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Introduction

Extending the classical Darboux’s method, we have given a method
of integration in [7, 8], which enables us, if it may be successfully applied,
to solve an involutive system of partial differential equations by integrat-
ing ordinary differential equations. It may be applied only to those
systems of which Cartan characters of order =2 vanish. The principal
aim of this paper is to extend it so that the method may be applied to
some class of involutive systems of which Cartan characters of higher
orders do not necessarily vanish. To do so, we must investigate the
analytic structure, besides the algebraic one, of an involutive system in
a quite different way from that in [7, 8].

Throughout this paper, all motions such as functions, manifolds,
vector bundles are assumed to be those of infinitely differentiable (smooth)
ones, unless expressly indicated otherwise.

Let us describe our method roughly. Let R, be an involutive system
of first order with n independent variables. Denote its Cartan charac-
ters by sy, 8y, - -+, 8,. We assume that s,=-.-=8>0, s;,,=---=s,=0 with
1<i<n. Let M, be the characteristic module of R, at P. It is a
homogeneous submodule of a finitely generated module L; over a poly-

v(P)
nomial ring with n variables. Let M,= N Q;» be an irredundant prima-
j=1

ry decomposition in Ly, Q;» be B, -primary. Then each %, , is a homo-
geneous prime ideal of projective dimension [—1 (ef. Theorem 4.1). We
assume moreover that each $;, is generated by linear forms and the
exponent of each Q;, is equal to 1. Under the regularity conditions
such as yv=y(P)=const., the Monge characteristic system 4*(3,) of order
k is well-defined corresponding to each family B,={R;,} (1=<j<v). Each
4*(%B;) contains the Pfaffian subsystem 6, generated by contact forms of
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orders <k. We say that 4*(R,) is principally integrable if there exist
its integrals {g,} such that the Pfaffian system 4*(%,) is generated by
the 1-forms dg, and ©,. Our method of integration is stated as follows
(Theorem 6.2): If, for some k=1, v—1 Monge characteristic systems
A (B,), - - -, 45(B,_,) are principally integrable, then any local solution of
R, can be obtained by solving ordinary differential equations. The most
crucial procedure in obtaining solutions is to construet an involutive
system admitting a given one as a solution and having Cauchy charac-
teristics. This is carried out by applying Theorem 5.2, of which proof
contains the most substantial analytic discussion in the paper.

The paper composed of six sections. §§1-2 are concerned with an
involutive symbol and its characteristic module. §3 is devoted to recall-
ing the notion of involutive differential systems, and §4 to introducing
new notions related to the Monge characteristic systems and important
in this paper. In §5, we give a method of constructing a new involu-
tive systems. In §6, we establish our method of integration.

§1. An involutive symbol and its characteristic module

Let V and E be real vector spaces of dimensions m and n, respec-
tively. As usual, we denote by E* the dual space to E, and by S‘E*
the k-th symmetric product of E*. By a symbol of order k, we shall
mean a vector subspace of V®S*E*. The I-th prolongation p'G, of a
symbol G, of order k is defined by p'G,=(G.QS'E*)N VRS E*.

We first recall the notion of involutive symbols (cf. e.g. Kuranishi
[14], §6). Let G, be a symbol of order 1; G,Cc VRE*=Hom(E, V).
Given a basis {e, - - -, ¢,} of E, we denote by E; the subspace of E spanned
by e, ---,e; E,={0}CcE,Cc---CcE,=E. Let G,; be the subspace of G,
consisting of those elements which annihilate any e€ E;. The inequality

dimpG,< ¥ dim G, ; always holds. A symbol G, is said to be involutive

if there exists a basis {e, - - -, ¢,} such that dim pG,= i dim G,;. In this
1=0

case such a basis {e, ---,¢,} is called a regular basts for G,. When G,
is involutive, the set of all regular bases for G, is an open dense subset
of the manifold consisting of all bases of E. Furthermore the integers
¢9;=dimG,,; (0<i<m) are determined independently of the choice of a
regular basis {e, ---,e,}. The Cartan characters s; of an involutive
symbol G, are defined by s;=g,_.,—g: (1<t<n). They are ordered by the
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inequalities s,=s8,=- - =8,=0.

Let D=Ann(G,) be the annihilator of G, in V*®E. Given a basis
ley, - -, €.}, we set D;=DN (V*QE)).

LEMMA 1.1. In order that a symbol G, of order 1 be involutive, it
1s necessary and suffictent that there exist a basis {e, - - -, e,} of E and a
basis {u,, - -+, Un} of V* such that we can find a basis

{¢; (1§a§’51)’ o "¢: (1§a§’cn)}

of D satisfying the following four conditions:
(1) 0=k = - Sk, =M.
(ii) For each =1, ---,n, D; is spanned by D,_, and ¢; 1Za<Zxk,).
(i) @i's take the form: when r;,_;<a=<k; (here k,=0),

di=uRe;—¢. where ¢ic V¥QE,_,.

(iv) The set {$.Qe; 1=<j<i1=<n, 1<a<k} forms a basis of DOE
(=the annihilator of pG, in V*QRS'E), © being the symmetric product.

Under the circumstances, the Cartan character s; is equal to m—«;
1gi<n).

Let us consider a symbol G, of order k>1. It defines canonically a
symbol G,=G,cC (VRS'E*)QE* of order 1. G, is called an involutive
symbol if G, is involutive in the above sense. The Cartan characters of
G, are defined to be those of G,.

ProrosiTION 1.2 ([14] §9). If G, s involutive, then the prolonga-
tton pG, is also tnvolutive.

We shall now state some fundamental facts concerning the charac-
teristic module of an involutive symbol. Let R be the graded ring R=

;‘;‘,Rk where R,=S*E (the symmetric algebra over E), and L be the

=0

graded R-module L=i L, where L,=V*QS*E. We denote by X the
k=0

ideal > R, in R. The characteristic module of an involutive symbol G,
k=1

is defined to be that smallest (homogeneous) submodule M of L which
contains the annihilator of G, in L, and which possesses the property
“¥2cM (z¢ L) implies z€ M (Kakié [8]). The characteristic module of
any prolongation p'G, coincides with that of G,.

In the sequel, we shall use the following notations and elementary
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facts in commutative algebra. Let K= i K; be a finitely generated
=0

graded R-module. The Hilbert characteristic polynomial of K will be
denoted by P(K,z) (cf. Sérre [18], Zariski-Samuel [19]). We shall denote
by u¢(K) the leading coefficient of P(K,z) divided by r!, where r=
deg P(K, x).

The set of all associated prime ideals of K will be denoted by Ass(K).
For a submodule H of K, we denote by tx(H) the ideal in R consisting
of those elements f¢€ R which satisfy f*KcH for some positive integer

q=q(f).

LEMMA 1.3. Let H be a homogeneous submodule of K, and H= ﬁQ,-
j=1

be an irredundant primary decomposition in K with Q; being B;-primary.
Then the following are valid:
(I) The set {R,, ---,B,} coincides with Ass(K/H).
(II) max{proj dimB;; 1<5<v} s equal to r=deg P(K/H, x), and
wK/H)= ¥  pK/[Q)).

proj dim sxsj=r
() The transformation h; in K/H defined by h,(z)=f-2z is injec-
tive if and only if f¢ _iUl‘.B,-.

(V) e(H) =3

ProOF. See the following references. (I): Bourbaki [1], §2; (II):
Zariski-Samuel [19], Chap. VII, §12 and Kakié [8], §1; (III) and (IV):
Bourbaki [1], §1.

Given an involutive symbol G,, we denote by M its characteristic
module. Observe that L is a finitely generated R-module, and hence a

Noetherian module. Let M= (D]Q, be an irredundant primary decomposition
j=1

in L, and Q; be B;-primary. The Cartan characters of G, will be denoted
by slr Tty s‘n-

THEOREM 1.4. If G, is an involutive symbol of order k, then the
Jollowing are valid:

(I) Any ideal B; does not coincides with X.

(I) My.=MQSE for any 1=0, where M,=Mn L,.

(my If ,=---=8>0, s;,,=---=s8,=0, then
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(a) the mawimum of projective dimensions of the prime ideals B; 1is
equal to 1—1, and
(b) ¥ p(L[Q)=s.
proj dim % ;=1-1

Proor. See Kakié [8], §3.

THEOREM 1.5. If G, 18 am involutive symbol of order 1, then the
following are valid:

(I) For any e¢€E outside a finite number of proper subspaces,
My={z€ Ly, 2Qe € M,}. Moreover dim L,/M,=s,.

() If s;=---=8>0, s;y;=---=8,=0 with 1<I<n, then all the
ideals PB; have the equal projective dimension [—1.

Proor. By Theorem 1.4 (II), M,=Ann(G,). On account of Theorem
1.4 (I), we can apply Lemma 1.3 (III) to deduce the first assertion of (I).

What we have just proved enables us to take a basis {e, ---,e,} of
E regular for G, such that M,={z€ L,;2Qe, € M;}. By Lemma 1.1, we
get dim M,=m—s,.

