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Some inequalities for some increasing additive
functionals of planar Brownian motion and

an application to Nevanlinna theory
By Atsushi ATSUJI

§0. Introduction.

In this paper we are interested in the relation between the growth
of some increasing additive functionals of complex Brownian motion and
Nevanlinna theory. On the growth of martingales we know, first of all,
Burkholder-Davis-Gundy inequality, that is, let M, be a continuous
martingale, M¥= osslig M,, and <M, be its quadratic variation process.

If p=(0, c0), then there exist constants c¢,, ¢, depending only on p such that
for any stopping time 7T,

aEXMOYP< E(M¥)? < ¢, EXM>¥*,
holds. Moreover Barlow-Yor [1] showed,
aECMYY*< E(L¥)? < o, EXM Y,
where L:"EsgpL(x, t). L(x,t) is the local time of M,. Recently Bass [2]

extended such an inequality to more general functionals. In order to
prove Nevanlinna theory probabilistically, we need establish such a type of
inequality for some increasing additive functionals of planar Brownian
motion {Z,} (Z,=1), like

S:|Z3|_2d8 and S:g(Zs)dS:

with gL C). In §1 we state our inequalities and prove them in § 2.
What fills the role to join our inequalities to Nevanlinna theory is the

lemma on logarithmic derivative which R. Nevanlinna applied to his

second main theorem. Here we give a little information of Nevanlinna

theory on C. (See [6].) Let f be a meromorphic function on C and ac P,

(one dimensional complex projective space).

Set
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w1 .
|, 10g g r— lda if g% o0
m(a, r)=
13:10g*!j1re”)d0 if a=oo

with log*a=log{max(a, 1)},
N(a, r)= Zlogl—zl— (counting funection),

where the sum is taken over all roots of f({)=a within {|{{|<7} repeated
according to their multiplicity, and

| f/(2)|?
e 9O AT ¢V )

(Ahlfors-Shimizu characteristic function), where g¢,.(x,y) is the Green
function on {|z] <7}, and dV(z) is Lebesgue measure.

ﬂng

THE FIRST MAIN THEOREM.
m(a, r)+ N(a, 7)=T(r)+0(Q1).

We can show this equality probabilistically from Dynkin's formula
or Ito’s formula.

THE SECOND MAIN THEOREM (abr. SMT.). Let ay,-*,a, be distinct
points of P, q=3 and Ni(r) be the counting function of the critical points
of f. Then

32 mla, 1)+ Ni(r) S2T(1)+0(log T(r)+log )

1s valid except for finite length of r.

This is a very deep result. For example Picard’s theorem is verified
from this. The lemma on logarithmic derivative is the key to his
original proof of SMT. We show that this lemma is deduced from our
inequalities in §3. Carne also noticed the relation between Brownian
motion and Nevanlinna theory in [38] where he proved SMT by differential
geometric aspect of Brownian motion.

I would like to thank Prof. S. Kotani, Prof. S. Kusuoka and Prof.
T. Ueno for many helpful advices.
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§1. Some inequalities for some increasing additive functionals of
planar Brownian motion.

Let (Z,, 2, P, F,SF;) be a Brownian motion on C starting from 1, g(z)
be any non-negative function on C satisfying ch(z)dV(z)<oo and G(r) be

any non-negative function on [0, o) satisfying SwG(r)dr< oo, Let us con-
sider the additive functionals such as S:|Zs|'2d8,0 S:g(Zs)ds and S:G(lZsl)ds.
We define a set of &F,-stopping times as

S(F)={s: an &F,-stopping time satisfying gof,=c—t

on ¢=t for any ¢t=0.},

where 6, is the shift operator of Brownian motion.
Now the following inequalities are valid.

THEOREM. Let Z, g(z), G(|z|) be as above.
i) If a=(0,1/2), there exist constants ¢;>0,¢,>0 such that for any o<
S(F)

s d a
E,(Soﬁ> <¢E(log*a)® +e,. (1.1)

il) If a=(0, ), there exist constants ¢;>0,¢,>0 such that for any F,-
stopping time o

03E1(10g+0’)2n§E1<S:T%>a+c4 . (1.2)

iii) If a<(0,1), there exist constants ¢;>0, ¢s>0 such that for any F,-
stopping time @

E1<S:g(Zs)ds)a < e,Ey(log* o) +cs. (1.3)

iv) If a<(0, ), there exist constants ¢,>0, ;>0 such that for any &F,-
stopping time o

aEy(log* ) gE,(S:G( 1Z,| )ds>" Yoy (1.4)
The above theorem is immediately verified by integrating the follow-
ing Burkholder type good 2 inequalities.

