J. Fac. Sci. Univ. TokyoSect. IA, Math.37 (1990), 189-199.

Codimension one foliations of S^3 with only one compact leaf

By Hiromichi NAKAYAMA

§ 1. Introduction

In this paper, we are concerned with codimension one C^2 foliations of the 3-dimensional sphere S^3 with only one compact leaf.

By Novikov's theorem ([8]), foliations of S^3 contain Reeb components. If a foliation has only one compact leaf, then it is the boundary of a Reeb component. The Reeb component is unique if it is knotted. By Kopell's lemma ([5]), there exists a solid torus containing the Reeb component in its interior such that the restriction of the foliation to its boundary is isomorphic to a linear foliation. Thus we restrict our attention to the foliations $\mathcal F$ of knot complements M satisfying the following conditions:

- (1) \mathcal{F} is a transversely orientable codimension one C^2 foliation of M transverse to the boundary.
- (2) \mathcal{F} has no interior compact leaves.
- (3) $\mathcal{F}|\partial M$ is isomorphic to a linear foliation.

Gabai constructed such foliations \mathcal{F} for many kinds of knots ([2], [3], [4]). Since he used sutured manifold hierarchies in the construction, the foliations constructed by him have compact leaves with boundary. When such foliation \mathcal{F} has a compact leaf, the compact leaf is a minimal genus Seifert surface ([14]). Hence the structure of \mathcal{F} is strongly restricted. For example, when M is a fibered knot complement, a minimal genus Seifert surface is unique and the foliation obtained by cutting \mathcal{F} along a compact leaf is a foliated I-bundle.

We give a classification of all foliations of torus knot complement satisfying (1), (2), (3).

When M is a torus knot complement, M is decomposed into two solid tori E_1 and E_2 by cutting along an annulus. A foliation \mathcal{F} of M is said to be standard if \mathcal{F} is transverse to both ∂E_1 and ∂E_2 , and $\mathcal{F}|E_1$ and $\mathcal{F}|E_2$ are isomorphic to the product foliations $\{\{*\}\times D^2; *\in S^1\}$.

Theorem. Let $\mathcal F$ be a foliation of a torus knot complement M satis-

fying (1), (2), (3). Then \mathcal{F} is isomorphic to a standard foliation.

We prove Theorem in Section 3. In Section 2, a precise definition of standard foliations is given, and we prove the following proposition.

PROPOSITION. There exists a one-parameter family \mathcal{F}_{θ} (0< θ <1) of standard foliations without compact leaves satisfying (1), (2), (3) and that

- (a) If θ is rational, then all the leaves of $\mathcal{F}_{\theta}|\partial M$ are compact.
- (b) If θ is irrational, then $\mathcal{F}_{\theta}|\partial M$ has no compact leaves.

The author wishes to thank Professor I. Tamura for his helpful suggestion and encouragement and also to thank Professor T. Tsuboi for helpful comments.

§ 2. The construction of foliations of torus knot complements

Let W_1 be an unknotted solid torus in S^3 , and W_2 , the closure of the complement of W_1 in S^3 . Denote by α and β the meridians of W_1 and W_2 , respectively. A simple closed curve in ∂W_1 homotopic to $[\alpha]^m \cdot [\beta]^n \in \pi_1(\partial W_1)$ is called a *torus knot of type* (m, n), denoted by k(m, n), where m and n $(|m| \ge 2, |n| \ge 2)$ are relatively prime integers. (Furthermore, we assume that k(m, n) is transverse to $\{*\} \times \partial D^2$ of W_1 and W_2 for any $* \in S^1$ when W_1 and W_2 are parametrized by $S^1 \times D^2$.)

Let N be a tubular neighborhood of k(m,n). S^3-N is called a *torus* knot complement, denoted by M. Let E_i denote W_i-N for i=1,2. We denote $\partial E_i \cap \partial \overline{N}$ by N_i and $\overline{\partial E_i-N_i}$ by A_i for i=1,2. Then N_i and A_i are annuli (Figure 1).

k(m, n) intersects the meridian α n times.

k(m, n) intersects the meridian β m times.