Let us prove (II). We can choose a basis {e, ---,¢,} of E and a
basis {u,, - - -, un} of V* satisfying the conditions of Lemma 1.1. Let E,
be the vector subspace spanned by ¢, ---, ¢, V’ be the subspace spanned

by %41 -+, Un. Let R’ be the symmetric algebra f}S"El. R is a
3=0

subring of B. Using Theorem 1.4 (II) and bearing in mind (I) just proved,
we can prove without any difficulty that

L=(V'QR'YPM (direct sum as R’-modules).

Now let N denote the intersection of those @; with projdim ,=[—1.
By Theorem 1.4 (III) and Lemma 1.3 (I), each ideal B; with projdim 3;=
l—1 is a minimal element in Ass(L/M). Therefore the uniqueness
theorem of an irredundant primary decomposition indicates that the
components @; with B, being of projective dimension [—1 are uniquely
determined, and are homogeneous submodules of L. Thus N is a uniquely
defined homogeneous submodule containing M. Since Ass(L/N) is the
set {P;; projdimPB;=I—1} by Lemma 1.3 (I), the required result follows
if M=N holds. We prove it by showing that M+#N leads us to a
contradiction. Applying Lemma 1.3 (II), we find that p(L/M)=pg(L/N)
and that the polynomials P(L/M, x) and P(L/N, x) have the same degree
[—1 (with their leading coefficient being equal). Take a homogeneous
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element z in N not belonging to M. On account of the above direct
sum decomposition, L/M may be regarded as a free R’-module. Hence
the homomorphism %:R'—N/M sending a’ to a’-z is injective. Thus the
R-module N/M contains an R’-module h(R’) of which Hilbert characteristic
polynomial is evidently of degree [—1. This implies that P(N/M, x) must
be a polynomial of degree [—1 with positive leading coefficient. Since
P(L/M, x)=P(L/N, )+ P(N|M, ), it follows that p(L/M)+#u(L/N). This
contradiets with u(L/M)=p(L|N). Q.E.D.

§2. Typical involutive subsymbols of an involutive symbol

Let G, be an involutive symbol of order 1. Denote its characteristic
module by M, and its Cartan characters by s, ---,s,. The quotient
module L/M will be denoted by M¢* and the vector space L./M, by M}.

Let M= F]Q,» be an irredundant primary decomposition in L, and Q; be

j=1
B,-primary. For brevity we write ¢(3;)=B;N R, (subspace of E). In
this section the (k—1)-th prolongation of G, will be denoted by G,.

For a vector ec E, we denote by o,, the linear mapping from
VR(S*'E*) to VR(S*E*) defined by

O'k,e(’v®51©' : '©§k+1) =<6, &1, 1)VR5Q - - - O&» (we V, & e E*).

Taking its restriction, we have a mapping o,,: G, =G,
For each k=1, 2, --- and each ,, let us introduce a symbol of order %

C.(B;) ={the subspace of G, spanned by o.,.(Gi1) (€€ c(B)))}
We also introduce homogeneous submodules of L and of M*
N9 ={z€ L; ¢(P,;)2={0}}, N*#=NDIM  (1=<j<v).

Let U be a subspace of a vector space W. The annihilator of U in
W* will be denoted by Anng.(U). In the following lemma, we use the
canonical identification of the dual space to G, with M} (cf. Theorem
1.4 (I)).

LEMMA 2.1. Let G, be an involutive subspace. The following are
true:
(I) Anng(Cu(B,)=N"NL. Anny(Cu())=N*NM{ (k=1).
() If c(Bp) 4s mot contained in Uﬂc(iBj), and 1f PLCQ, then
i*
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N®=NQ, In particular AnnLk(Ck(iB,q (ﬂQ>ﬂLk =1).
i#8

Proor. For the proof of (I), see Kakié [8], § 6 and [11], Lemma 4.3.
Observing that there is an element e€ c¢(B;) not belonging to ‘E&JﬂiBj, and

applying Lemma 1.3 (III), we can readily verify (II). Q.E.D.
PRrRoOPOSITION 2.2. Let G, be an involutive symbol such that s,=---=s,
>0, 8= =8,=0 with 1<I<n. If Q, is a primary component such

that BsLCQ, and that the ideal B, is gemerated by linear forms (that
18, by c(By)), then

(1) the symbol C.(Bs)C VRE* is involutive, and its Cartan charac-
ters s are given by s =s,—p(L/Qs) 1Z1L]), siP=0 (I<ign);

(II) the characteristic module M'® of C,(B,) admits an rredundant

primary decomposition M®=NQ;. Moreover M®=N"¥;
i#B

(I) the vector space NP*=N®¥N M} is of dimension p(L[Qs).

Proor. By Theorem 1.5 (II), projdim L,=n—I, and hence dim c¢(*B;) =
n—Il. Let V®*={z¢€ Ly, ¢(Bs)zc M}. Define a subspace G] of G, by

={z€Gy; {2z, u®e>=0 for any v€ V¥* e¢c E},

{,> being the duality pairing. We show that it is an involutive symbol.
Let {e, ---,e,} be a regular basis for G, such that ¢(B,) and the space
spanned by e, ---,e¢, have the intersection {0}. We can choose a basis
{uy, - -+, un} of V* in such a way that {u,; 1<a=<k,} gives a basis of M,
{Ue; 1Z<k,+d} is a basis of V¥®* and D=Ann(G,) admits a basis
{i; 1fa<k, 1=1, - -, n} satisfying the conditions of Lemma 1.1. It is
easily seen that a basis of D’=Ann(G}) is obtained by adjoining the {@:}
the elements {u,Qe; ri<az<r +d, 1<i<Il}. We put ‘¢i=¢. (1Za<Zk,
1=1, .-+, m), di=uRe (m<aZk+d, 1=1,---,1). The assumption
¢(Bs) Lo M, implies that u,Qe; (r,<a<k,+d, [<i<n) can be expressed
as linear combinations of the {/¢.}, and hence that the basis {'¢.} of D’
satisfies the conditions (i)-(iii) of Lemma 1.1. Therefore G/ is involutive,
and its Cartan characters s/ are found to be s/=s,—d (1<i<1), si=
(I<i<m), where d=dim N{"*.

Let M’ be the characteristic module of Gi. We shall show that

ﬂ Q;,. Let M'= ﬂQ’ be an irredundant primary decomposition in L,

and Q’ be ‘,B,—prlmary By Theorem 1.5 (II), every prime ideal 3} is of
projective dimension [—1. Since M'DM, any component @) contains
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N Q;. Hence applying Lemma 1.8 (IV), we have ,D ﬂ B,. This implies
j=1 i=1

that B/ contains some %PB,. Since both prime ideals have the same dimen-

sion, they must coincide. Thus v'<v, and we may assume that Bi=B,

(k=1,---,v). We assert that Q/>Q, (k=1,---,v). If v=1, this is

obvious. If v>1, for each k=1, ---,v/, we can take an element f¢ ﬂk‘,B,-
i*

not belonging to B,. There is a positive integer ¢ such that f'LcQ;
(j#k). Let 2€Q. Then h (2)€ MCQ{. Applying Lemma 1.3 (III), we
have z€ /. Thus the required assertion is shown.

On the other hand, since ¢(B,) is not contained in U c(B;), we can

choose an element e of ¢(B,) not belonging to any P, w1th gq&ﬁ Bearing
in mind the facts deduced from Theorem 1.4 (II) and Theorem 1.5 (I), we
can readily see that h,(M’)CcM. Accordingly we can apply Lemma 1.3
(ITI) to conclude that M'c ﬂ Q;. Hence by the same reasoning as above,

we know that each component Q; (J#p) contains some @;. Combining
this with the fact already obtained, we see that v'=y—1, and the set
{Q} coincides with {Q;; 7}

Theorem 1.4 (IT) and Lemma 2.1 indicate that the annihilators in L,

of G{ and C,(R,) are <nﬂQ,->nL1. This means that G;=C,(B,). Conse-
¥

quently, since M»=N® by Lemma 2.1 (II), the proof will be complete

if we show d=p(L/Qs). In virtue of Theorem 1.4 (III) and Theorem 1.5

1), s,i=>p(L/Q;), si=> #(L/Q;). As we have seen, s/=s,—d. From
3 i*B

these it follows that d=p(L/Q,). Q.E.D.
LEMMA 2.3. Let G, be an tnvolutive symbol such that s,=---=s,>0,
Sp=---=8,=0 (1=I<m).

(1) If, for each B=1, ---, 7, c(B,) is not contained in U c(B;), and

i#p
BeLCQp, then NVH+ ... + N is a direct sum in M
(1) If each B; is generated by limear forms, and if P,LCQ;
(1<J=<v), then M*=NM*P- - -BN™* (direct sum).
Proor. Let ¢, be a vector of ¢(;) not belonging to Uﬂc(‘,B,-) 1=
i*

B<r). Assume that 2"+ .- +2"=0 with 2/» € N*. Then ¢,- - -¢,2"=0.
Since e,---¢,¢ %P, we can apply Lemma 1.3 (III) to see that 2 e @i It

follows from this and Lemma 2.1 (II) that 2V € 6 @¢={0}, and hence that

2"=0. Similarly we can show that 2*=0 for any g=1, ---,r. This
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proves (1). To show (II), we first observe that the assumption of (II)
implies that every 8, satisfies the condition of (I). Therefore the proof
will be complete if we show that Mi=N{"*P--- PN By Proposition
2.2 (III), dim N{"*=p(L/Q,). Theorem 1.5 and Theorem 1.4 (III) indicate
that their sum is equal to s,=s,=dim M§. This implies our required
result. Q.E.D.