PROPOSITION. For any B>3,0<d<1, there exist h;(6)>0 and H;(R)
>0, 1=1,---,4 satisfying that h8) tends to zero as 610 and
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SOHi(l)dl“<oo where a€(0, ) if 1#3 and a<(0,1) if 1=3, such that the

Sollowing s valid.
1) If e=S(9),

P1<S:|ZS|‘2ds>,82,(log‘"a)zé52>§hi(5)Pl<S:|Z,-|""ds>2>+H1(l) (1.5)

ii) If o is an F,-stopping time,
P1<(log“o)2> 84, S:|Zs| "‘dsé&/l)éhz(ﬁ)Pl((log*a)2>2)+H.3(,2) . (L6

ill) If o is an F,-stopping time,
PI<S:g(Zs)ds> 82, log‘“o§51>§hg(6)Pl<S:g(Zs)ds> 2>+H3(,l) R

iv) If ¢ is an F,-stopping time,
P1<log+o> 82, S:G(IZsl )ds§52>§h4(5)P1(10g*a>1)+H4(2) s
In the above proposition the condition that ¢ must belong to S(F) is

technical. But I don’t know whether this could be suppressed or there
could be a counterexample.

We wish to apply the theorem to Nevanlinna’s theorem so that it
motivates us to have the following corollary. Let Z, be a Brownian mo-
tion on C and define

r,=inf{t=0: |Z,|=7}.

COROLLARY 1. Suppose Z,=0. Let g and G as above and 0<a<l.
Then there exist comstants ¢;>0, 1=1,--+, 8 such that for any non-constant
meromorphic function f on C (we assume f(0)=1 for simplicity.)

i o8 (10g* 172 as) e, B[ L as) ™
<eB(log{ "1/ (Zds) +er.  (1L9)
i) et (tog*{ "1zt ) e B (G £ )0 12 s )

éc,E(log*S:TI FIZ) |2ds)“ Yo (L10)
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PROOF. We have only to make a time change argument. There exists
a Brownian motion Z, on C with Z,=f(0)=1 such that f(Z,)=Z,, with
o=\'f(Z)I"ds. 2. has a filtration &, defined by F,=F,, g.=pi, 50
J0 o o
that o, is an I,-stopping time and p. €S(F). O
Corollary 1 is available for the proof of Nevanlinna's lemma on loga-

rithmic derivative. We will see this in § 3.
At the close of this section we mention the relation between Barlow-

t
Yor’s theorem and ours. Set M,=log|Z,|. Then ‘<M>c=SOIZs|‘2ds and M,

is a continuous local martingale. Using Barlow-Yor’s inequality, we have

E(S:G(|Zx|)ds>a gE(S:G(e“)L(a, x)dx)a
<161 o F(sup Lio, 2) )

< const. EXM>*?=const, E<S:[Z,] —2ds>“'2.

In conjunction with our inequality i) of Theorem, we get iii) for c= S(F).

§2. Proof of Proposition.

First we must remark the following fact that we will use frequently
to prove the claim. Let Z, be a complex Brownian motion with Z,=z.
Then there exists a one-dimensional Brownian motion B, starting from
zero such that

log|Z,| —log|z|=B(u.),

t
with u‘ZS(;'Z“'-ZdS' From this we have

Ue, = SOTIZ.,I 8= 0105 v = (log 7/|2])%01,

with ¢,=inf{t=0; B,=a}. (The last equality is valid by the Brownian
scaling property.) We use this fact without further notice.
We prepare lemmas for the proof of Proposition.

