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Codimension one foliations of S3

with only one compact leaf
By Hiromichi NAKAYAMA

§1. Introduction

In this paper, we are concerned with codimension one C? foliations of
the 3-dimensional sphere S® with only one compact leaf.

By Novikov’s theorem ([8]), foliations of S® contain Reeb components.
If a foliation has only one compact leaf, then it is the boundary of a
Reeb component. The Reeb component is unique if it is knotted. By
Kopell’s lemma ([56]), there exists a solid torus containing the Reeb com-
ponent in its interior such that the restriction of the foliation to its
boundary is isomorphic to a linear foliation. Thus we restrict our atten-
tion to the foliations & of knot complements M satisfying the following
conditions :

(1) & is a transversely orientable codimension one C? foliation of M

transverse to the boundary.

(2) & has no interior compact leaves.

(3) <F|oM is isomorphic to a linear foliation.

Gabai constructed such foliations & for many kinds of knots ([2], [3],
[4]). Since he used sutured manifold hierarchies in the construction, the
foliations constructed by him have compact leaves with boundary. When
such foliation & has a compact leaf, the compact leaf is a minimal genus
Seifert surface ([14]). Hence the structure of & is strongly restricted. For
example, when M is a fibered knot complement, a minimal genus Seifert
surface is unique and the foliation obtained by cutting & along a com-
pact leaf is a foliated I-bundle.

We give a classification of all foliations of torus knot complement
satisfying (1), (2), (3).

When M is a torus knot complement, M is decomposed into two solid
tori E, and E, by cutting along an annulus. A foliation & of M is said
to be standard if & is transverse to both 9E, and 0E,, and ¥ |E, and F|E,
are isomorphic to the product foliations {{*}x D?; xS*}.

THEOREM. Let &F be a foliation of a torus knot complement M satis-
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fying (1), (2), (8). Then &F is isomorphic to a standard foliation.

We prove Theorem in Section 3. In Section 2, a precise definition of
standard foliations is given, and we prove the following proposition.

PROPOSITION. There exists a one-parameter family Fo (0<0<1) of
standard foliations without compact leaves satisfying (1), (2), (3) and that
(@) If 0 1is rational, then all the leaves of Fsl0M are compact.

(b) If 6 is irrational, then FyloM has no compact leaves.

The author wishes to thank Professor I. Tamura for his helpful sug-
gestion and encouragement and also to thank Professor T. Tsuboi for help-
ful comments.

§2. The construction of foliations of torus knot complements

Let W, be an unknotted solid torus in S® and W,, the closure of the
complement of W, in S®. Denote by @ and B the meridians of W, and W,,
respectively. A simple closed curve in d W, homotopic to [a]™:[B]" Er, (0 W))
is called a torus kmnot of type (m, m), denoted by k(m,n), where m and n
(lm|=2, |n|=2) are relatively prime integers. (Furthermore, we assume
that k(m,n) is transverse to {*}xaD? of W, and W, for any *<S! when
W, and W, are parametrized by S!'xD?2)

Let N be a tubular neighborhood of k(m,n). S*—N is called a torus
knot complement, denoted by M. Let E; denote W;—N for i=1,2. We
denote dE,NON by N, and dE,— N, by A, for i=1,2. Then N, and A4, are
annuli (Figure 1).

E,

A,

k(m, n) intersects the k(m, n) intersects the
meridian a n times. meridian 8 m times.
Figure 1.
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Let F; be the product foliation of E; for i=1,2. Then F;|A; is the
foliation whose leaves are all diffeomorphic to intervals. Therefore there
exists a diffeomorphism % : A,— A, which preserves the leaves of F|A, and
F,|A,. The foliation constructed by attaching F, to F, by h is called a
standard foliation of M, denoted by &F,.

The qualitative property of leaves of <F, can be seen as follows.
By reducing each leaf of F\|A, to a point, we regard & as a diffeomor-
phism of S* (zR/Z). For 0<6<1, we define the rotation R()< Diff(S?)
by R@)(zx)=x2+6mod Z. Let f and g¢g<=Diff(S!) denote L 'R(1/m)h and
R(1/n), respectively. We denote by G the subgroup of Diff(S!) generated
by f and g. We define the orbit O(p) of G passing through p by {r(p);
y&G}. Then the qualitative property of orbits of G gives us information
about that of leaves of &F,. For example, the existence of a compact leaf
of &, is equivalent to the existence of a finite orbit of G.