For later applications, we need to generalize Proposition 2.2.

PROPOSITION 2.4. Assume that G, is tnvolutive, and that s,=---=
$>0, sp=---=8,=0 with 1=<I<n. Let Q;,---,Q; be primary com-
ponents such that iquLCQ,»q and that each B, s generated by linear
forms (q=1, ---,r). Let G} be the symbol C(B;)N - - NC(B;,) C VRS*E*.
Then, for each k=1,2,8, ---, G} is an involutive symbol of order k, and
the characteristic module M’ of G admits an irredundant primary de-
composition M'= N @; in L.

J#i1, i,

Proor. We may assume that j,=1, --.,j,=r. We first consider the
case when r=1. Proposition 2.1 (II) indicates that if k=1, the statement
is true. Assume that k>1. Let M™ be the characteristic module of

Gi. By Lemma 2.1, Ann, (G{) coincides with [ N Q,] N L,, and the latter
j#1

space is M{". In virtue of Theorem 1.4 (II), M{’=M{QOS*'E. Since
the latter space is the annihilator in L, of the (k—1)-th prolongation
p*~'G,, we conclude that G{=p*"'G.. Henece G} is involutive by Proposi-
tion 1.2, and the characteristic module of G/ is that of GI.

We next consider the case when r>1. Let V#* be the space defined
in the proof of Proposition 2.2. Lemma 2.3 (I) indicates that the sum of
NP =V®*|M, (1<B<7) is a direct sum. Introduce the symbol

Gg/:{zeGl; {z,u@e>=0 for any u€ CJ V‘ﬁ’*,eeE}.
p=1

In the same manner as in the proof of Proposition 2.2, we can verify
that GV is an involutive symbol with its Cartan characters s/ :Si‘—‘idlg
(1=t<l), 87=0 (I<i<mn), where d;=p(L/Q,), and that its characterﬂi;;;ic
module M” admits an irredundant primary decomposition M” = F‘I Q;.

j=r+1
We show that G{=G{. As we have seen in the proof of Proposition

2.2, Ann, (C,(%Bs) =Ann, (G,)+ VP*QE. It follows that the annihilator
in L, of the two spaces G} and GY are the same. Consequently they
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must coincide. This proves the assertion when k=1. Assume k>1. It
is sufficient to prove that Gi is the (k—1)-th prolongation of G}. By

Lemma 2.1, Ann, (G)) Zﬁrz N® (¢g=1). We have already seen that N{» =

NPQOS*'E. From these it follows that Ann, (G{) =Ann, (G))OS*'E.
This implies that G{=p*"'G. Q.E.D.

§ 3. An involutive system of non-linear partial differential equations

This section is devoted to recalling some fundamental facts concerning
involutive differential systems. For details about the notions without
indicating any reference, refer to Kuranishi [14], Pommaret [16].

Let & be a fibered manifold over a manifold X with projection =,
and J,=J,(€) the bundle of k-jets of its sections. The natural projection
from J, onto J;, will be denoted by z% (k=1=0), and =ox} by =*,. Let
(x,y)=(2s, **+, Tu, Y1, ***, Yn) be a fibered chart of &, where n=dim X,
n+m=dim€&. We denote by I, an ordered k-tuple of integers 1,2, -- -, n,
and by S, the set of k-tuples I,=(%, ---,%,) with ,<-.--<4,. For
each I,=(i, ---,1,), we define a function py=pi "« on J, by pe(i*(f)) =
0fo(@)f0w:, - - -0 , §%(f) being the k-jet at x of a section f of &, f, being
y.coordinate of f (¢<k). The functions pi i are symmetric with respect
to any transposition of ¢, ---,%,, With a fibered chart (x, y) associates
a local coordinate system (z,y, p) of J, given by

(@, Yo D% 1SI<m, 1Sa<m, 1<q<k, I,€8S,).

For convenience we write y,=pl, and set S,={I,}.

A non-linear system of partial differential equations of order k on
& is, by definition, a fibered submanifold of the fibered manifold J,(E)
over X with projection z*,. A system R, of order ¥ may be desecribed
locally by the equations

(3.1) R Falz,y,p)=0 (B=1, ---,7)

with the Jacobian matrix 8(F,, - - -, F,)/o(y, ») being of rank r={codim R,
in J,} everywhere on R,. A solution of R, corresponds to a section of
& described locally by y,=v.(x) (1<a<m) such that y,(x) together with
their derivatives pg ‘e=0",(x)/0x; - - -0x; satisfy the equations of (3.1).

Given a system R,, let R,,, denote its [-th (total) prolongation. It
is a system of order k+I, and can be defined locally by
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Ry Fy=0, 03 -0uF=0 (8=1, ---,7. q=1, - .1 1<i, -+, %,<n),

where 9; denotes the total differentiation with respect to wx..

Let V(€) be the kernel of the mapping =, :TE—TX, where TE
denotes the tangent bundle to &. For brevity we write T=TX, T*=T*X
(the cotangent bundle), V=V(£). We shall make the convention that
the bundles such as T, V denote also their pull-backs by the correspond-
ing projections. Let

e VRS T*—TJ,; ef: T*J—V*QS*T (£k=0,1,2, --")
be the bundle homomorphism over .J, defined by

ek((a/aya)®dwil©- . '©da:,-k) =0/opir % ef(da

)=
eX(dpiia) = {dga®(a/ax,»l)©. . .@(a/axlk) f g 1;

II/\ I <

<k.

The homomorphism e¢f is the dual mapping of e,.
Let G, be the symbol of R, It is a family of vector spaces over
R, and may be described by

Gi={x € VQS'T*; (. ef(dFp))>=0 (B=1,---, 1)},

where {, ) is the duality pairing. Let G,,, be the prolongation of G,;
it is a family of vector spaces over R, locally described by

Gun={1e VOSTY, G et aF)Oojony =0 (F=1 1 L.

The symbol G, is said to be involutive if each fiber G,» over P R, is
an involutive symbol of order k. in the sense of §1. The following
criterion of involutiveness is fundamental (cf. Kuranishi [14], Goldschmidt
[5], Pommaret [16]).

THEOREM 3.A. A non-linear system R, of order k is imvolutive if
and only if the following three conditions are satisfied:

(1) Gy 18 a vector bundle over R,

(ii) the symbol G, s involutive,

(iii) the mapping wi*': Riyi—> Ry s surjective.

Note. If R, is involutive, its symbol G, is a vector bundle.
Assume that R, is involutive. The Cartan characters s,(P), - - -, 8,(P)
of the symbol G, , are constant on P€ R,. The Cartan characters
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8y, -+, 8, of R, are defined by s,=s,(P), ---,s,=s,(P).
Involutiveness keeps to hold under the prolongation (cf. Matsuda [15]).

THEOREM 3.B. If R, is involutive, so are its prolongations R,

By the contact forms on J,, we shall mean the 1-forms defined by
3.2) Ou=dpl—3. plide, (1<a<m,0<q<k I,€S,).
i=1

Given a system R, let X,=3(R: be the differential ideal on J,
generated by all (smooth) functions vanishing everywhere on R, and the
contact forms (8.2). If R, is described by (3.1), I, is the exterior
differential system generated by the 0-forms F, the 1-forms dF,, 0%,
and the 2-forms dfl« as an algebraic ideal in the ring of differential
forms on J,. A solution of R, corresponds to an m-dimensional integral
manifold M of X, such that dim(z*,), Ts(M)=n for any Pc M.

Let £ be the module of 1-forms on X. Its pull-backs will be denoted

by the same symbol. £ admits a local basis dz,, -- -, dz,.
Let I*(2,, ) denote the set of those n-dimensional integral elements
E, on which dx,, ---,dx, are linearly independent. The differential

system X, is said to be involutive at P€ R, with independence condition
£ if there is an element E, ¢ I"(X,, ) of origin P, and if any such E,
admits a regular chain E,CcE,C---CcFE, ending with it (cf. Kihler [6],
Cartan [3], Kuranishi [13]).

THEOREM 3.C. A system R, is involutive if and only if 3(R,) is
involutive at each PE R, with independence condition 2.

Note. Let p:I'(3,, 2)—>R, be the map that assigns E, its origin.
Then p is surjective if and only if so is #}™': R,,,—>R,. More precisely
there is a canonical bijection between {E,€ I"(X,, 2); E, is of origin P}
and (2], ) (P).

For a manifold Y, we shall denote by A‘Y the module of g-forms
on Y. By a Pfaffian system O of rank r on Y, we shall mean a sub-
module of the A°Y-module A'Y such that for each y € Y, there exist r
everywhere linearly independent 1-forms which generate © on a neigh-
borhood of . Such a set of r 1-forms will be called a (local) basis of
6 around y.