LEMMA 1. Let z,=inf{t=0: |2./=7}. If |2|<7, then we have for
0<e<2 and t<r,
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i) Pz, >r**)<r s, 2.1)
ii) P (r, St) S I(V2 |2t 1) I(v2rt™1?), (2.2)
(2/2)*"

where I(x)= X5,

(m!)? "

PROOF. 1) P,(r,>r**)<r 2 E,r,=r2r—|z|) <r-.
ii) follows from the passage time formula. ([5]). O

LEMMA 2. Let 0<e<2. If r'*2<|z|<r "2 and r>1,

. Tr _ 2log r
i) P,(So | Z,| 2ols>u>§-——w7 , (2.8)
i) P\ 125> 0) S ZEL C- ey, 2.0

(C is a constant independent of r.)
If |z| <rtme?

F2+e
iif) P,<SO A -2ds<u> < P((log 7o, <u)+ - . 2.5)

PROOF. i) PZ<S:rIZ8|‘2ds>u>:P((log 7l|2))o,>w)

2logr
vVu

ii) follows from i) and Lemma 1. iii) is proved similarly to ii). O

IA

LEMMA 3. Let 0<e<2 and r>1. There exist positive constants ¢
and ¢, such that
i) if lzl<rt,

Tr 1
P,<So A )ds§k>§ s (2.6)
B if t>1,
Pz<S:g(Zs)ds>lc>§ CZLO%FI—) . @.7)

PROOF. i) Let I(t,z) be the local time of B, (By=0). The scaling
property of Brownian motion implies .
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dlogrl/izl

S:rG(lzsl)dS:S G(|z|lexp B,) exp 2B.ds

0

x—log|z|

G G O

)dx'logr/]zl.
For QCR set

_ o oz m—loglzl)
XQ_SQG(e Jo l<al,410gr/|zl dz,

Ko= SQG(e’)e“dac .
Then by Jensen’s inequality,

- o 92 _ x—loglzl):l
K3 SqG(e Je E'l:exp{ aKQl<ol,————logT/|z| }dx.

If 0<s<1, then it is well-known that

Elexpl—al(o, 1= 5550, 2.9

2sa+1) °

Now we take Q:{x; 1/2§w<1}. From (2.7) and (2.8) we have

log r/|z] =

1
Elexp(—aXy)] < 2T(K—Q—a+1) .

If XEXR, then X%XQ.

P, (X<k)<e**E[e **]<e**E[e **Q]

eak

S—_
= 2n(Kpa+1) "
Put a=k"!. Then we have
1
< - -
P, (X=<k)=<const. Kol 11 (2.9)
On the other hand if 0<|z|=+" with 0<y<1,

S:TG(lZ,I)dsg(l—r) log r-X. 2.10)
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From (2.9) and (2.10), we have

PZ<S;TG(|Z3l)ds>§P<X < (T—rl)Tgr)

1
Ko(l—p)ktlogr+1-

<const.
ii) From Chebyshev’s inequality, it follows
P,<S:g(Zs)ds>k>élc"Ez[S:g(Zs)ds] :
We see easily that this is dominated by ¢,k *(log t-4-1). O

LEMMA 4. Suppose r>1 and f is bounded on S,={z: |z!=r}. If |z
<1, then uniformly with z, we have

E[f(Z. )]=E[f(Z.)]+0(r™). (2.11)

PROOF. This results from the estimation of Poisson kernel, that is,

r’—lz[> -1
ly—=z> |y—1J°

=0(r™Y) if |y|=r. O

t
PROOF OF i) OF PROPOSITION. Set szinf{t>0 ; S IZs|'2d3>,l}and n=1/2
0

x8"+/2. We can carry out the proof by dividing the left hand side of
(1.5) into three parts which correspond to the position of Zs,.

1°) S;=rt,,Nr,., case.

P1<S:|Zs| “*ds> 82, (log*o)'<oa, S;<t., /\re_,,>

expv5i
SP‘(S |Z,|"*ds> A, Si<t,,At, Sx<a>.
0

expvél $3 €248,
Since S |Zs|“2ds§S |Zs|‘2ds+8 |Z;|"*ds, the strong Markov prop-
0 0

S
erty implies that the above is dominated by

B[ Pay (' 125> (8-1)2): SiS e ne, Sl<a] . (2.12)

From Lemma 2 we have on {S;<r7,,A7,_,},
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51/6,\/7
\/(ﬂ—— 1)A
=const.6Y%+c- I(e?) *

e2#
PZSA<SO |Z3|“2ds>(,8—1)l>§const. +c I(e?)™!
with ¢=(¢/(2—e¢))p. Therefore
(2.12) <const. 6 P,(S;< g)+const. I,(e?)"!.