A linear foliation is a foliation of 7' whose leaves wind around 72
with constant slope. Two foliations are isomorphic if there exists a homeo-
morphism mapping each leaf to a leaf.

FoloM is the foliation of T? obtained from the product foliation (S!'X
[0,1], {+}x[0,1]) by identifying S!'x{0} and S'Xx{l1} by gf. Therefore a
standard foliation satisfies the condition (3) if and only if gf is topologically
conjugate to a rotation.

Next we construct examples of standard foliations. To simplify the
explanation, we assume that k(m,n) is a trefoil knot, that is, m=3 and
n=2.

PSL(2, R) acts on the Poincaré disk D? and also on its boundary.
Hence PSL(2, R) is considered as a subgroup of Diff(S?).

Let h be an element of PSL(2, R) and construct &F,. Denote by O the
origin of D? and put A=h"'(0). We denote by u the geodesic passing
through O and vertical to the segment AO (when A#0). Denote by ! the
geodesic passing through A and forming an angle of —60 degrees with the
segment AO (when A=+0). Furthermore, let I’ denote the geodesic axially
symmetric to I with respect to u.

G is classified into the following four cases according to the distance
between O and A (Figure 2).

1) A=0. G is generated by R(1/6). Since all the orbits of G are finite,
all the leaves of &, are compact and <F, satisfies the condition (3). This
implies the well-known fact that a torus knot is a fibered knot.

2) | does mot intersect u. Since gf maps [ onto I’, gf is a hyperbolic
transformation and G has an exceptional minimal set. Thus &, has an
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exceptional minimal set. Since gf has exactly two fixed points, &, does
not satisfy the condition (3).

3)

Figure 2.

3) 1 intersects w in 0D® Since gf maps I onto I/, gf is a parabolic trans-
formation and all the orbits of G are dense in S'. Since gf has a unique
fixed point, &, is a minimal foliation which does not satisfy the condi-
tion (3).

4) 1 intersects u in the interior of D*. Let B be the intersection point
of w and I. Let I” denote the geodesic passing through A and forming an
angle of 60 degrees with the segment AO. Denote by C the intersection
point of % and 1”. Then g¢gf is an elliptic transformation which fixes B
and maps [ onto [’

PROOF OF PROPOSITION. Let % be the element of PSL(2, R) such that
! intersects w in the interior of D? (case 4)) and the angle of ZABO is
equal to #0/6 for 0<@<1. Denote by &F, the standard foliation SF,.
Then &, satisfies the conditions (1), (2).

First assume that 6 is irrational. Then all the orbits of G are dense
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in S! and the rotation number of gf is irrational. Hence &, is a minimal
foliation such that Fy|0M has no compact leaves.

Next assume that 6 is equal to 6/p for some integer p (p=T7). Then
G is the Fuchsian group of the first kind whose fundamental region is the
triangle ABC. Therefore all the orbits of G are dense. Since (gf)? is an
identity map, &F, is a minimal foliation such that all the leaves of Fy|0M
are compact.

More generally, when 6 is rational, &, is a minimal foliation such
that all the leaves of F,|0M are compact. ]

REMARK. B. Raymond constructed codimension 1 real analytic folia-
tions, say &, of torus knot complements M satisfying the following con-
ditions by making use of the Fuchsian group of the second kind ([9]):

1) & has an exceptional minimal set.

2) & is transverse to the natural Seifert fibration of M.

3) The holonomy of $F|0M is a hyperbolic element of PSL(2, R).

The author does not know whether there exists a standard foliation
with exceptional minimal sets satisfying the condition (3) of Theorem or
not. This is closely related to the differentiability of foliations.

§3. The structure of foliations of torus knot complements

In this section we prove the main theorem.

Since M is a torus knot complement, there exists a properly embedded
annulus A in M such that the manifold obtained by cutting M along this
annulus A is a union of two solid tori K, and FE,. For 1=1,2, let N; and

A, denote oMNE; and oE;— N;, respectively. By the condition (3), the
annulus A can be taken so that both of the two connected components of
0A are transverse to & or both of them are tangent to . When 04 is
transverse to <F, all the leaves of F|N, and &|N, are properly embedded
arcs, and, when 0A is tangent to &, all of them are circles.