Let 6,=0(R,) be the submodule of AR, generated by the restric-
tions to R, of the contact forms 0’s in (8.2). It can be verified that if
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R, is involutive, O, is a Pfaffian system on R,. The integral elements
of O, correspond in one-to-one manner to those of X,; Thus we may
write I"(0,, 2)=I1"(Z,, 2).

The involutiveness is what is called a local notion. In later discus-
sions, we shall need to consider locally defined systems. We say that a
system R, is a system of order k defined on an open set U of J, if R,
is a fibered submanifold of =*,:U—z*,(U). We also say that R, is
involutive at P€ R, if it is a system defined on a neighborhood of P in
J, and if it is involutive, that is, it satisfies the conditions (i)-(iii) of
Theorem 3.A over the neighborhood.

§ 4. The Monge characteristic systems

Let R, be an involutive system of order % on £, and G, be its symbol.
We shall keep the same notations as in §3. We shall also use the
notations: T,=the tangent space to X at x, V,=the fiber of V(£) over
y, TrJ,=the tangent space to J, at P, etec.

Given a point Pe R,, we write x=x*,(P), y==t(P). Let R, be the

ring iR.,,P where R, ,=ST,, and L, be the graded R;-module -iLq,p
q=0 q=0

where L, ,=VFQST..

The characteristic module My of R, at P€ R, is, by definition, the
characteristic module of the symbol G, ,CV,QS*T# (cf. §1). The quo-
tient module L;/M, will be denoted by M}.

v(P)
Let Mpz.r]1 Q;» be an irredundant primary decomposition in Ly,
i=

Q;» be B;r-primary. We put c¢(B; =B, rNR,»T.. The vectors in
¢(P;,r) have a certain special properties (See Kakié [10].).

Using each ¢(B;»), we define the space C(%B,r) to be the subspace
of G spanned by 0,.(Gii1,p) (€€ c(RB;,)), Where o, is the linear mapping
from V,QS*'T¥ to V,QS*T¥ defined similarly as in §2. (Note that
Gk+1,P:ka,P-)

We shall call a vector v€ TpJ, a Monge characteristic vector of R,
at P if ve E, for some E,€I"(%,, 2) and if (z*,)x(v) € U,;c(PB;.7) (ef. [10]).

Let B(%B; ) be the subspace of T:J, spanned by the Monge charac-
teristic vectors v of R, at P with (7*,)4(v) €c(B, ). Itisindeed a sub-
space of TpR, Let D(%;r) be the annihilator of B(P,,) in TiR,.

Let &,: Gvp—>TrR, be the homomorphism obtained by restricting e,
(see §3). Identifying the dual space to G, with M} ,=L, /M, », where
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M r=MpNL,p we have its dual map &:TfR,—~Mi, We also need
to introduce the modules N¥#={z ¢ M%; c(B; r)2={0}} (cf. §2). The vector
space NF*N M}, will be denoted by N{% (ef. §2).

LEMMA 4.1. Under the above circumstances, the following are true:

(L) &(D(B;r))=Anny C(B; ) =N{%

() Let {w;1=<1<n—1;} be a basis of the annihilator of c(P; ) n
T*X. Then D(R,») NKerél is generated by o, (1Zi<n—I,) and the
values at P of the 1-forms in O(R,), the o’s being regarded as vectors
i TiR,.

Proor. See Kakié [10], Lemma 3.1.

To define Monge characteristic systems, we shall assume the follow-
ing regularity conditions: (a) the number v=y(P) is constant on R,, (b)
for each family RB,={B,r P€ R,}, the family ¢(B,)={c(B,s); PR}
forms canonically a vector bundle, (¢) for each %, the family C(®,)=
{C(B,.r); P€ R;} forms a vector subbundle of G,; equivalently, dim C(%; 5)
remains constant on R,.

Then the family B(%;)={B(;r); P€ R} is a vector subbundle of
TR, and the family D(B;)={D(B,r); P€ R,} is that of T*R,.

The Monge characteristic system A4*(R,) (of order k) of R, corre-
sponding to B, is defined to be the Pfaffian system on R, generated by
all sections of D(,).

Let ¢(B;)* denote the annihilator bundle of ¢(%3,) in the induced
bundle (7%|q,)*T*X. By Lemma 4.1, the sections of ¢(;)* and the
1-forms in O(R.) belong to 4*(B,). Moreover rank 4*(;)=rankO,+
rank ¢(B,) +dim N3,

Assume that the prolongations R,,, satisfy the above regularity
conditions. (Indeed they satisfy (a), (b) if so does R,.) Then we can
define Monge characteristic systems of higher orders: The Monge charac-
teristic system A°(B;) of order q (q=k) corresponding to B, is defined to
be the Monge characteristic system of R, corresponding to %;.

DEFINITION. A function f defined (locally) on R, is called an integral
of 4°(%B;) if the 1-form df belongs to 4(R;).

Let Z*(;) be the module of those vector fields v on R, which satisfy
“¢v,>=0o0n R, for any v € 4°(B,;)”. A function fis an integral of 4(P;)
if and only if »(f)=0 for any v€ Z%(3,). Hence we can apply the clas-
sical theory to obtain its integrals (ef. Forsyth [4]). For a module Z of
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vector fields, denote by p,Z the module of vector fields generated by
v, [»,w] where v, w€ Z. Here the bracket is the usual one defined by

[ wI(F) =pw() —w(o(f)). We set Z(,)= U piZ(B,).

DEFINITION. We say that 4(B;) is p-regular around P R, if the
module Z¢(P,) is generated locally around P by some number of vector
fields which are everywhere linearly independent.

If 49%R,) is p-regular, Z(R,) defines an involutive distribution in the
terminology of Chevalley [17], and hence we can find a finite number of
its integrals {f,:7y=1, ---,r} (defined around P) called a fundamental
system of the imtegrals such that any integral admits an expression f=
@(f., ---.f). We emphasize that the integrals can be obtained by inte-
grating ordinary differential equations (cf. [4]).

Let us introduce one more notion, which is especially important in
our method of integration.

DErFINITION. We say that 4°(B;) is principally integrable around
Pe R, if it admits a finite number of integrals {f,} such that it is
generated by O(R,) and the 1-forms df, around P. In this case we can
find a set {u,} of integrals such that {é¥(du,)} gives a basis of the module
€X(4(B;)) around P (cf. Lemma 4.1). We call such a set {u,} a complete
set of principal integrals.

We shall give some fundamental facts concerning the integrals.

PROPOSITION 4.2. If f is an integral of 4°(B,), then its pull-back
(wi™)*f under the map #i™: R, ., —R, is an integral of 47 ().

Proor. We can readily prove that for any Monge characteristic
vector v of R, with (z%4)w € c(P,), v, d(x™)*f>=0 (cf. Kakié [7]).
Q.E.D.

PROPOSITION 4.3. Let P,e R, If 4B,) is principally integrable
around Py, and if N p =R, p - NG} (P'=ri(P,)), then 4(B;) is princi-
pally integrable around any point Pye R,,, over P,.

Proor. Let EY be the element of I*(@, 2) with origin P, which
corresponds to the point P, (see Note to Theorem 3.C). The principal
integrability implies that there exist [=n—rank ¢(,) integrals w,, - - -, w,
of 4°(B,) such that dw,, ---, dw, are linearly independent on E©.
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SUBLEMMA. Under the above circumstances, there exists 1 total
differentiations A,= ic:,ag' (1<1<Z1) with the ¢’s being functions on R,
=1
such that the following hold: (i) Put ei:icf,a/axi,. Then e; (1Z151)
/=1

are linearly independent, and e,(P)¢c(B;s) for any PER,,, mear P,
P=ni*Y(P); (ii) If f is an integral of 4%(B;) around P, then A,(f) (1<)
are integrals of 4\ (B;) around P,. Here the total differentiation 0;f is
defined to be the restriction to R,,. of the fumction 0if of (q+1)-jets
where f is an extention of f to a meighborhood of R, in J,.

PROOF OF SUBLEMMA. For brevity we write 8,=0(R,), p=7{"g ,,.
Let o; be the 1-form _i}l(ag’wi)dx,-, on R,., (1<1<l). The w’s are 1-forms
in 4°*($3,) which arei iinearly independent around P, and d(p*w;)=o;
(mod @,,,). We can choose 1-forms wfzii_)lb:?’dxi, (I<ign) on R,,, in

such a way that w; (1<9<n) are linearly independent around P, Let
C=(c!) be the inverse matrix of the coefficient matrix of the w,’s. Let

us put Zizijlc:la;’ (1<i<n). Tt is readily seen that (i) holds true. To

verify (ii), we observe that for a function g on R,

dlotg)= 3 Gig)dr,  (mod6,.)  on Ry
Accordingly, from the way the 4, w; are defined, we find that
Aot f)= S Alflo;  (m0odOp)  on Ry

K3

I
-

Now in virtue of Theorems 3.B and 3.C, for any point P€ R,,, near B,
there is an element E, € I*(O,,,, 2) of origin P. By Proposition 4.2, off
is an integral of 4*(®,). Hence (v, d(p}¥f)>=0 for any Monge charac-
teristic vector v € E, with (z%4!),(v) € ¢(B;,), or equivalently with (v, w;»=0
(1<i<l). Therefore, from the above formula, we find that 2,(f) ((<i<n)
vanish at any P€ R,,, near P,. Hence we get

d(pf)= Z A(f)d(oFw;) (mod 6,.,).
Taking exterior differentiation, we obtain

5 () Ad(pFw) =0 (mod By, d0,.).
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Let E,€I'(O,,,, 2). Since dw; restricted to E, are linearly independent,
the above formula indicates that the 1-forms d(;(f)) restricted to E,
are expressed as linear combinations of dw;’s. This implies that for any
Monge characteristic vector v € E, with (7%,)4(v) € ¢(B;,8), <v, d(A:(f))>=0.
From the definition it follows that A;,(f) are integrals of 4**(B;). Thus
we have proved Sublemma.