2°) r,,<S; case.

P1<S:IZsi“2ds> B2, (log*a) <51, re,u<sl>

<P((1Z.%d5> B2, Gogro)zoa, =, <5,)

<P(r,,<e’¥).
Lemma 1 implies the above is dominated by
C-I(e" Y=t (u—~/52>0),

which is dA*-integrable.

3°) 7,-,<S; case.

Before estimating the third part, we should notice the invariance of
complex Brownian motion for a conformal transformation on C, i.e. z—1/z.
This maps Z, to Zr, where Z, is a complex Brownian motion starting

t ~ ~ ~
from 1 and F‘:S |Z,|*ds. Z, has a filtration ¢, defind by Eft:—tffpt—x SO
0

that F, is an &,-stopping time if ¢ is an & .-stopping time. Moreover F,
belongs to S(F) if ¢=S(F). From now on we put tildes on heads of
quantities relating to Z,. Then Fs,=S; and F, =%,: are valid. Here
we had better notice the following lemma.

LEMMA 5. Put Ii(cu)=1“,<s(ﬁ_m,(w) with ¢€S(F) and 1=0,1,2,--- <.
Let T be any stopping time. Then we have

1) Sﬁ1°0T§S(15+1)1—T ’Lf Sﬁng (213)
ii) S;—T<8;°0r of S;=T (2.14)
(i) I;41(0r0) = I,(w) if o=T (2.15)

iv) I,(0r0) =2 I;(w) if e=T (2.16)
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PROOF. 1i) and ii) follow from the definition of S,. (iii) and (iv) are
obvious from i) and ii). O

Now, we start with the estimation of the third part. The case Sy;
>t,, has been considered already in 2°). Hence we can assume Sgz;<t,,.

P(S,g;<o<e"57, Te_y<S), Sﬁ;é‘l‘e#)
SP(Sp<oAt,,, T,ou<Sy T,o,<7,2)+Pir ;<ev®)
=Ji+Js, (2.17)

where 7=(1/2)6"'24/7. Converting quantities relative to {Z,} into the cor-
responding quantities relative to {Z,}, we have

Ji=P(Sp<a A%,y F,u<Si Fu<F%,4.
Since & and Ee_yES(g), we have, using i) of Lemma 5,
J1§E1[Pz;e#(g(,g_l,x<&/\%e_,,)-Io(w); Tu<T,)
=E1[Pz";e#(5'<,g ma<dNT,_,) Iw)]
—E|[Pz ,(Sp-a<d AT, ) Lw); 7,27, 4. (2.18)
Using the strong Markov property and iii) of Lemma 5 we have
E\[Pz,,(S-1:i<3 AT, ) I@) ; #,,2%, 5
2 E[Ez:, Pz ,(Ss-:i<6 A%, ) L)) #,2%,5].
If p<p, similarly we see
Ez:, [Pz ,(Sp-1n<d A%, ) L(o)]
= Ez, [E2: ;[Pz: (Sp-<3A%,) Liw)]].
Lemma 4 implies this equals
B\[Ez ;[ Pz, ,(Scs-1:< 3 A7, ) L(@)]]+0(e ).
However, using iv) of Lemma 5, this is dominated from below by

EI[PZFep(S(ﬂ-1)1< G /\?e—_u) 'Ig(w)]+0(e';‘) .

Therefore (2.18) is dominated by
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E[Pz (Sp-0:<3 A%, ) L@)] Pz, <%,;)
+E[Pz,,(Scs-01< 3 AF,) - {Tofw) — L(w)}]+0(e 7).

It is easily seen that by using strong Markov property conversely we have
the first terméPl(Ee,,<%e_,;)-P1(S;< 5)

= — + P(Sl<0')

5ol
= oL i

<" Py(S;<a). (2.19)

-Py(S;< )

Similarly we have
the second term=<Pi(Sis-1u<FAZ,-p, Scp-22<F,,<Scp-p1A0)
SP(Sp-0a<d, Si<F,_uAT, Scg-0a<Za)
<4 P(S;<0). (2.20)
On the other hand Lemma 1 shows
I,<C-Iye)! (2.21)
with u=%65“2\/2_—%\/§>0. From (2.18)~(2.21)

Pl(Sﬁ;<a< e"'ﬂ, Te_l,<S1, S/“<Tel—!)
< (811 4-8'%). P(S;<a)+C-I(e*) ' +0(e 7). (2.22)

Putting together 1°)~3°) and setting h,(d)=const. §/° and H,(1)=C- I,(e*)"!
+0(e ) lead i).