Figure 1.

Let F_i be the product foliation of E_i for i=1,2. Then $F_i|A_i$ is the foliation whose leaves are all diffeomorphic to intervals. Therefore there exists a diffeomorphism $h:A_1\to A_2$ which preserves the leaves of $F_1|A_1$ and $F_2|A_2$. The foliation constructed by attaching F_1 to F_2 by h is called a standard foliation of M, denoted by \mathcal{F}_h .

The qualitative property of leaves of \mathcal{F}_h can be seen as follows. By reducing each leaf of $F_1|A_1$ to a point, we regard h as a diffeomorphism of S^1 ($\cong R/Z$). For $0 \le \theta < 1$, we define the rotation $R(\theta) \in \mathrm{Diff}(S^1)$ by $R(\theta)(x) = x + \theta \mod Z$. Let f and $g \in \mathrm{Diff}(S^1)$ denote $h^{-1}R(1/m)h$ and R(1/n), respectively. We denote by G the subgroup of $\mathrm{Diff}(S^1)$ generated by f and g. We define the orbit O(p) of G passing through g by $\{\gamma(p); \gamma \in G\}$. Then the qualitative property of orbits of G gives us information about that of leaves of \mathcal{F}_h . For example, the existence of a compact leaf of \mathcal{F}_h is equivalent to the existence of a finite orbit of G.

A linear foliation is a foliation of T^2 whose leaves wind around T^2 with constant slope. Two foliations are isomorphic if there exists a homeomorphism mapping each leaf to a leaf.

 $\mathcal{F}_h|\partial M$ is the foliation of T^2 obtained from the product foliation $(S^1 \times [0,1], \{*\} \times [0,1])$ by identifying $S^1 \times \{0\}$ and $S^1 \times \{1\}$ by gf. Therefore a standard foliation satisfies the condition (3) if and only if gf is topologically conjugate to a rotation.

Next we construct examples of standard foliations. To simplify the explanation, we assume that k(m,n) is a trefoil knot, that is, m=3 and n=2.

 $PSL(2, \mathbf{R})$ acts on the Poincaré disk D^2 and also on its boundary. Hence $PSL(2, \mathbf{R})$ is considered as a subgroup of $Diff(S^1)$.

Let h be an element of PSL(2, R) and construct \mathcal{F}_h . Denote by O the origin of D^2 and put $A = h^{-1}(O)$. We denote by u the geodesic passing through O and vertical to the segment AO (when $A \neq O$). Denote by l the geodesic passing through A and forming an angle of -60 degrees with the segment AO (when $A \neq O$). Furthermore, let l' denote the geodesic axially symmetric to l with respect to u.

G is classified into the following four cases according to the distance between O and A (Figure 2).

- 1) A=0. G is generated by R(1/6). Since all the orbits of G are finite, all the leaves of \mathcal{F}_h are compact and \mathcal{F}_h satisfies the condition (3). This implies the well-known fact that a torus knot is a fibered knot.
- 2) l does not intersect u. Since gf maps l onto l', gf is a hyperbolic transformation and G has an exceptional minimal set. Thus \mathcal{F}_h has an

Figure 2.

exceptional minimal set. Since gf has exactly two fixed points, \mathcal{F}_h does not satisfy the condition (3).

- 3) l intersects u in ∂D^2 . Since gf maps l onto l', gf is a parabolic transformation and all the orbits of G are dense in S^1 . Since gf has a unique fixed point, \mathcal{F}_h is a minimal foliation which does not satisfy the condition (3).
- 4) l intersects u in the interior of D^2 . Let B be the intersection point of u and l. Let l'' denote the geodesic passing through A and forming an angle of 60 degrees with the segment AO. Denote by C the intersection point of u and l''. Then gf is an elliptic transformation which fixes B and maps l onto l'.