Now we can choose a complete set {u,} of principal integrals of
A4(B;) such that du,’s restricted to E'® vanish, equivalently, (diu,)(P,)=0
(1<i<n). The functions gj=2;(u,) are integrals of 4°*'(*8;) by Sublemma,
and

(g (P) = 3 of & (dus) (P OBfow..

By the assumption on N, this implies that {&}.(dgi)} gives a basis of
e (4M(B,)) (ef. Lemma 4.1). It follows that 4" (%B,) is generated by
the 1-forms dgi, d(o¥(w,)), and ©,,, around P, which means that it is
principally integrable. Q.E.D.

We finally note that all the discussions in this section hold true for
a locally defined system R, or a locally defined Monge characteristic
system.

§5. A method of constructing new involutive systems

Let R, be an involutive system of order 1 on &. We shall denote
by s, ---,s, its Cartan characters, and by M, its characteristic module
at Pe¢ R,. Let M, denote the family {M, ,=M,N L, P€ R} of vector
spaces (k=0,1,2,.---). Each M, is indeed a vector bundle over R, (cf.
Note to Theorem 3.A, Theorem 1.3 (II), and Theorem 1.4 (I)). Let M,=

u(P)

N Q;» be an irredundant primary decomposition in L, and @; be B, »-
i=1

primary. We shall assume that R, satisfies the following conditions:

(H-1) R, is involutive, and s=---=5>0, s,,,=---=s,=0 with
1<i<n.

(H-2) Let P, be a point on R,. We can find a neighborhood U of
P, in R, such that the following three conditions are satisfied: (i) The
number v=y(P) remains constant on . (ii) Each family ¢(B,)={c($B;r);
Pec U} is a vector bundle of rank n—I over U (1=<j<v). (iii) The ex-
ponent of each @, , is equal to 1; that is, B, ,L; ,CQ,» 15y, P U).

(H-1) implies that projdim‘B;,=l—1 by Theorem 1.4, and hence
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that the components Q,, are uniquely determined. As in §4, we put
N$={z€ Le; o(B,1)2CMy), N§*=N$[Ms.
LEmMMA 5.1. If (H-1) and (H-2) hold, then, for any integer k=0,
1) My,= @N;{)}, (II) dim N =const.. (III) NG! ,=R, »- NU}.

Proor. By Lemma 2.3, (I) holds true. (I) implies that the sum of
dim N} is equal to dim M} ,=const. Since the dimensions are upper-
semicontinuous, they must be constant. The assertion (III) follows at
once from (I) and the fact R, ,-M} ,=M},, . Q.E.D.

Lemmas 4.1 and 5.1 indicate that the Monge characteristic systems
of R, including of higher orders are well-defined locally over U (cf. § 4).

Fixing a system R, we shall denote its (k—1)-th prolongation by
R.. The Monge characteristic system of R, of order k corresponding
to LB, ={W, »} will be denoted by 4*(,).

For a set @ of functions (locally) defined on R,, we denote by R,[®P]
the set of those points P€ R, at which every function of @ vanishes.

By a mon-characteristic integral manifolds M of 3 (R,), we shall
mean a (locally closed) integral manifold ./ such that, for each Pe %,
(7*1)x TsM is of dimension dim M, and does not meet any space c(%,.»)
except the zero vector, where P=x%(P).

We shall now state our main theorem, which gives a method of
constructing new involutive systems of which solutions are those of a
given one.

THEOREM 5.2. Let R, be a system satisfying the conditions (H-1)
and (H-2). Assume that, for some integer k=1, the r Monge charac-
teristic systems 4*(B;) (1<SJ<7r) are p-regular and principally integrable
around a point Py€ R, over P, Let @V={f";1<y<m;} be a set of
integrals of 4*(B;) (=1, ---,r) such that the following conditions (i)-(iii)
are satisfied:

(i) Thel-formsdf? 1<y<n,;, j=1, ---,r) are linearly independent
modulo 2 around P,

(ii) @9 contains a complete set of principal integrals of A*(P,)
(_7:1, ceey, 7').

(iii) For each j=1, - - -, r, the manifold R [DP?] admits a submanifold
G passing through P, and satisfying (a) F9 is swept out by a family
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(M:te Ty of monm-characteristic l-dimensional integral manifolds of

S(R,), (b) for a set {gi;1<0<m;} of integrals of 4*(P,) which together

with @9 forms a fundamental system of the integrals, the 1-forms dgi”

restricted to F9 form a basis of the module of 1-forms on FY (j=1,
e /r).

Then S,=RJ[OV, - - -, @] 1s an involutive system of partial differen-
tial equations of order k defined on a neighborhood of B,, and its charac-
teristic module My at Pe S, admits an irredundant primary decomposi-
tion Mp= ﬁ Q;.»r where P=x%(P).

j=r+1

The proof of this theorem contains the most crucial discussions in
this paper. In the proof, besides the facts stated already, we shall also
use the following proposition due to Kuranishi [14] (cf. Matsuda [15]).

PROPOSITION 5.3. If R, is an involutive system of order 1 on &,
then there exists a fibered chart (x,y) of & such that the coordinates
(x,y,p) of J, associated with it enables us to describe R, locally around
a point P,€ R, by the equations

¢g:0 (a:l, e ’Co)y ¢;_—_—0 (a:l, s ,Cl), ceey ¢Z:—0 (a—_—l, ceey IC,,)

wn which the following hold: (i) 05k k< - -Zk,Em, and k;=m—s;
(1<i<n); (i) each @& takes the form ¢i=pi—di ('pi, ---, 0%, x), where
"PI= Dk, -+ -, Dh)y Pa=Yas (iil) each prolongation R, of R, can be described
by

{¢;=0 (@=1, -+, &y 1=0,1, - -+, m),
030, - -00Bi=0 (a=1, - -, Kk, 1Z0<k, 1S4,Z - K1,Z0<m).

A fibered chart (x,y) given by Proposition 5.3 is said to be regular
with respect to R,.

Under the circumstances of Proposition 5.3, one can define the Cartan
character s, of order 0 of R, by s,=m—r,.

Hereafter we shall always assume that the hypotheses (H-1) and (H-2)
hold. By (x,y,p) we shall indicate a coordinate system of J, associated
with a fibered chart which is regular with respect to R..

For brevity we denote ©,=60(R,). It is a Pfaffian system on R,
generated by the restrictions of the contact forms 0y (1<a<m,0=<q<
k,I,e8,) (cf. §3). Let S! denote the set {(¢;, - --,2,) €Sz 1=, < - - - <9, <.
Using the equations of R, given by Proposition 5.3, we can show with-
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out any difficulty that the 1-forms
02 (m—s,<a<m—s), 02 (m—s,<a<m,0<q<k, I,€S}

restricted to R, form a local basis of ©,. Our first step to prove Theorem
5.2 is to find a more convenient basis of O,.

Let 2(%B,) denote the module of sections of ¢(,)* over UU. We shall
regard an element of Q2(%,) as a 1-form on R,.

LEMMA 5.4. Assume that, for each j=1, ---, v, we are given a basis
{0, -+, 0} of Q(B,) on a neighborhood of a point P, R, over P,

Then we can find a basis of O, around P,
0cr, (1sasp), 0 (1<asp; 0<q<k I[,€S;j=1,---,v)

where py=s,—3,, p;=p(Lp[Q;r,) such that
(0) for each Pe R, near P, 0% (P)e T:ECTiR, (y=ri(P)), and
X (09, (P)) € Myp (eF being the map deﬁned m §3),
(1) d6w,=0 (modog), (1<B=p;,i=0,1,---,v)).
(ii) When 0Zq<k—2,

l
dog) = Y04 Aof? (mod

i=1

(%)er O, ISB=m), 05;, (1=p=p;, 0=r=<q I,€S8}j'=1, - -,v)),

where the 07} are assumed to be defined for any I,=(i,, ---,1,) in such
a way that they are symmetric with respect to any transposition of
by * oy by,

(iii) for each A€ TP\ ={(a, I,_y); 1Sy, I, ,€ St i},

E_il (J)/\ng) (mod @k),

where, for each j=1,---,v, the 1-form <\, are linearly independent
modulo O,+2.

Under the circumstances, the following are valid:

(I) For any l-form 6€6,,

d0=0 (modddy’ (A€ T, 1<j<v), 6,).

(I) For each j=1, ---,v, the Monge characteristic system A4*(B,) s
generated by 6,, o, rf{i (1Sz<l Ac Td).
(I0) The 1-forms < (1=l A€ TP, 1<5<v) are linearly inde-
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pendent modulo O,+£.