PROOF OF ii). There exists ,Zo such that eY®-vige et for any

VB—1 and 0<e<?2. If A=A,

1
>
A= 2,. Choose 7 and ¢ as 5, <7< 2(2+ )

P1<(10g+a)2> B4, §:|Zsl “ts< oA, evE < re,¢x—>

:P1<0>e\/m; So|Zs| “ds<oA, evT< T v e‘/l_<g>
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/FI-T , _
E‘[Pzeﬁ(So |Z,|*ds < 51) ;e <t e <a:,

IA

eV (B—D1 _
B[P (" 21 s s 82): &7 <57, <0

0

< EI[PZM—(e' BDI<T0); eV i< Tewz:'

+B| Pr ([ 121 705502); 5 < pur, 0T <0 ]
with a=+(8—-1)2/(2+¢). From Lemma 1
1 R
the above first termgexp<—m V(B— 1)2) ,

and the second term=P((a—7)%,<42)
= P(0,=£b0)
with b=4(2+¢)e%(f—1)"'. Therefore if 2,<2,

P1<(10g+o)2> 82, 1205 502,77 < rem—>

éP(alga)P,(a>e“r)+exp<—ﬁ ¢_(ﬁ—1)x>.
From this and Lemma 1 if we set

h2(0)=P (0, =b9) ;
HyR)=exp( — 3= VIB=T1)+ edexp e, vI) "+ L),
where Ij;,(2) is the indicator function of [0, ), then we have ii).

PROOF OF iii). Set S;Einf{tgm S”g(zs)ds»}. It 121,
0

4 edd
P1<So 9(Z)ds> B2, log*a < az) < R(S0 9(Z,)ds> Ba, sz<a>

éEl[P1<S:“g(Zs)ds>(/9—1)2) : Sl<a]



Additive functionals of planar Brownian motion 183

C
(B—1)2

_C 5. C
<5210 PlSi<o)+ gz a7

< 02+ 1)P(S;<0) (By Lemma 3)

The second term is integrable for di* (0<a<1) on [1, ). Therefore if
we put the hy(6)=(C/(B—1))6 and Hy(2)=the second term:X Ij wy(2)+ If15(4),
we have iii).

As for the proof of iv), we carry out the same procedure as ii) using
Lemma 3 instead of Lemma 2. Then we have iv).

§3. Application to Nevanlinna theory.

R. Nevanlinna studied the value distribution of meromorphic functions
and established his theory which we call usually Nevanlinna theory. This
theory has been contributed to and extended by many authors (cf. [4,7]),
but we here consider the simplest case, that is, meromorphic functions on
C. His SMT is usually proved with differential geometric method. We,
however, return to his original proof and give a probabilistic proof to
his lemma on logarithmic derivative which played the main role in his
proof.

LEMMA ON LOGARITHMIC DERIVATIVE ([4,6]). Let f be meromorphic
Sunction on C. Then we have that

1 L Lf(re')]
271'80 log™ | e )]

18 valid except for finite length of r.

df < 0O(log T(r)+1log r)

We show this lemma via our inequalities in §1. We need the follow-
ing lemma.

LEMMA 6. Let K(z) be a positive function on C™ and Z, be a Brownian
motion on C™ (Z,=0). For any 6>0 and o<a<l, there exist posi-
tive constants ¢, and ¢, such that

i) EK(Z,r)écl'r‘z"‘""{E[S:TK(Zx)ds:”umz 16r).

i) K7, ) zeo(B({ KZ)as) | IEL 5,
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with y=02n—1)0+2(1—a)(1+08).  The motation ‘‘[[d6(r)” means that the
inequalities hold except for the set of finite length of r.

This lemma is a simple corollary of the following lemma on monotone
increasing functions.

LEMMA 7 [6,7]. Let h(r)>0 for r=0 and be monotone increasing.
Then h(r) is differentiable at almost all points and for >0

%h(r)é{h(r)}’+5 116(r)
holds.