Since the annulus A is an incompressible surface in M, the following
Lemma 1 holds by Roussarie’s theorem ([10]).

LEMMA 1. The annulus A can be deformed by isotopy so that the
annulus A satisfies one of the following conditions a) — c):
a) A is a leaf of &F and all the leaves of F|N, and SF|N, are circles.
b) A is transverse to &F, SF|A is a foliation tangent to the bound-
ary, and all the leaves of F|N, and F|N, are circles.
c) A is transverse to F, F|A 1is a foliation transverse to the
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boundary, and all the leaves of F|N, and F|N, are properly em-
bedded arcs.

LEMMA 2. The cases other than ¢) cannot occur.

PROOF. In the case a). All the leaves of [N, are circles and A4, is
one annular leaf of <F|E,. This contradicts the fact that &F|E, is trans-
versely orientable. Thus the case a) cannot occur.

In the case b). Let L be a leaf of & which intersects dA. Then
E.NL or E;nL contains a connected component diffeomorphic to a circle.
This connected component is called a singular loop (Figure 3).

Let y be a singular loop of &F|E,. Since &F|N, is a product foliation,
the leaves of <F|E, close to y are annuli. If an annular leaf does not
have holonomy, then the nearby leaves are annuli. Hence there exists a
continuous map ¢,: 2 X[0, 1]-E, satisfying the following conditions ([10]):

1) ¢,(Fx{0))=7r and ¢,/(2%x(0,1)) is an embedding.

2) ¢,(2x{t}) is an annular leaf of F|E, for each ¢<(0,1).

3) ¢,(2x{1}) is either an annular leaf with holonomy or a singular

loop,
where X is an annulus. Let L, denote ¢,(2 x{1}).

F|E, has at most two singular loops. First assume that <F|E, has
one singular loop y. Then L, is an annular leaf with holonomy. Since
SF|N, has no holonomy, ¢,(2 X[0,1]) contains N;. The foliation &F|E, also
has one singular loop 7. We have ¢,.(2x[0,1]) as above. Then L, is
also an annular leaf with holonomy and ¢,.(2 %[0, 1]) contains N,. Hence
L,VL, is a toral leaf of & (Figure 8). This contradicts the assumption

(2).

E annular leaves singular loop r
1

annular
leaves

singular loop r

Figure 3.
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Next we assume that &F|E, has two singular loops y and y’. Since
&F|N, has no holonomy, L, is the singular loop 7’. Hence all the leaves of
F|A, are circles. Since F|E, is a foliation of S'XD* without singular
loops and Reeb components, &F|E, has no null-homotopic closed transversals.
Hence a compact leaf of <F|0E, bounds a disk in E,, and k(m,n) also
bounds a disk in S® This contradicts the non-triviality of the torus knot.

In the case where ZF|E, has no singular loops, &|E, has two singular
loops. Therefore this case cannot occur as above.

Thus the case b) cannot occur. u

LEMMA 3. In the case c), the annulus A can be taken so that either
F|E, is a product foliation or all the compact leaves of F|E, are parallel
to N..

PROOF. First we recall some properties of foliations of S'x D" Let
F be a transversely orientable foliation of S*®Xx D? transverse to the bound-
ary and without Reeb components. By results of Thurston ([13]) and
Levitt ([6]), F' contains a half Reeb component ([12]) if F is not a product
foliation.

Furthermore, by Thurston’s theorem ([13]), there exist compact 3-
submanifolds C; (+=1,2,3, .-+, m) with corner satisfying the following con-
ditions:

1) C; i=1,2,3,:--,m) is obtained by cutting S!x D? along m—1 com-

pact leaves.

2) Each F|C; satisfies the following condition either a) or b).

a) C, is diffeomorphic to 2 x[0, 1], and X' X {0} and X x {1} are com-
pact leaves of F|C,. Furthermore, each {x}x[0,1] (*€2%) is
transverse to F|C,.

b) All the compact leaves of F|C; are entirely contained in oC;,

where 2 is an annulus. C,; is referred to as a component of F and a
component of type a) is called an I-bundle component.

We return to the proof of Lemma 3. Assume that &F|E, is not a
product foliation and the annulus A is deformed by isotopy with the
boundary fixed so that the number of components of <F|E, is minimal.
Let H denote a half Reeb component of <F|E,.