Proor. We divide the proof into several steps.

(1°) Let R,=7i(R,). It is a submanifold of & (ef. Proposition 5.3).
Let V(R,) be the kernel of the bundle epimorphism z,:TR,—~TX; It
is a vector bundle over R,. Let V* denote the pull-back of V*() by
the projection 73: R,—~E. Define V"V* to be the annihilator bundle in
v* of the pull-back of V(R,) by the map =;: R,—R,. Applying Proposi-
tion 5.3, we can readily see that rank V'""*=m—s, and V"V* is a sub-
bundle of M,. Let N{" be the family {N,; P€ U} (1<j<v). By Lemma
5.1 they are vector bundles, which admit M, as a subbundle. Let us
choose vector subbundles V9% of ¥V* over U such that M,=V"*@Qyro*
NP =M,@PV* (1<j<v). Then, in virtue of Lemma 5.1 and Proposition
22, V¢= @ V%, rank Vo* =y,

j=-1

(2°) We denote the module of sections of a vector bundle W by
I'(w), and we call a funetion on J, obtained by pulling back a function
on J, a function of g¢-jets. From Proposition 5.3 and Theorem 1.3 (II),
we can readily deduce the following:

(a) There exists a set {y,;a=1, .-, m—s,} of functions of 0-jets
defined around P, such that each y, vanishes everywhere on R,, and that

the elements {f_j 6xa/6yadya} form a basis of I'(V""*) around P,.

(b) For each ¢q=1,2, ---, k, there exists a set {¢;a=1, ---,p,} of
functions of g¢-jets defined around P, such that ¢,’s vanish everywhere
on R,, and that the elements {e¥(d@,)} gives a basis of I'(M,) around P,.
(Here it is tacitly included in the condition that the coefficients of dple
of the 1-forms d¢, are functions of 1-jets.)

(8°) For each j=1, ---,v, we adjoin the o}’ (1=1<l) n—I elements
o (I<i<n) of 2 so that they form a local basis of 2. Let {»\";1<t<n}
be the basis of I'((7li|q,)*TX) dual to {w{’}. In terms of the local
coordinates, they have the expressions

W= 3 a@(P)fox.  (i=1,---,m),
i’'=1

the coefficients a’s being functions defined locally on R,.

Let {uf’; 1<p<p;} be a basis of I'(V’*) around P, (j=—1,0,1, ---,v),
where p_,=m—s,. In terms of the local basis {dy,; 1<a<m} of I'(V*),
they are described by



558 Kunio KAKIE

fs=§ W(P)dy.  (1=p=p; —1<5<y).

We write S,={(i,, - -+, 1,); 1<iy, -, ,<n} if ¢=1, §,={}=S,. Let
us define the 1-forms on R,
=2 X ai“, b0,
1asm I ES

(,3—1, . ,pj,0§q<k,lqesq; j=-1,0,1,---,v)

(3) (€] (4)
where Qryr, =g

and the contact forms 67 are assumed to be defined for any I,€ S, in

such a manner that they are symmetric with respect to any permutation
of I,. Clearly 6§} —0‘“ if I/ is a permutation of I,, and the 1-forms

c-a; when I=(3,, <+, 4,), I=(il, - -, 1), ¢=1, ag, =1,

0’s just defined generate the Pfaffian system O, around B,
Let O, denote the submodule of 6, generated by the contact forms
(0 1<a<m, 0<r<q, I,€S,} restricted to R,. Then
dog) = iag‘; Ao?  (mod@,,,).

k3

Furthermore the following are valid:

say {IEHE0 0L 02,20 (molon) i a2
057, =0 (mod @m) if 1<5<v, ¢=1, and any permutation of I,¢ S.

In fact, using (a) in (2°), we readily see that 657=0 (mod{2). Since
e (0,‘,“, yeI'(M,), we can apply (b) in (1°) to prove that 0,‘1“, =0 (mod®,,,+
Q). Observmg that, for any point Pc R,, there is E €I'(Oy41, 2) of
origin P (Theorems 3.B and 3.C), we can show that (5.1) holds true.

Using (5.1), we can verify by induction on ¢=1,2, -.., k that 6, is
generated by (3¢),. The number of 1-forms in (), is equal to rank®,.
Hence (), is a basis of O, around P,. It is now clear that (i), (ii) hold
true. To prove (iii), we set

Gh= % 3 ag.bidpl

1Sasm I €8,

(dp’s being their restrictions to R;). Then
dogh, = X L oo (mod8y).

In exactly the same manner as we prove (5.1), we can show that
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¢, =0 (modB,+8) if I<i<n.

B, Iy 1=

Accordingly we have

0(:) El: T 1,/\(0(J)+ Z C“Ik 1a)(a)/\w(a) (mod@k)

i,i/=1

Ill

The existence of E, € I"(0,, 2) of origin P€ R, implies that there is an
integral element E,_, of O, with origin P on which !’ (I<i<n) are
linearly independent. Hence Cj; , must vanish at P if ¢ and >l
Denoting the 1-form (), ; added a suitable linear combination of o
by 7§}, .. we see that (ii) holds.

Let us prove the last part. (I) is an immediate consequence of (i)-

(iii). From (iii) we know that the 2-forms Z ¥ Aw{? vanish if restricted

i=1
to any element E, € I*(O,, 2). Since (v, 0{’>=0 (1=1<l) for any Monge
characteristic vector v with (7%,)4(v) € ¢(B;), it follows that at any such
vector v in E, annihilate the 1-forms 7{). From the very definition, we
find that they belong to 4*(%;). The 1-forms %, o'’ (1=1<1, A€ Ti2))
in 4*,) are linearly independent mod®,, and the number of them is
equal to rank 4*(B,) —rank O, (cf. Lemmas 4.1 and 5.1), which imply (II).
We finally show (III). For each j=1, ---,v, the sections &f(c¥)) are
linearly independent around P, Lemmas 4.1 and 5.1 indicate that

ié,’f(d"(‘lﬂ,—)) is a direct sum. Therefore (III) holds. Q.E.D.

LEMMA 5.5. Under the circumstances of Lemma 54, if 4¥(Ps) is
principally integrable around P, then we can find 2-forms % (Ae T¥,)
defined around P, on R, such that

(i) nP=doP (mod ©,),

(il) dpf'= ¥ CA7d  (mod6y),

BG'I‘

(iii) For any vector field v in Z¥(Rs), the interior products v_lp{f
vanish.

Proor. Let p® denote rank 4%(B;)—rank®,. By the principal
integrability, there exist integrals {g,;1=<r<p'®} such that 4*(B,) is
generated by the 1-forms {dg,} and O, around P,. We can choose 1-forms
th.i, o} such that they can be expressed as linear combinations of {dg,}
with functlon coefficients, and that }.,=7\), vi=0!® (modB,). Define

n&ﬁ’zgrA;iAwi. Then the 2-forms 7§ clearly satisfy (i) and (iii). It
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remains to show that (ii) holds. We can choose 1-forms o; (I<1<n) in
2 so that the 1-forms {dg,}, {¥; A€ TP, 1<1<1,7+8), {0;{’,4}, {o;} form
a local basis of the module of 1-forms on R,. Bearing in mind Lemma
5.4, we have

df= ¥ GAnP+E T A (mod 6y,

(8) i#* (3)
BeT) A perfd),

where nm—zlrg;(/\wgﬂ (7#B). Here we may assume that the (f ;s

contain no term involving the ¢’s. Fixing g and A, we denote by & the
second term on the right side. The above formula implies that =0
(mod dg,Adg, (1<y,0=<p®),6,). Let us decompose (%,='CZ;+"(E, with
'C%;=0 (moddg,’s), "CZ,=0 (modzy’ (j#pB), w;). Denote by &, &” the
3-forms obtained from @ by replacing the {’s by the corresponding ‘{’s
and ”{’s, respectively. Since the terms containing c{)A7{": does not
appear in &', @” must be zero. In other words, we may assume that
the (% ,’s are linear combinations only of the dg,’s. If some (f; is not
zero, after expressing in terms of the basis of 3-forms, & contains a
non-zero term const. {{; Adg,Aw;. This contradicts with the property
mentioned above. Thus {f,’s must be zero, and hence (ii) holds true.
Q.E.D.

LEMMA 5.6. Assume that 4*(R) is p-regular and principally inte-
grable around P, Let pf’ (A€ T{.) be 2-forms given by Lemma 5.5.
Given a non-characteristic l-dimensional imtegral mamnifold M of O,
passing through P, we set m:PH%z Cs, where Cp, denotes the integral

manifold of the involutive distribution Z*(B,) passing through P. Then
the manifold Jl possesses the following property: For any PcJl sufi-
ciently mear P, there exists an m-dimensional contact element E,C Tl
with dim(z*,)4E,=n such that the 1-forms in O, and the 2-forms 7P
vanish on E,.