PROOF OF LEMMA ON LOGARITHMIC DERIVATIVE. Let 0<a<1/2.
Jensen’s inequality and Lemma 7 imply

s {757 ] < 2w frzr)

1 72
s gk [Tf(z—,,)na] +0)

r |f1(Z)?
o |F(Z)I°

<const. log E<S c;ls>2‘x +O(logr) [/é(r).

Using Corollary 1 in §1, we have

the R.H.S.gconst.1og+E(1og+S;'| f’(Zs)lzds>2a+O(log "6

or_ f(Z))°

=const. 10g+E<SO (1+ |f(Zs)|2)2ds>2a+O(10g ’i") //5(’7') .

Since 0<2a<1 and

T0)=E||, (1lf |}Z(Z)|)1) ds |,

then using Jensen’s inequality we get finally

Elog*%éconst. log*T(r)+O(log ) [/o(r). O

Although we have devoted ourselves to the case of meromorphic func-
tions on C, our methods are available for the case of ones defined on a
disk of C, C™ or a ball of C*. Let F be a meromorphic function on
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{2€C™; |z|<R} m=1 and R< ) and Z, be a Brownian motion on C" with
Z,=0. There exists a complex Brownian motion Z, on C such that

F(Z)=2Z4, if t<tg,
oF

02,

t
with ¢,= SO [

2
‘(Zs)ds. Hence applying our theorem again to this
case, we can rewrite Corollary 1 more generally.

COROLLARY 2. Let G(r) be as in Corollary 1. For 0<a<1 there exist

positive constants C;, 1=1,---,8 such that for any meromorphic functions
F oon {2€C™; |z|<R} (n=21, R<x)

. + a__ n TT|FZ (ZS)|2 alz
i CiBllog*g.)~C,< B i el a5
§03E(10g+¢:r)“+c4;
i) Glloz* g, ~CS E( St | GIF Z)DIF. (Z)1ds)
<C.E(log*$. )*+Ce,
or

with r<R and F, (2)=

oz, (2).

In the case of C* we can use Lemma 7. Then we carry out the same
prozedure as the case C to prove the lemma on logarithmic derivative
which was proved by Vitter [8]. Let F' be a meromorphic function on C*
with F=fi/fy; /o, f1 are some holomorphic functions on C”. Define charac-
teristic function of F';

Tor)=\, log (1fl*+1f:[dz,

where 0B(r)={z=C™"; |z|=7} and d=r, is the normalized uniform measure
on 0B(r). We can show easily that

LEMMA ON LOGARITHMIC DERIVATIVE FOR SEVERAL VARIABLES [8].

S log* %fl dr, <0 (log Tw(r)+log ) [/3(r).

dB(T)

Vitter proved this via differential geometric method and showed the
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second main theorem for meromorphic maps from C" to P™(C) with this
lemma.

In the case of a disk or a ball of C™ we have only to modify Lemma
6 such that the exceptional set should be measured by the hyperbolic
length.

At the end of this paper we remark on the proof of SMT. Our in-
equalities avail the usual proof as follows.

1) Ahlfors type. [4].
Set for ac P,

1 _dwAd®
(log[w, al®qw, al* (Jw|?*+1)?’

po(W)dw A div=

lw—al
ViwlE+1v]alF+1"

where [w, a]= And set for a meromorphic function f

q
(1 po (@) dw A dD) =LAz Ad2, LE)= IT o (F @IS,
with a,, -+, @, P, distinct points. It is easy to see that SMT is reduced to

Ellog £(Z.,)]=0(log T(r)+logr) [[a(r).
Since TI p.,(2)=L'(C), we can apply our theorem and carry out the similar
=1 O
proof of this to the lemma on logarithmic derivative.
2) [6]. Let o<a<1, and let f and a;, =1,---,q be as 1). Set

(wl*+1)*(a:*+1)* dwAdw
|w—a;|* (lwl*+1)*’

£(x)dzAdzZ=f*(p(w)dwNdw) .

dw)dw A dB= 1“11

Then ¢(z)L'(C). For the same reason of 1), we can show
Ellog é(Z.,)]<O(log T(r)+logr) [[d(r).
From this estimate we have

S_a-mla;, )+ Ni(r) 2T (r)+O(og T(r)logr) [[d(r).
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