First assume that H is disjoint from N,. Denote by C; the next I-
bundle component to the half Reeb component H if it exists, where the
next component to C; except for H is not an I-bundle component. Let H’
denote HUC,. We remove a small neighborhood H” of H’ from E, so that
the restriction of <F|E, to dH” is a product foliation whose leaves are
properly embedded arcs (Figure 4). Next we attach H” to E,. In this
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process, the number of components of F|E, decreases. Thus the annulus
A can be taken so that the number of components of F|E, decreases and
this contradicts the assumption. Therefore H intersects N,. The annular
leaf L of H is parallel to N,, that is there exists a submanifold homeo-
morphic to S*'XIXI satisfying S!XIx{0}=L and S'XIx{l}=N.,.

Next we remove a neighborhood of H from E, as above. By the above
consideration, the remaining foliation has a half Reeb component whose
annular leaf is also parallel to N,, if it is not a product foliation. Thus
all the compact leaves of &F|E| are parallel to N, by induction with respect

to the number of components of &F|E.. )
El El E2 H
N, H ”\,v;‘\ N, H"

—

gEEHN

OO DD

Sana

Figure 4.

LEMMA 4. In the case ¢), if all the compact leaves of F|E, are par-
allel to Ny, then the number of components of F|E, decreases by changing
the annulus A by isotopy.

PROOF. Since all the compact leaves of &F|E, are parallel to N,, there
exists a component C; of <F|E, which is farthest from N, (C; is not an I-
bundle component). Denote by B the annulus C,n0E, Let 9,4, be one
of the connected components of 04, and let d_A, be the other connected
component of 94, Let ¢ denote the compact leaf of <F|A, nearest to 9, A4,.
Then ¢ is contained in an annular leaf of &F|FE, and this annular leaf with
0F, bounds a solid torus S. Then there are three posibilities (Figure 5):

1) S contains neither N, nor B.

2) S contains B, but not N,.

3) S contains N,.

In the case 1). Since ¢ is the nearest compact leaf of &F|A, to 0.4, the

annular leaf aSNIntE, is an isolated compact leaf of <F|E, outside S.
Furthermore <F|(0E,N0S) contains a 2-Reeb component because the orienta-
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Figure 5.

tions of 9(0E,N0S) induced by the orientation of &F|0E, are opposite. The
component of F|E, containing this 2-Reeb component is the product of the
2-Reeb component and the interval.

Let S’ be a small neighborhood of S such that $F|(8S’NInt E,) is the
product foliation {Ix{x}; *S'}. We remove S’ from E,, and attach S’
to E,. Let S” denote the union of components of the resulting foliation
of E, containing S. The annular leaf of S” contained in 9S” is isolated
outside S”. Next we remove a small neighborhood of S” from E, and
attach this to E, as above (Figure 6).

Since at least one component of &F|E, which is isomorphic to the prod-

YN e
s A N AR
NE N

7
0.4,
E, o (4 B E
o \\ . .AA2 "
=2p
0+4,

Figure 6.
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uct of the 2-Reeb component and the interval vanishes in these processes,
the number of components of <F|E, decreases.

In the case 2). Since & has no interior compact leaves, the leaves of
F|E, intersecting 0B are two annular leaves. At least one of these an-
nular leaves with 0FE, bounds a solid torus which contains neither B nor
N,. Thus the number of components of $F|E, decreases as in the case 1).

In the case 3). Let ¢’ denote the compact leaf of <F|A, nearest to d.A.,.
The annular leaf of $F|E, containing ¢’ does not contain ¢ because &F has
no interior compact leaves. Hence the annular leaf containing ¢’ bounds a
solid torus with 0F, which does not contain N,. Thus the number of com-
ponents of SF|E, decreases as above. ]

In the case c), the annulus A can be taken so that &F|E, is a product
foliation by Lemmas 3 and 4. If &F|E, is a product foliation, then &F|oFE,
contains no 2-Reeb components. Hence $F|E, is also a product foliation,
and & is a standard foliation. Thus Theorem is proved.

REMARK. A torus knot complement is a Seifert fibered manifold. By
Lemma 2, there exists a fiber transverse to &F. If F|0M contains no 2-
Reeb components, SF is isomorphic to a foliation transverse to every fiber
by Eisenbud, Hirsch and Neumann’s theorem ([1]) and Matsumoto’s proof
([7]). Hence &F|E, and F|E, are product foliations, and & is a standard
foliation. We can also prove Theorem in this way.
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