Proor. For brevity we write: 4=44B,), na=nP, Z=2Z4P,), Z=Z*(B,).
Let {us1<0<p} be a complete set of principal integrals of 4, and
{w; 1=<4<1} be integrals of 4 such that 4 is generated by the 1-forms
dus’s, dw’s, ©,. We can choose integrals {g,; 1<7y<p/} so that the inte-
grals u,’s, w.’s, g,’s form a fundamental set of integrals of 4. Then the
manifold J] can be described by
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{ Ts=Us—Po(w,, - -+, w,) =0 6=1,---,p),
9r=9,— ¢ (wy, -+, w) =0 (r=1---,¢).

We may assume that @,=u; §,=g¢g,. From the integrals g,, we have the
1-forms 6, € O, defined by

dg, =6, (mod duy’s, dw.’s) (1=r=y).

Clearly the 1-forms 6, are linearly independent. Furthermore the follow-
ing hold true.

(5.2) <5, 60,5=0 for any € Z; v_|d0,=0 (mod®,) for any v€ Z.

In fact, the first assertion is obvious. To prove the second, we use

a basis {0} of 6, given by Lemma 5.4. For some functions C%, we

have 0,= Y C0), = (mod(x),..). Since df,€ 4, taking exterior differen-
j,a

a,Ip 4

a,Ip

tiation, we get Y- Ciddy), =0 (mod4). Taking into account of the prop-

erties of the basis, we can show that the coefficients C with j+#8 must
vanish at each P R,. Thus 6, is a linear combination of the 0%} s
and (%),_,. This implies our required assertion.

Let us choose 6/€ 0, (1<e<y') so that 60”s, 6,’s form a basis of 6,
around P,. Then the 1-forms du,s, dws, dg,’s, 0”s are linearly inde-
pendent. Since the restrictions of dw; to M' are linearly independent,
we can construct vector fields e; (1<i<l) tangent to Jl such that
{e;, 0/>=0 on J] (1<e<yv’), and that the e;(P)’s span the tangent space
Te M for each P M. Observe that any vector field tangent to JI can
be expressed as a linear combination of the ¢;'s and a field of Z, and
that (e, 0>=0 on M' for any 6¢€6,.

Let v be a vector field in Z. Applying the well-known formulae
(Kobayashi-Nomizu [12], p. 36, Proposition 3.11), we have

v({ei, 0,)) =ei({v, 0,0) +<[v, &:], 0,) +<{r Ae;, db,),
v(CeiNej nay) =ei({v ey, map) +ei(Kes Av, naD) +L[v, el N\ ej, nad>
+<[es, e IAY, na>+<lej, vIN e, nap +{v Aei ey, dna).

For simplicity we write F7=<e;0,), F{,={e;\e;, 74y, and put 0=
(F, 1ISi<L 1Sy Sy}, U={F5 154,551, A€ T®,}. On account of (5.2),
(ili) of Lemma 5.5, and the fact [e;,v]=0 (mode, ---, e, Z), we obtain
from the formulae
(F7)=0 (mod®) on JI (1= 15y,

5.3
(5.3) { y(F4)=0 (mod®,¥) on JI (1<i,5<l, Ac T®),).
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Since Z= _E_Jo piZ for some q (cf. §4), the equations in (5.3) hold true for

any vector field » of Z. Consequently the functions F7, F'%, remains
constant on each integral manifold C, of the distribution Z. Combining
this with the fact that the functions vanish on ', we conclude that
they must vanish everywhere on Jl.

Let Pc Jl. There exist Monge characteristic vectors e; € TxJ] (1<i<n)
with (7*,)4(e;)’s being linearly independent. Let E, be a contact element
spanned by e;(P) (1<i<l) and e; (I<i<n). Bearing in mind what we
have proved above, we can easily verify that E, satisfies the required
conditions. Q.E.D.

PROPOSITION 5.7. Assume that the circumstances of Theorem 5.2 hold.
Then, for any point P€ S,=R, [0V, .-, @], there exists that n-dimen-
stonal contact element E,C TsS, with dim(z*,)4E,=n which is an integral
element of O,, equivalently, of 3(R,).

Proor. We shall use a basis {02,{’,q} of O, and 1-forms 7§, given by
Lemma 54. Let I9V={u{:1<0<p} be a complete set of principal
integrals contained in @9, and ¥ ={g{"; 1<y<m'?} be the set @V —II*",
Let {w{”;1<4<1} be integrals such that 4*(B;) is generated by the 1-
forms d/1, dw{’s, B,. We define 1-forms 6\’ € ©, by

dg=0%  (mod dII, dw? (1<i<l)).

Let 2§ be 2-forms given by Lemma 5.5 (1=<j<r). We denote
RJOPP] by S, and the inclusion S'»R, by ¢. Let us prove that
FO9)=0 (r=1, -, m¥), Fp)=0 (mod¥0) (A€ T{) (=1, ---,7).
Denote by Jl, the submanifold of S{’ defined by Jl,= U Cs. The hy-

pea!
pothesis (iii) of Theorem 5.2 implies that S{” is swept out by Jl, (t€ T).
By Lemma 5.6, for each PcJl, there is a contact element E,C T5Jl,
with dim(z*,)4E,=n on which the 1-forms in 6, and the 2-forms 7}’
vanish. On the other hand, from the definition and Lemma 5.5, it follow
that
0= ZI)C;dw‘i” (mod d@), pP= ¥ C¥dw Adw{ (mod O, dII?),
i=1 1<i<i <l

the C’s being functions defined locally on R,. The existence of such an

element E, on which dw{” (1=<1<lI) are linearly independent implies that
the coefficients C’s vanish at each point P€S{’. Hence our required
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assertions follow.

The hypothesis (i) implies that the 1-forms 0 1<y<m" 1<75<7)
are linearly independent. Therefore we may choose 1-forms 6, (1<e<m*)
in @, such that the 1-forms 6{s, 6,’s form a basis of 0, around P,
Let ¢: S.&> R, be the inclusion. As is readily seen, the 1-forms

K(day), *(0,), *(c8h)  (1<i<l 1<e<m, A€ TP, r<j<v)

form a basis of the module of 1-forms on S,. Hence, for each PcS,,
we can construct n vectors e, - --,e,€ TsS, such that

det(<e;, dx: )i iir,...n 70, e, 0,(P)>=0 (1ZeZm*),
(o TP (PY=0 (L=<l A€ T, r<j<v).

Let E, be the contact element spanned by e, ---,¢, Clearly any
1-form of @, vanish on E,, and so do the 2-forms d@y{’ (r<j<v). Further-
more what we have just proved above indicates that the 2-forms 7%’
vanish on E,. From these facts, it also follows that dfé vanish on E,
for any 0€6,. Consequently E, is an integral element of 6,. Q.E.D.

We are now in a position to complete the proof of Theorem 5.2. It
is clear that S, is a (locally closed) fibered submanifold of R, Let H,
denote the symbol of S,. Denoting the (k—1)-th prolongation of G, by
G, we have

H,={1€Gils,; ei(dfy)>=0 (1=y=n;1<j<7)}.

In virtue of Lemmas 4.1, 5.1, and the assumption (i), H, s is found to

be N Cu%B,;r), where P=z%P), and we use the same notation as in
r<jsy

§2. Hence, by Proposition 2.4, H, » is an involutive symbol. Moreover,
by Lemmas 4.1 and 5.1, dim H, ,=const., that is, H, is a vector bundle.
It follows that the prolongation pH, is a vector bundle.

Finally Proposition 5.6 implies that the projection z}*':pS,—S, is
surjective (see Note after Theorem 3.C). Thus we have shown that the
system S, of order k satisfies the conditions of Theorem 3.1, and hence
S, is an involutive system. The remaining assertion is an immediate
consequence of Proposition 2.4. Q.E.D.

§6. The method of integration

Let R, be an involutive system of order 1 on &. We shall keep the
same notations as in §5. We are concerned with its local and smooth
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solutions. The solutions of R, correspond to m-dimensional integral
manifold of the differential system JX(R,) or of its prolongation 3(R,).
By an integral manifold M of Y(R,), we shall always mean one such
that (7*,)xT» M is of dimension dim .H for each Pec M.

The Cartan-K#ihler theorem asserts that an analytic involutive system
admits analytic solutions (cf. Cartan [3], Kahler [6], Kuranishi [14]).
However the existence of smooth solutions of a smooth system R, has
not yet been shown in general. Here we consider only a system R,
satisfying the conditions (H-1) and (H-2) stated in §5. Then the exist-
ence of its smooth solutions may be shown by solving the following two
problems: (1°) To find a non-characteristic I-dimensional integral manifold
M of Z(R,); (2°) To find an n-dimensional integral manifold of 3(R,)
passing through such a given M' (the Cauchy problem). The problem
(1°) is easy to solve; it can be solved by using a part of the Cartan-
Kihler procedure. The Cauchy problem (2°) is much more ecrucial; we
can solve it by applying the result in our previous work [11]. In this
way we are led to the following existence theorem.

THEOREM 6.1. Assume that (H-1) and (H-2) hold. (I) For any
given nmon-characteristic I-dimensional integral manifold, there exists a
unique n-dimensional integral manifold of 3(R,) passing through it.

(II) R, admits smooth solutions; the solution can be parametrized
by s, arbitrary constants and s, arbitrary functions of | variables (A C*
Cartan-Kdihler theorem).