PROOF OF PROPOSITION. Let h be the element of $PSL(2, \mathbf{R})$ such that l intersects u in the interior of D^2 (case 4)) and the angle of $\angle ABO$ is equal to $\pi\theta/6$ for $0 < \theta < 1$. Denote by \mathcal{F}_{θ} the standard foliation \mathcal{F}_{h} . Then \mathcal{F}_{θ} satisfies the conditions (1), (2).

First assume that θ is irrational. Then all the orbits of G are dense

in S^1 and the rotation number of gf is irrational. Hence \mathcal{F}_{θ} is a minimal foliation such that $\mathcal{F}_{\theta} | \partial M$ has no compact leaves.

Next assume that θ is equal to 6/p for some integer p $(p \ge 7)$. Then G is the Fuchsian group of the first kind whose fundamental region is the triangle ABC. Therefore all the orbits of G are dense. Since $(gf)^p$ is an identity map, \mathcal{F}_{θ} is a minimal foliation such that all the leaves of $\mathcal{F}_{\theta}|\partial M$ are compact.

More generally, when θ is rational, \mathcal{F}_{θ} is a minimal foliation such that all the leaves of $\mathcal{F}_{\theta}|\partial M$ are compact.

REMARK. B. Raymond constructed codimension 1 real analytic foliations, say \mathcal{F} , of torus knot complements M satisfying the following conditions by making use of the Fuchsian group of the second kind ([9]):

- 1) \mathcal{F} has an exceptional minimal set.
- 2) \mathcal{F} is transverse to the natural Seifert fibration of M.
- 3) The holonomy of $\mathcal{F}|\partial M$ is a hyperbolic element of PSL(2, R).

The author does not know whether there exists a standard foliation with exceptional minimal sets satisfying the condition (3) of Theorem or not. This is closely related to the differentiability of foliations.

§ 3. The structure of foliations of torus knot complements

In this section we prove the main theorem.

Since M is a torus knot complement, there exists a properly embedded annulus A in M such that the manifold obtained by cutting M along this annulus A is a union of two solid tori E_1 and E_2 . For i=1,2, let N_i and A_i denote $\partial M \cap E_i$ and $\overline{\partial E_i - N_i}$, respectively. By the condition (3), the annulus A can be taken so that both of the two connected components of ∂A are transverse to \mathcal{F} or both of them are tangent to \mathcal{F} . When ∂A is transverse to \mathcal{F} , all the leaves of $\mathcal{F}|N_1$ and $\mathcal{F}|N_2$ are properly embedded arcs, and, when ∂A is tangent to \mathcal{F} , all of them are circles.

Since the annulus A is an incompressible surface in M, the following Lemma 1 holds by Roussarie's theorem ([10]).

LEMMA 1. The annulus A can be deformed by isotopy so that the annulus A satisfies one of the following conditions a) - c:

- a) A is a leaf of \mathcal{F} and all the leaves of $\mathcal{F}|N_1$ and $\mathcal{F}|N_2$ are circles.
- b) A is transverse to \mathcal{F} , $\mathcal{F}|A$ is a foliation tangent to the boundary, and all the leaves of $\mathcal{F}|N_1$ and $\mathcal{F}|N_2$ are circles.
- c) A is transverse to \mathcal{F} , $\mathcal{F}|A$ is a foliation transverse to the

boundary, and all the leaves of $\mathfrak{F}|N_1$ and $\mathfrak{F}|N_2$ are properly embedded arcs.

LEMMA 2. The cases other than c) cannot occur.

PROOF. In the case a). All the leaves of $\mathcal{F}|N_1$ are circles and A_1 is one annular leaf of $\mathcal{F}|E_1$. This contradicts the fact that $\mathcal{F}|E_1$ is transversely orientable. Thus the case a) cannot occur.

In the case b). Let L be a leaf of \mathcal{F} which intersects ∂A . Then $E_1 \cap L$ or $E_2 \cap L$ contains a connected component diffeomorphic to a circle. This connected component is called a *singular loop* (Figure 3).

