remaining parameters
by z, k=1,--,J in arbitrary orders.
In view of (3.12) and (3.13), we have
d

(4.5) Z=VIz, 7(6)]=(Q V)=, (1)
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=SRan[rc )F Vg, 2, 7(£)]x(t)(dz)

=30 (WO e, gm0 Ay -+, dya),

where L,[x(t)] acts on Vi(x,y,, **,¥n) With respect to the k-th parameter
Yi. Since QV; again belongs to J™(R") for some m’eN, we cantlet Q
operate as many times as desired. However, the number of integrations
(denoted by m) increases at each stage, for L,[z(t)] itself contains z(t).

In order to see how the actual calculation is carried out, let us}con-
sider the case that all the Vi[-,-],k=0,1,---,d in the McKean equation

(2.1) belong to the class J*(R"™). In this case,

4.6)  Vis, p]:SRnd(x, Wpdy), k=0,1,--,d for pe H(R"),
and from (4.3) and (4.4),

@n DVila, p)p) =\ Vila, v/ (dw),

(4.8) FVilz, 2, p]=Vilz, 2) independent of p= M(R™).

Now, let us proceed to the -calculation of Vi,x, pl, acs A for
Ve (R™). But to do so, it is necessary for us to get the explicit form
of the operator L[p] when pes P(R™).

(4.9) Lipl=— 3 Vily, I+ Vily, o]

E
_1
T2

az
0Y,0Y;

L)

¢ 2o OV
2 (52 E Vil 05, p+ Vily, o)

lz B

n 1 ¢ = ; 0 g2
+,§‘< El ;‘3 Vily, u) a (y, )+ Vily, w ))—ayj }p (du, dv).

ﬁl; < 2 Vily, p1Vily, p])
1

Ms
N>|

0y

—-

2

a?/ia?/j

M=

Vil 0 Vi, ) )5

o
x
Il

1

For simplicity, let the last expression be denoted by

(4.10) | {4, %, 0)3+ By, 4, )3} du, dv),
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and using this notation, define a linear map R: C=(RM*™*V . R™)—
Ceo(Rnx(m-H!); Rn) by

(4-11) (Q V)(x) Y Yms Uy v)

Mz

(AW, w, V)LV, Yy » Ym) +BWYs, %, 0)0: V(&, Y1, -+, Y} -

1

k

Then, for each VeJJ™(R"),
(4.12) QVlx, p]

QQV(x, Y s Ymy U, v)p®(m+2)(dyly ) dymy du: d'l)) »

SRn X(m+2)

that is, QVe ™Y R").
Suppose that for ae A and VeI (R"), Vi, belongs to J™(R") and

(413) V(a')[x; p]:S W(x; Y, ym)p®m(dyb Tty dym)

RnxmM

with some WeCy(R**™+v . R"). (For a=(ay, ,a)EA, a’'=(ay, -+, a;-1)
and ax=a;.) If ax#0, then

Vior=[Vauw Viarllz, pl
= VEB)[%, p] Va.[x: p] - ngl.)[x’ p] V(a’)[xr p]

{W(l)(w; Yy oot ym) Va.(x; Z)—‘ Vgxl.)(x’ z) W(x’ Yy ym)}

X p® ™ (dyy, -+, dYm, d2),
where W® and V¢ are derivatives in the first parameter and so,
Viy€JI™ Y R™). If ay=0, then
Vir=[Vo, Vearll#, p]+(Q Vian)lz, ]
and since [V, Vienl€I™HR™) and QVin€I™HR"™), Vo, belongs to

g™+ R"). Thus, we have the following proposition as a conclusion.

(4.14) PROPOSITION. If V[, -], k=0,1,---,d belong to J'(R"), then,
for each Ve JYR"), the wvector Vi, defined in (3.14) is an element of
g+ (R Suppose further that Vi.olz,p] has the expression (4.13).
Then Vi 1s calculated explicitly :
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(4.15)  Viuilz, p]

{IVLI)(xy Y, oo, ym) Va*(fv; Z) - V&lt)(x, Z) VV(:U, Yi, °°°, ym)}

Sgn x(m+1)

XpE N dyy, o+, dym, d2)  if @y #0,

SRn ),(m+2){1’V“)(x, Yooy ym) Vo(x, ’Ll,) - Vgl)(x; ’M) VV(/U’ Y1 o0ty ym)

+g’2W(x; Yy Yms U, ’U)}p®m+z(dyb tty, dym; d'LL, d’l)) @f Ax #0 »
where R 1is the operator defined in (4.11).

Next, assume in addition that the initial distribution ¢=4. with some
fixed point £ R™. In this case, the McKean equation (2.1) takes the
following form.

(L16)  X(t,0=¢+ B S:Vi[)as, 0), 7(s)]odd (s)+ S:VO[X(s, 0), x(s))ds,

where (0, dy)=q(dy)=0¢:(dy). With the help of Proposition (4.14), very
simple expression of Vi,[w, q] can be obtained.

(4.17) LEMMA. Let Ve J'Y(R") and q=36: with §ER™. If V.[x, p]
18 expressed as in (4.18) for any ps P(R™), then

(4.18) Violz, q]
IW“’(m, &, ) Va2, 8) = ViNx, ) Wi, &, -+, ) if ax+0,
=\ WO, &, -, ) Vilw, €)= V2, O W(w, &, -+, )+ RW(x, §, -+, £)
if ax=0.

Noting that suppg={§} is compact, we can see that the following
corollary of Theorem (3.26) (ii) holds.

(4.19) COROLLARY. For VeJYR"), define Violz, q] inductively for
every as A as in Lemma (4.17). If span{(Vi)wl&, ql; k=1,---,d and
acs A}=R", then the solution X(t,0) to the McKean equation (4.16) has
a smooth density function.

(4.20) REMARK. The above argument is easily extended to the case
VieI™(R"),k=0,1,---,d with m=2. In that case, Vi, belongs to the
class Jnd+D(R™) for Ve I™(R™).
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