Let us now consider our main problem: (the integration problem) To
reduce the solution of R, to integrating ordinary differential equations.
Our method of integration is obtained by seeking sufficient conditions
under which the problems (1°), (2°) may be solved by integrating ordinary
differential equations and algebraic operations.

THEOREM 6.2. Let R, be a system satisfying (H-1) and (H-2). As-
sume that, for some integer k=1, v—1 Monge characteristic systems, say,
A5(B)), - -+, 44(B,_)) are p-regular and principally integrable around a
point P,e R, over P,. Then any solution of R, of which k-jet at x,=
7t (B,) is sufficiently close to P, can be obtained by solving ordinary
differential equations.

REMARK. If 4*(B,) is principally integrable, so is 4***(B;) for any
g=1 (Proposition 4.4 and Lemma 5.1). Accordingly, making use of Monge
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characteristic systems of equal order gives rise to no essential assump-
tion in the theorem except for the regularity condition.

If y=1 in the theorem, the assertion is substantially a consequence
of the following fact.

PROPOSITION 6.3. Let S, be an imvolutive system of order k on &.
Denote by | the greatest integer 1 such that its Cartan character of order
4 18 nom-zero. Assume that the following four conditions are satisfied:
(i) 1<l<n, (ii) the characteristic module N» of S, at P€S, is itself
PBe-primary, (iii) PrLprCNp, (iv) the family {c(Bs); PES.} ts a wvector
bundle of rank n—IL.

Then through any point PES,, there passes a unique (n—I)-dimen-
stonal Cauchy-Cartan characteristic manifold of the differential system
>(S,). Moreover it is obtained by solving ordinary differential equations.

Proor. Let I" be the Cauchy-Cartan characteristic system of 3(S,)

(cf. Cartan [3]). Applying the theorem in Kakié [9], we can readily

show that " is a Pfaffian system of corank m—I. (Indeed I' coincides

with the Monge characteristic system 4*(R) of S,.) As is well-known,

I' is completely integrable, and hence its integral manifolds may be ob-
tained by integrating ordinary differential equations (cf. Cartan [2-3]).

Q.E.D.

PROOF OF THEOREM 6.3. Let o be a solution of R,. What we must
prove is that ¢ is obtained by solving ODE’s (=ordinary differential
equations). Let H" be the integral manifold of X(R,) corresponding to
o, and M* be that of J(R.); M" is obtained from H" by prolongation.
We may assume that P,e M*, Pe M. It suffices to prove that Hi»
can be obtained by solving ODE’s.

Let {051’;}q} be a basis of 6, around P, given by Lemma 5.4. For each
j=1, ---,v—1, by integrating ODE’s, we can obtain a fundamental system
{90 1<r=<n,), b 1=50<q;), w (1=<1<1)} of integrals of 4*(B,) defined
around P, such that (i) the 1-forms dg!" are linearly independent modulo
0%, (1<a<p) and 2, (i) dr§"(P,)€ {span of O (P,) (1Sa<p)}, (i)
dw{?(P,) € {span of 67} (P,)’s and o(P,) (€ Q(%,)}.

Let us take a non-characteristic [-dimensional integral manifold .}
lying on the {* and passing through P,.

SUBLEMMA 1. The manifold M, can be obtained by solving ODE’s.
Moreover, for each j=1, ---,v—1, by solving ODE’s and algebraic opera-
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tions, we can construct a family { M} of mon-characteristic l-dimensional
integral manifolds depending smoothly on q-parameters tc T, where T
is an open mneighborhood of the origin of the q,-dimensional Euclidean
space, such that M= M if t is the origin, and that J19= U M is a

(q;+1)-dimensional manifold with dh{’(P,)’s and dw((P,)’s (conswle‘red as
vectors in T} R,) being linearly independent on T#JI. (The proof will
be given later.)

Denote by ! the integral manifold of 3(R,) obtained from ! by
prolongation. (Note that each JM: is non-characteristic.) We put ¥ =
U M. Then S is a (g;+1)-dimensional manifold on which the dh{”’s,

teT
dw{"’s are linearly independent around P, Hence we can construct

functions f{’ =g —y{ (hY¥’s, w'?’s) such that f{”’s vanish everywhere on
FO (1<5<y).

SUBLEMMA 2. The 1-forms dfy’ (1<r<n,;, 1<5<v) are linearly in-
dependent modulo Q around P,

Let us put @9V ={f¥;1<r<n;}. Then we can apply Theorem 5.2 to
deduce that the system S,=R,[O?, -, d*» V] is an involutive system of
order %k, and that &, satisfies the assumptions of Proposition 6.3. Let
Cs denote the (n—I)-dimensional Cauchy-Cartan characteristic manifold
of ¥(S.) passing through a point P. Then "= U C; is an n-dimen-

pe it

sional integral manifold of X(S.), and hence of 3(R,). Applying Prop-
osition 6.1 (I) to the integral manifolds nl(ﬂ"), n-l(ﬂ/l ) passing through
M, we know that HM*=.F". Consequently " can be obtained by
integrating ODE’s. Thus the proof will be complete if we show Sub-
lemmas.

Proor oF SUBLEMMA 1. We can choose a fibered chart (x, y) regular
with respect to R, in such a way that x;=0 on M} (I<i<n) and x.(P,) =0

(1i<m). We indicate the variables z,, ---,z, by /. Let ¢i=pi—¢i=0
1£a<k;1=0,1,---,n) be a regular local equation of R, around P,
given by Proposition 5.3. Here r,=---=g,=m—s, £;,,=+-=k,=m. In

accordance with the general theory (cf. Kuranishi [14], Matsuda [15]),
introduce initial data

(6.1) (D) Yalerco=¢Ca (Re<a=ky), (II) y.=ga@") (£<a=m)

the ¢’s being constants, and consider the differential equations with un-
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known functions ¥,=v.(x') (£,<a<k,)
(6.2) ¢;:O (/c0<a§/;l’ 7,—_—]_, cee l)

in which (6.1)-(II) and pj=0dg3(x’)/ox; (r,<a<m,1<j<I) are assumed to
be substituted. We assume that the k-jet at z',(P,) determined by (6.1),
(6.2) is sufficiently near P,. Careful reading of the proof of the Cartan-
Kahler theorem in [14] or [15] indicates that, for any given data (6.1),
we can obtain a unique solution of (6.2) satisfying (6.1)-(I) by solving
ODEs.

Now consider an I-dimensional submanifold HM* of J, sufficiently close
to M{ such that ;=0 on M' (I<i<n). It is described by

63) =0 (1<isn), v.=gde). Pi=giw) (1Sasm, 1<i<n),
M! is an integral manifold of X(R,) if and only if

(6.4) { gi(@')=0dgl(x)/ox; (11l 1< a<m);

9a(a’) =[¢al(x’) 0=i=n lsasr),

where [¢i] denotes the function obtained from ¢; by substituting (6.3).

For each data (6.1), let y,=gi(x") (r,<a<Zk,) be the (unique) solution
of (6.2) satisfying (6.1)-(I), and g3(x') (1<a=<k,) be the function obtained
from ¢} by substituting z,=0 (I<t<n), (6.1)-(II), y.=g3x) (R<aZk).
The gl(x’)’s define an (integral) manifold ' by (6.4). Let A be the
mapping which assigns each data (6.1) the integral manifold .#'. Then
A gives a one-to-one correspondence between the data (6.1) and the
integral manifolds M’ of 3(R,). From this fact it follows in particular
that M may be obtained by solving ODE’s.

To construct a required family { %!}, we assume that the .M} cor-
responds to the data (6.1) under A. We may also assume that ¢,=0.
Taking into account of the property (0) in Lemma 5.4, we see that the
matrix <<a/aya: dhiy; ;f___— ’lc" +1 q x‘) has rank q; at P,, We may assume

—4 » Yj
that the first ¢ column vectors are linearly independent. Let .M! be the
integral manifold which corresponds under the mapping A to the data
(6.1) in which ¢, 4, =t, (1=r=gq,). It is easy to see that the family {H}}
is a required one.

PRrROOF OF SUBLEMMA 2. For each A=1,---,v—1, we may assume
that II®={f¥;1<r<m,} is a complete set of principal integrals of
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4“(Bs). We first observe that & (df¥) (1<8<v, 1<r<m,) are linearly
independent at P, (cf. Lemmas 4.1, 5.1). Let us next show that, for each
fixed B, the 1-forms df{® (my;<d<m,) can be expressed as linear combi-
nations of 0;€}q’s, 0s, dII®, dw®’s. In fact, each df{® can be expressed
as a linear combination of the local basis 6Y)s, dII*®, dw{®’s of 4*(B,).
Let Cjj¢ be the coefficient of 0% Denote by 2 the 2-form
Z,-Za,,qCZ’,’fquL{}q. Taking exterior differentiation, we get ;=0
(mod 4*(*B,)). Bearing in mind the properties of the 6’s stated in Lemma
5.4, we can deduce from these formulae that the Cjijt- (0, ) vanish
around P,. Next, taking into account of this fact, we find that
2P=0 (mod68f) s, ()i, AI®, dwi’s).

a,Ip 4

In the same manner as above, we see that the C; /2 (5#0, ) must
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