Let γ be a singular loop of $\mathcal{F}|E_1$. Since $\mathcal{F}|N_1$ is a product foliation, the leaves of $\mathcal{F}|E_1$ close to γ are annuli. If an annular leaf does not have holonomy, then the nearby leaves are annuli. Hence there exists a continuous map $\phi_{\gamma}: \Sigma \times [0,1] \to E_1$ satisfying the following conditions ([10]):

- 1) $\phi_r(\Sigma \times \{0\}) = \gamma$ and $\phi_r(\Sigma \times \{0\})$ is an embedding.
- 2) $\phi_r(\Sigma \times \{t\})$ is an annular leaf of $\mathcal{F}|E_1$ for each $t \in (0, 1)$.
- 3) $\phi_r(\Sigma \times \{1\})$ is either an annular leaf with holonomy or a singular loop,

where Σ is an annulus. Let L_r denote $\phi_r(\Sigma \times \{1\})$.

 $\mathcal{F}|E_1$ has at most two singular loops. First assume that $\mathcal{F}|E_1$ has one singular loop γ . Then L_{γ} is an annular leaf with holonomy. Since $\mathcal{F}|N_1$ has no holonomy, $\phi_{\gamma}(\Sigma \times [0,1])$ contains N_1 . The foliation $\mathcal{F}|E_2$ also has one singular loop γ' . We have $\phi_{\gamma'}(\Sigma \times [0,1])$ as above. Then $L_{\gamma'}$ is also an annular leaf with holonomy and $\phi_{\gamma'}(\Sigma \times [0,1])$ contains N_2 . Hence $L_{\gamma} \cup L_{\gamma'}$ is a toral leaf of \mathcal{F} (Figure 3). This contradicts the assumption (2).

Figure 3.

Next we assume that $\mathcal{F}|E_1$ has two singular loops γ and γ' . Since $\mathcal{F}|N_1$ has no holonomy, L_{γ} is the singular loop γ' . Hence all the leaves of $\mathcal{F}|A_1$ are circles. Since $\mathcal{F}|E_2$ is a foliation of $S^1 \times D^2$ without singular loops and Reeb components, $\mathcal{F}|E_2$ has no null-homotopic closed transversals. Hence a compact leaf of $\mathcal{F}|\partial E_2$ bounds a disk in E_2 , and k(m,n) also bounds a disk in S^3 . This contradicts the non-triviality of the torus knot.

In the case where $\mathcal{F}|E_1$ has no singular loops, $\mathcal{F}|E_2$ has two singular loops. Therefore this case cannot occur as above.

Thus the case b) cannot occur.

LEMMA 3. In the case c), the annulus A can be taken so that either $\mathcal{F}|E_1$ is a product foliation or all the compact leaves of $\mathcal{F}|E_1$ are parallel to N_1 .

PROOF. First we recall some properties of foliations of $S^1 \times D^2$. Let F be a transversely orientable foliation of $S^1 \times D^2$ transverse to the boundary and without Reeb components. By results of Thurston ([13]) and Levitt ([6]), F contains a half Reeb component ([12]) if F is not a product foliation.

Furthermore, by Thurston's theorem ([13]), there exist compact 3-submanifolds C_i ($i=1,2,3,\cdots,m$) with corner satisfying the following conditions:

- 1) C_i $(i=1,2,3,\cdots,m)$ is obtained by cutting $S^1 \times D^2$ along m-1 compact leaves.
- 2) Each $F|C_i$ satisfies the following condition either a) or b).
 - a) C_i is diffeomorphic to $\Sigma \times [0, 1]$, and $\Sigma \times \{0\}$ and $\Sigma \times \{1\}$ are compact leaves of $F|C_i$. Furthermore, each $\{*\} \times [0, 1]$ $(* \in \Sigma)$ is transverse to $F|C_i$.
- b) All the compact leaves of $F|C_i$ are entirely contained in ∂C_i , where Σ is an annulus. C_i is referred to as a component of F and a component of type a) is called an I-bundle component.

We return to the proof of Lemma 3. Assume that $\mathcal{F}|E_1$ is not a product foliation and the annulus A is deformed by isotopy with the boundary fixed so that the number of components of $\mathcal{F}|E_1$ is minimal. Let H denote a half Reeb component of $\mathcal{F}|E_1$.

First assume that H is disjoint from N_1 . Denote by C_i the next I-bundle component to the half Reeb component H if it exists, where the next component to C_i except for H is not an I-bundle component. Let H' denote $H \cup C_i$. We remove a small neighborhood H'' of H' from E_1 so that the restriction of $\mathcal{F}|E_1$ to $\partial H''$ is a product foliation whose leaves are properly embedded arcs (Figure 4). Next we attach H'' to E_2 . In this

process, the number of components of $\mathcal{F}|E_1$ decreases. Thus the annulus A can be taken so that the number of components of $\mathcal{F}|E_1$ decreases and this contradicts the assumption. Therefore H intersects N_1 . The annular leaf L of H is parallel to N_1 , that is there exists a submanifold homeomorphic to $S^1 \times I \times I$ satisfying $S^1 \times I \times \{0\} = L$ and $S^1 \times I \times \{1\} = N_1$.

Next we remove a neighborhood of H from E_1 as above. By the above consideration, the remaining foliation has a half Reeb component whose annular leaf is also parallel to N_1 , if it is not a product foliation. Thus all the compact leaves of $\mathcal{F}|E_1$ are parallel to N_1 by induction with respect to the number of components of $\mathcal{F}|E_1$.

LEMMA 4. In the case c), if all the compact leaves of $\mathcal{F}|E_1$ are parallel to N_1 , then the number of components of $\mathcal{F}|E_1$ decreases by changing the annulus A by isotopy.

PROOF. Since all the compact leaves of $\mathcal{F}|E_1$ are parallel to N_1 , there exists a component C_j of $\mathcal{F}|E_1$ which is farthest from N_1 (C_j is not an I-bundle component). Denote by B the annulus $C_j \cap \partial E_2$. Let $\partial_+ A_2$ be one of the connected components of ∂A_2 and let $\partial_- A_2$ be the other connected component of ∂A_2 . Let c denote the compact leaf of $\mathcal{F}|A_2$ nearest to $\partial_+ A_2$. Then c is contained in an annular leaf of $\mathcal{F}|E_2$ and this annular leaf with ∂E_2 bounds a solid torus S. Then there are three posibilities (Figure 5):

- 1) S contains neither N_2 nor B.
- 2) S contains B, but not N_2 .
- 3) S contains N_2 .

In the case 1). Since c is the nearest compact leaf of $\mathcal{F}|A_2$ to ∂_+A_2 , the annular leaf $\overline{\partial S \cap \operatorname{Int} E_2}$ is an isolated compact leaf of $\mathcal{F}|E_2$ outside S. Furthermore $\mathcal{F}|(\partial E_2 \cap \partial S)$ contains a 2-Reeb component because the orienta-

tions of $\partial(\partial E_2 \cap \partial S)$ induced by the orientation of $\mathcal{F}|\partial E_2$ are opposite. The component of $\mathcal{F}|E_1$ containing this 2-Reeb component is the product of the 2-Reeb component and the interval.

Let S' be a small neighborhood of S such that $\mathcal{F}|(\overline{\partial S' \cap \operatorname{Int} E_2})$ is the product foliation $\{I \times \{*\}; * \in S^1\}$. We remove S' from E_2 , and attach S' to E_1 . Let S'' denote the union of components of the resulting foliation of E_1 containing S. The annular leaf of S'' contained in $\partial S''$ is isolated outside S''. Next we remove a small neighborhood of S'' from E_1 , and attach this to E_2 as above (Figure 6).

Since at least one component of $\mathcal{G}|E_1$ which is isomorphic to the prod-

Figure 6.

uct of the 2-Reeb component and the interval vanishes in these processes, the number of components of $\mathcal{F}|E_1$ decreases.

In the case 2). Since \mathcal{F} has no interior compact leaves, the leaves of $\mathcal{F}|E_2$ intersecting ∂B are two annular leaves. At least one of these annular leaves with ∂E_2 bounds a solid torus which contains neither B nor N_2 . Thus the number of components of $\mathcal{F}|E_1$ decreases as in the case 1).

In the case 3). Let c' denote the compact leaf of $\mathcal{F}|A_2$ nearest to ∂_-A_2 . The annular leaf of $\mathcal{F}|E_2$ containing c' does not contain c because \mathcal{F} has no interior compact leaves. Hence the annular leaf containing c' bounds a solid torus with ∂E_2 which does not contain N_2 . Thus the number of components of $\mathcal{F}|E_1$ decreases as above.

In the case c), the annulus A can be taken so that $\mathcal{F}|E_1$ is a product foliation by Lemmas 3 and 4. If $\mathcal{F}|E_1$ is a product foliation, then $\mathcal{F}|\partial E_2$ contains no 2-Reeb components. Hence $\mathcal{F}|E_2$ is also a product foliation, and \mathcal{F} is a standard foliation. Thus Theorem is proved.

REMARK. A torus knot complement is a Seifert fibered manifold. By Lemma 2, there exists a fiber transverse to \mathcal{F} . If $\mathcal{F}|\partial M$ contains no 2-Reeb components, \mathcal{F} is isomorphic to a foliation transverse to every fiber by Eisenbud, Hirsch and Neumann's theorem ([1]) and Matsumoto's proof ([7]). Hence $\mathcal{F}|E_1$ and $\mathcal{F}|E_2$ are product foliations, and \mathcal{F} is a standard foliation. We can also prove Theorem in this way.

References

- [1] Eisenbud, D., Hirsch, U. and W. Neumann, Transverse foliations of Seifert bundles and self homeomorphism of the circle, Comment. Math. Helv. 56 (1981), 638-660.
- [2] Gabai, D., Foliations and genera of links, Topology 23 (1984), 381-394.
- [3] Gabai, D., Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), 445-503.
- [4] Gabai, D., Foliations and the topology of 3-manifolds II and III, preprint.
- [5] Kopell, N., Commuting diffeomorphisms, Proc. Sympos. Pure Math. XIV, Amer. Math. Soc., Providence, R. I., 1970, 165-184.
- [6] Levitt, G., Feuilletages des variétés de dimension 3 qui sont des fibrés en circles, Comment. Math. Helv. 53 (1978), 572-594.
- [7] Matsumoto, S., Foliations of Seifert fibered spaces over S^2 , Foliations, Advanced Studies in Pure Math., vol. 5, Kinokuniya, Tokyo, 1985, 325-339.
- [8] Novikov, S.P., Topology of foliations, Trudy Moskov. Mat. Obshch. 14 (1965), 248-278, Trans. Moscow Math. Soc. 14 (1965), 268-304.
- [9] Raymond, B., Ensembles de Cantor et feuilletages, Thèse, Publ. Math. Orsay,

- Univ. Paris XI, Orsay, 1976.
- [10] Roussarie, R., Plongements dans les variétés feuilletées et classification de feuilletages sans holonomie, Publ. Math. I. H. E. S. 43 (1974), 101-141.
- [11] Sergeraert, F., Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977), 253-275.
- [12] Tamura, I. and A. Sato, On transverse foliations, Publ. Math. I. H. E. S. 54 (1981), 5-35.
- [13] Thurston, W., Foliations of three-manifolds which are circle bundles, Thesis, Univ. of California, Berkeley, 1972.
- [14] Thurston, W., A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59, No. 339 (1986), 99-130.

(Received May 9, 1989)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan