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New bifurcation diagrams in the problem
of permanent progressive waves
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By Mayumi SHOJI

Abstract. Plane progressive waves on water of finite or infinite depth are
treated under the effect of both gravity and surface tension. We are inter-
ested in the bifurcation phenomena, particularly in Wilton’s waves which are
obtained as a consequence of bifurcation of multiplicity two. We obtain
bifurcating solutions and their bifurcation diagrams numerically. We include
into solutions those waves in which the flow regions have self-intersections.
By this, we see qualitative agreement of the numerical results with the
mathematical theory.

§0. Introduction.

We consider a problem of progressive water waves. Our objective
is to study a bifurcation structure, particularly the one near a critical
point of multiplicity two, by numerical and analytical methods. We
consider a two dimensional irrotational flow of inviscid incompressible
fluid with a free surface. What will be considered here is called a
progressive wave, by which we mean a fluid motion with free surface
whose shape is constant if viewed in a moving frame. We take an z-y
coordinate system moving in the same direction as the wave with the
same speed ¢ (see Figure 1). We first consider the flow of infinite depth.
The case of finite depth will be considered in a later section. The free
boundary is represented by a function H as {(x, y)|y=H(x)}. Accordingly
the fluid region is {(z,y)| —co<wx<co, —co<y<H(x)}. We assume a
conventional hypothesis that the wave profile is symmetric about y-axis
and is periodic in x of the period, say, L. By the periodicity, we have
only to consider the fluid in {—L/2<x<L[2, —co<y<H(x)}. Then the
problem is to find a wave profile function y=H(x) and a complex potential
w=U+1V, where U is a velocity potential and V is a stream function,
such that U4V is a holomorphic function of z=x-+1ty and satisfies
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Figure 1. Periodic progressive wave on water of finite or infinite depth.

U (i % y) == % (respectively),
V=0 on y=H(z),
U+iV—>cz as y—>—oo,

_1_|d_w|2+gy—TK=constant on y=H(x).
21 dz

Here ¢ is the gravity acceleration, T is the surface tension coefficient,
K is the curvature of the boundary y=H(x) and i=4/—1. We note
that “w(z)=cz” and “H(x)=constant” solve this problem. We call this
a trivial solution. We are interested in non-trivial solutions bifurcating
from the trivial one. There are two extreme cases. The waves in the
case of T'=0 are called pure gravity waves. Those in the case of g=0
are called pure capillary waves. We call waves for general (g, T)
capillary-gravity waves. Crapper [4] presented exact expression for pure
capillary waves of infinite depth in terms of elementary functions. The
wave profiles calculated by his formula are given in Figure 2. Later,
Kinnersley [8] gave an expression for pure capillary waves of finite depth
in terms of elliptic functions. Thus, complete solutions are obtained in
the case of g=0. However, in the case of general capillary-gravity
waves, explicit solutions are no more available. On the other hand,
abstract mathematical proofs are given to the existence of bifurcating
solutions in general cases ([10, 11, 16, 19, 20]). The validity of the
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Figure 2. Profiles for different heights for Crapper’s exact solution of pro-
gressive capillary waves (i.e. g=0). Here & indicates the amplitude of wave.

mathematical theory is, however, limited to a small neighborhood of the
trivial solution. Chen and Saffman [1, 2] computed solutions numerically
and found new capillary-gravity waves although they do not give a
mathematical proof of existence. We follow the method in [1, 2], which
is called the Stokes expansion method. But we execute numerical com-
putation more systematically and give solutions which are not given in
[1, 2]. We also present the bifurcation diagrams and show how they
change as the parameters vary.

The present paper is composed of five sections. In §1 we state how
we discretize the problem. §§2,3 contains the explanations for the
numerical results. In §2 we also mention about the case of finite depth.
§4 is devoted to discussions.

§1. Formulation.

Under the assumption in §0, we may restrict ourselves to Q,=
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{(e, y)l |2|<L/2, —co<y<H(x)}. The problem to be considered is formu-
lated as follows:

Problem. Find functions H=H(z) (— L/2<x<L/2), U(x, y) and V(z, y)
(—L/2<x<L|2, —co<y<H(x)) satisfying the following (1-5):

(1) w=w(z)=U+1V is a complex analytic function of z=x-+1y in 24,

(2) H(x) and % are periodic functions of x with a period L,
(3) V=0 on y=H(x), U+tV—>cz as y—>—oo,
(4) U(J_r_-;i-, y):i%c (respectively),

1] dw H,
(5) l ’ +9H T<m>z—constant on y=H(x),
where ¢, g and T are prescribed positive constants. Subscripts mean
differentiations. ¢ is a propagation speed. ¢ is the gravity acceleration
and T is the surface tension coefficient. Here we remark that the con-
stant of the right hand side of (5) depends on ¢ and the choice of the
origin.

There is a mathematical difficulty for solving (1-5): the boundary
portion {y=H(x)} is unknown. In order to overcome this difficulty, we
follow the happy idea due to Stokes that we regard z as a function of
w. Thus we seek a solution of the following form:

(6) e=atiy=" + i L(A;+1iB;) exp (_ 2j7riw>+ t1L(A,+1B,) ,
c i=1 27 cL 27

where A;, B;€ R are unknowns to be sought (see [1]). We call expansions
of this form the Stokes expansion. We consider only symmetric waves,
so we put B;=0 for all j>1 in (6). The constant terms, 4, and B,, are
determined by positioning of the origin. Therefore they do not affect
wave profiles. The function z==z(w) is defined in {|U{<LcL/2, —co<V <0},
Therefore the free boundary problem is transformed to a problem of
fixed domain. From (3), the free surface {(z,y)|y=H(x)} is given by
putting V=0 in (6). This gives us

’

2jzU >+ LB,

_U L A, (
o= s (=L o
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y___E ’ cos(zﬂU>+ 1;‘:" .

Our task is, therefore, to determine A’s (j=1,2, ---). We determine
them by the condition (5). We represent the condition (5) in terms of
x and y above. As for the first term |dw/dz|’, we have the following
expression: on the free surface, the stream function V is constant, hence
we have dw=dU there. Consequently dz/dw=dz/dU=dx/dU+idy/dU,
and |dz/dw|*=(dz/dU)*+ (dy/dU)*. Similarly we express the curvature
—(H,/(1+H?"), by means of dU. Thus we have the following equivalent
expression for (5):

L 1 Loy BY=%0 _oonstant,

5 =
( ) 2 x2+y2 (x_‘_ 2)3/2

where * represents derivatives with respect to U.
We now introduce non-dimensional variables. We put &£=2zU/cL
and X(§)=x(U)2z/L, Y(§)=y(U)2x/L. Then we have

(1) X@=¢+ £ LisinGe)+B V)= 3L cosit)+ 4

By the relations #=X'/c, y=Y'/c, £=2xX"|c*L and 4§=2zY"|c*L, (5') is
now written as

X'Y"'—X"Y'
(8) £ % + Y—x%az—:constant,
2 X°+Y (X*4+Y")

where ’/ represents derivatives with respect to & and we have put

2rc® 47T
9 = .
(9) #= gL " gL?

Chen and Saffman used the above equation (8). We, however, prefer
the following differential form (8’) of (8) since it is convenient in order
to apply bifurcation theory given by Crandall and Rabinowitz and others:
d 1 d X'Y'-X"Y _

]’ £ L Ly =
( ) 2 dE -XIZ+ Y/2 + ds (X/2+ Y/2)3/2

The task is to solve (8) with (7, 9), i.e., to find (4,, 4,, - - -) satisfy-
ing (8’) for given «, p. Since only the derivatives of X and Y appear
in (8'), we use instead of (7) the following
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(10) X/(§)=1+ 5 A;eos(j8),  Y'(E)=— 5 A;sin(s8).

Note that the constant terms, A, and B, disappear and we have a for-
mulation which is closed in (A4,, 4,, ---). To state in a more mathematical
fashion, we rewrite this problem as a problem to seek zero points of a
mapping F' which we will define below. For a given (4,, A4,, ---), we
define ¥'(&) by

1 X/ YII_X/I Y/

+Y—r=

11 Ip‘ e _lf_ [ — ————,
( ) (E) 2 X/2+ Y/z (XI2+ YIZ)S/Z

We then define a mapping by Fl(x, p; A,, A,, - - -)=(A¥, A¥, ---, B¥, Bf, -+ ).
Here A*¥ and B¥ are defined by

(12) Ar=(-L0), sin(j8) )=1WE), —j cos(iz),
and
(13) By =—2(- W), cosls)) =~ 2 (), jsin(j8)).

Each B} for j>1 in (13) vanishes since X (&) is odd in &, Y (&) is even
and ¥ (&) is even. Consequently, so as to seek zero points of F', our task
is only to solve

(14) F(k, p; Ay, A, -+ )=(A¥, AF, ---)=0

for given £ and p.
For a bifurcation theoretic analysis, the following proposition is a
basis.

ProposITION. i) F(k, p; 0,0, ---)=0, t.e. (A, 4,, ---)=(0,0,---) i3 a
solution for all £ and p, ii) the Fréchet derivative of F at (A, A, ---)=
(0,0, ---) fails to be an tsomorphism if and only if p=1/m-+mx for
some positive integer m.

PRrOOF: i) is easy to see. ii) is proved by the following formula
for the Fréchet derivative DF"

DF(k, 11; 0,0, - - -)(Ay, Ay, -+ +) = i {15 —1—rj% A, sin(5€). ]

Now we introduce the following symbol and definitions:
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1 .
Sp={(r, p)| y=—+m«k for mé€N.
m

DEFINITION. If (x, )€ S, and (r, )€ S, (Ym=mn), then we call (£, p)
a simple bifurcation point of mode m.

DEFINITION. Let m, n be integers such that 0<m<n. If (x, #) € S.NS,
and (k, ¢) € S, (Yl#m, n), then we call (x,p) a double bifurcation point
of mode (m,n).

The set S, is a straight line and the intersection of S, and S,
(m#mn) is the double bifurcation point of mode (m,n), which is denoted
by Sa.. Let m and n be fixed integers such that 0<m<n and let
(ko o) be the double bifurcation point of mode (m,n). Then we have

(15) ,co:__l_._’ ozﬁﬂ.
mn mn

We will see there are secondary bifurcations in a neighborhood of
Spne

We now describe our numerical algorithm to obtain bifurcating solu-
tions from S, and S,. and to obtain secondary bifurcating solutions.

I) The case of simple bifurcation point

Let m €N be given and &, be fixed. Let (r, p) be a simple bifurca-
tion point of mode m.
By truncation we define an approximate equation of (14) as follows:

F(N)(,Cv .u’ Al! AZv Tty AN):(Aik, A;ky Sty A;‘kl)r

where A¥ is defined by (11, 12) with (4,, 4., - - -) replaced by (4,, 4;, - - -, A,
0, ---). Then the discrete version of our problem is of the following
form.

(16) (Hy(2, Ay, -+, Ay; ko), Hy(v ), -+, Hu(-++))
=F"(ky, pto+2; Ay, -+ -, Ay)=0.

Here we have N equations for N+1 unknowns (4, 4, ---, Ay). One
more equation should be supplied to control bifurcation parameter 2.
There are several possibilities. In some case, we use

(17 Hyn(d Ay, -, Ay k) =2—1=0,

where 1 is a suitably chosen constant. In other situation (17) becomes
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unsuitable and we switeh (17) to
(18) HN+1(2, Al! c ety AN; Eo)EAm—AmIO,

where A, is a suitably chosen constant. Whether we use (17) or (18)
depends on the direction of solution arec. Now H=(H, H,, - -+, Hy,,)'=0
gives N+1 nonlinear equations for the N+1 unknowns, and this system
can be solved by the Euler-Newton method:

APt
At — Ar

(19) DH?. . =—H(, A}, - -, AR).
AR — A%

Here p indicates p-th step of iterations and DH” is the Jacobian matrix
of H at (2, 4y, ---, Ay)=(4%, A%, --., A%). The most time-consuming part
in this algorithm is the computation of DH. But the FFT method is
effectively used to construct this matrix. In fact, the kth row of DH
is composed of cosine coefficients such as

OH, _ _ j< 9 v, cos(j$)> for k=1,

02 7\ aa

(20) oH i/ @
LY B wE), ' for k=1,
oA, n(@ A (&) COS(JE)) or k+#

where we can write 0¥’ /04 and 8% [0 A,_, concretely. Therefore (20) is an
explicit representation.

After all, the algorithm to solve bifurcating solutions of mode m is
described as follows: Let ¢ be suitably chosen, positive or negative. We

m+1

take a first approximation (2°, A}, ---, A%, -+, AY)=(0,0,--+, £,---,0)
and solve the Euler-Newton’s scheme (19) where (18) with A,=¢ is
adopted. When |[(A**!, A?*, ..., A% — (2", A3, ---, A})| becomes smaller
than a prescribed small value, we employ (A**!, A?*, ..., A%') as the
solution for the given e. In the next step, we repeat the same procedure
for e+0e where de is a small increment, taking the previously obtained
bifurcating solution as the first approximation for the present step. We
continue this procedure. If the iteration does not converge, we choose
a new de smaller than the previous one and compute again. If the
iteration does not converge for very small de, we are approaching either
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a limit point or a singular point. Some authors call the former a turning
point (in the A,-direction). The latter is one of secondary bifurcation
points. In the first case, we can similarly continue the above procedure
by switching (18) to (17). In the second case, we can skip the bifurca-
tion point by letting de be larger and continue the above procedure
again. After obtaining the primary branch, we come back to the
(secondary) bifurcation point and compute the secondary bifurcating
solutions as is described in Keller [9] (see III) below). In this way, we
can get the global bifurcation branch.

II) The case of double bifurcation point

Even in this case, the procedure is essentially the same as before.
However, there are intersections at which two or more branches meet.
Accordingly we must choose initial approximations appropriately. Below,
we state how to decide a suitable initial value. Let (,, #) be a double
bifurcation point of mode (m,n).
Bifurcating solutions from S,, are waves such that A, and A, are
of comparable order and the remaining A; (j#m, n) are of smaller order.
An initial guess is obtained by neglecting terms in ¥'(&) of order smaller
than O(|A4,+A,|°). To put it concretely, let us explain by examples.
We put m=1 and n=2. We then have (x, p,)=(1/2, 3/2) by (15). By
H;=0 (j=1,2) of (16), we obtain after some manipulation the following

1) (—p+ ) At (p = S6) A A +O(1 A+ A7) =0,

(22) (%—y+2x)A2+<—%y—%x)A?-l—O(lAﬁAzP):0.

Here, ¢ is fixed to x,(=1/2). We now consider the solutions in which
A,;#0. We neglect the terms of order >3 and divide (21) by A, to have

(3-)+(n—2) =0, <%—y)A2+<~%y—%>A¥=O.

These two equations give

p=(3-2a)0-a)=p+ B aro0an,  A=zxa
Namely we obtain two initial approximations: (2, A3, A3, A3, -, AY) =

(0.75¢, *e,¢,0, ---,0).
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When m=1 and n=3, we can obtain the following two equations
from H,;=0 (j=1,2,8,4,6) of (16) in the same way as above:

jt =—0.763---, —0.187---,1.202- - -, ;1:%-;- 3‘2 Al=p,+O(| Ag]).
Thus we have three initial approximations: (2%, A3, AS A4S, ---, A% =(0,

—0.763¢,0,¢,0, - -+, 0), (0, —0.187¢,0,¢,0, - --,0) and (0, 1.202¢, 0, ¢, 0, - - -, 0).

III) The case of secondary bifurcation

If the parameters are perturbed from the double bifurcation point,
there appear secondary bifurcations. For such values of parameters, we
need to calculate eigenvalues of DH in every step of obtaining one
bifurcating solution in the procedure of I). When some of the eigen-
values change their signs, there exist some singular points which are
either of secondary bifurcation point or of turning point. After calculat-
ing all primary bifurcating solutions of mode m, we return to the neigh-
borhood of each singular point and find its accurate location by bisection
method. In order to determine whether it is a bifurcation point or a
turning point, we employ Keller’'s method. By the method, we can find
a secondary bifurcation point and a direction of secondary branch. In
order to switch branches at bifurcation points, we can use Keller’s method.

§2. Results for the bifurcation of mode (1, 2).

In this and the next sections we show our results of numerical
computation. All the solutions presented in this section are found in a
neighborhood of the double bifurcation point of mode (1, 2).

Let (ko #) be the double bifurcation point of mode (1, 2). Since
m=1 and n=2, it holds by (15) that #,=0.5 and g,=1.5. If we change
£ slightly from x,=0.5, there appear secondary bifurcations as will be
shown below.

First, we explain Figures 3-6, which are the results for £=0.7(>«x,).
(k, #)=(0.7, 1.7) is the simple bifurcation point of mode 1 and (x, g)=
(0.7, 1.9) is that of mode 2. Figures 3-5 show wave profiles which are
drawn in one wavelength, namely in a range of 0<£<2r (ie, 0<a<L).
Figure 3 shows solutions along the branch of mode 1. The wave profile
of mode 1 changes from wave of small amplitude like cos(f) to the
highest wave enclosing a bubble like Crapper’s wave. Both of the wave
amplitude and the bubble are smaller than those of Crapper’s wave.
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Figure 3. Profiles of mode 1 waves for £=0.7 of infinite depth.
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Figure 4. Profiles of mode 2 waves for £=0.7 of infinite depth.
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Figure 5. Profiles of mode (1, 2) combination waves for x=0.7 of infinite
depth. A secondary bifurcation point is x=1.859.

“

Figure 6. Bifurcation branches for £=0.7 of infinite depth.
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Figure 4 shows solutions along the branch of mode 2. The wave profile
of mode 2 changes from wave of small amplitude like cos(26) to the
highest wave where the surface encloses two bubbles. Figure 5 shows
solutions along secondary branch which bifurcates suberitically from the
branch of mode 2. The secondary bifurcation point is calculated as
(k, #)=(0.7, 1.859---). The surface of the highest wave also encloses
two bubbles. In Figure 6 the bifurcation diagram for £=0.7 is drawn,
where all branches bifurcate suberitically and the bifurcations are pitch-
forks. The branch of mode 2 is on p-A, plane and is symmetric about
p-A, plane. A bifurcating solution on the lower side corresponds to a
phase shift of n/2 of the solution at the symmetric point on the upper
side (see wave profiles ¢ and a’ in Figure 6). Similarly, the branches
of mode 1 and the secondary branches are symmetric about p-A, plane.
Bifurcating solutions located symmetrically are obtained by phase shift
of = (see figures b, ¢ and ¥/, ¢’ in Figure 6). Here phase shift of =/2
(or z) is equivalent to moving the origin horizontally by L/4 (or L/2).
Chen and Saffman [1, 2] gave wave profiles in Figure 6 but they did
not compute the bifurcation diagrams.

Next, we will see how the bifurcation diagram changes as « changes.
Figure 7 shows the bifurcation diagram for x=2 and the highest wave
profiles of mode 1 and mode 2. Branches of mode 1 emanate downward
but almost horizontally. Similarly to the case of £=0.7, branches of
mode 1 and of mode 2 are symmetric about p-A, plane and p-A, plane
respectively. Profiles of the highest waves look like those of £=0.7,
but the enclosed bubbles and the wave amplitude are larger than them.
We could not catch any secondary bifurcation. As r becomes larger,
the inclination of the branch of mode 1 becomes upward. And the simple
bifurcation point of mode 1 and mode 2 separate further from each
other. The enclosed bubbles and the wave amplitude of the highest
waves become larger. We see such changes continuously from Figure
6 for £=0.7 to Figure 8 for r=oco. These are major changes for £>0.7.

On the other hand, qualitatively different changes appear for £<<0.7.
The first is that there appears a turning point. The second is that the
secondary bifurcation branches emanate from the upper side or the lower
side of the branch of mode 2 when £>0.5 or £<0.5, respectively. The
third is that the wave of mode 1 changes its profile whether « is larger
than 1/m (m=1,2, ---) or not. Figure 9 shows the case of r£=0.55.
The secondary bifurcation branches also emanate from the upper side
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Figure 7. Bifurcation branches for k=2 of infinite depth.
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Figure 8. Bifurcation branches for x=co of infinite depth.

of the branch of mode 2. However, the bifurcation is superecritical and
there appears a turning point on secondary branches.

Figure 10 shows the case of double bifurcation of mode (1, 2), i.e.
£=0.5. In the upper side of the branches of mode 1, there is a turning
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Figure 9. Bifurcation branchesIfor £=0.55 of infinite depth.
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Figure 10. Bifurcation branches for £=V.5 of infinite depth.
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Figure 11. Bifurecation branches for £=0.45 of infinite depth.
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Figure 12. Profiles of waves which are bifurcations of mode 1.
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Figure 13

point. We remark the branches of mode 1 are transcritical. Figure 11
shows the case of £=0.45. The secondary branches emanate from the
lower side of the branch of mode 2. The branches of mode 1 have a
turning point. When £<0.45, the bifurcation diagram is similar to the
one of k=0.45. However, solutions of mode 1 change their profiles when
the value of £ crosses 1/m (m=1,2, ---), which corresponds to the double
bifurcation point of mode (1,m). In Figure 12, we show the variation
of wave profiles of the branch of mode 1 for various values of «. For
£ € (1/(m+1), 1/m], the waves of mode 1 have m dents. We remark that
all the bifurcation points are pitchforks or limit points except for Figure
10.

We now study the above results by mathematical means. Details
will be given in the following paper [15]. The basis of our theory is
O(2)-equivariance of the equation. To use O(2)-equivariance, which we
will state below, we need to take account of those waves whose Stokes
coefficients B; are not necessarily zero. Since we are now considering
general (4,, ---, By, ---), (10) is replaced by the following
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Figure 14
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Figure 15. Profile of overlapped wave.

X(€) =1+ 5 (4, cos(j§) + B, sinjé)],
(23) )
Y€)= 5 [~ 4, sine) + B, cos(s2)}.

We note that (6) is a periodic function of Re(w). This fact enables us
to define a natural action of O(2) on (A, A,, -+, By, B,, ---). To this
end we define an action of O(2) on w:

w—> w4+ cLa
(24) 2r

w—> W.

0<a<2r),

Here a€[0, 27) corresponds to the rotation in R* of angle @. The complex
conjugacy corresponds to the reflection with respect to the z-axis. This
action of O(2) defines the following action on (A,, A, «++, By, By, +++)

(A,, B,) — (4, cos(na)+ B, sin(na), —A, sin(na)+ B, cos(na)),

(25) { (Am Bn) - (An, _Bn)'

The above relation comes from (24) if we put V=0 in (6) and substitute
w with the right hand side of (24) (see also [15]). We now redefine F'
in (14). The modification is easy:
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(26) F(e,p: A, Ay -+, By, By, -+ )=(AF, Af, - -+, Bf, Bf, - -+),

where A* and B¥ are defined by (11, 12, 13) with (10) replaced by (23).
Then it is easy to check that F' is O(2)-equivariant with respect to (25).
By O(2)-equivariance, we mean that, if the replacement (25) occurs, then
the right hand side is transformed according to

(A¥, B¥) — (A¥ cos(na)+ B} sin(na), — A} sin(na)+ By cos(na)),
(A%, BY) — (A¥, —BJ).

This property enables us to simplify the bifurcation equation. The
simplification is due to [5, 6]. Figure 13 is borrowed from [5] and is a
picture of the bifurcation diagrams near the double bifurcation point of
mode (1, 2) which is drawn from the simplified bifurcation equation.
We notice that Figures 9, 10, 11 include Figure 13 as a subset. Ours
are, however, more complicated than Figure 13.
The key idea to explain these complicated phenomena is, as in [6, 12],
a degeneracy in the bifurcation equation. Figures 14a-14d are given in
[12] by an abstract theory of degenerate bifurcations. Let us compare
Figures 6, 9, 10 and 11 with Figures 14a, 14b, 14c and 14d, respectively.
Then we observe that the formers are subsets of the latters. This
difference does not imply inappropriateness of the theory. Instead,
the difference suggests necessity of further computations. The reason
is as follows: We computed Figures 6-11 by tracing the solutions until
they lose physical meaning. Namely, at the end points in each branch,
the wave profiles make contact points. This, however, does not imply
the ends of the diagrams. The equation (14) contains those solutions
which have self-intersections in the wave profiles (see Figure 15). Such
solutions are physically meaningless. But they have equally rigorous
meaning as solutions of (14). Therefore it will be worthwhile to continue
computing further.

We will show the results and compare again with Figure 14a-d below.
We would like to examine whether the branch of mode 1 or secondary
branch would join with mode 2 branch as in Figure 14. Figures 16a
and 16b are extended results of Figures 3-6 for £=0.7. After the
highest waves in Figures 3-5, they become self-intersecting waves and
the fluid regions are overlapped as shown in Figure 15. Namely they
are meaningless waves in a physical sense. Figures 16a-b show the
change of the wave profiles as we trace the secondary branch until we
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Figure 16a. Bifurcation diagram of mode 1 and 2 for x=0.7.

come back to wave of mode 2. All the lowest parts of self-intersecting
waves appear to have sharp corners, but they are actually smooth curves
as in the magnified figure within the dotted circle. In the bifurcation
diagram of Figure 16a, dotted curves indicate solutions which have self-
intersections. Figures 17-19 for £>0.5 also show that waves bifurcating
from the branch of mode 2 certainly connect with the branch of mode
2 again. Consequently Figures 16 and 17 are qualitatively the same as
Figure 14a, where there is no turning points. Figure 18 agrees qualita-
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Figure 16b. Profiles of bifurcation waves for £=0.7 of infinite depth.

tively with Figure 14b, where there are turning points. Figure 19 agrees
qualitatively with Figure 14c, which is the case of double bifurcation
point. The branch of mode 1 in Figure 20 is unfinished and the com-
putation is not sufficient so as to identify Figure 20 as Figure 14d.
However, by considering that joining point to the branch of mode 2
approaches to A,-axis as r decreases, it can be imagined that Figure 20
may have a joining point in g¢<0. In fact we caught no singular points
on the branch of mode 2 in ¢>0. Then we can regard that Figure 20
agrees qualitatively with Figure 14d, although a computational difficulty
prevent us from checking the existence of the joint.

Thus far, we have restricted our attention to the case of infinite
depth. We now consider the influence of the depth of the flow. We
assume that the bottom is the z-axis: {y=0}. Accordingly, the flow
region is {(x,¥); |x|<L/2, 0<y<H(x)}. We seek a complex potential
U+1V satisfying

U (i %, y> == Ezlw‘ (respectively),
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Figure 17. Bifurcation diagram of mode 1 and 2 for x=1.3.
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Figure 18

Figure 19

Figure 18. Bifurcation diagram of mode 1 and 2 for £=0.55.
Figure 19. Bifurcation diagram of mode 1 and 2 for £=0.5.
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Figure 20. Bifurcation diagram of mode 1 and 2 for £=0.45.
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V =constant on y=H(x) and y=0,

ldw ‘ +gy—TK=constant  on y=H(x).

We may normalize V=0 on y=H(zx). We put V=—a on y=0. The
constant a depends on the depth and the propagation speed ¢. Note
that @ is larger if the flow is deeper. The Stokes expansion (6) should
be modified so that w=U+1V=U—1a corresponds to z=x€ R. We put

(27) z=x+1y
_w & il 2im(tw—a) 2jra
== + ,El o] [A s1nh( S A >cosech< oL >
29n(iw—a)> 2jima ] t1L(A,+1B,)
B, h< h :
+1B; cos oL sec ( oL + o

By this ansatz we have the following parametrization of the free boundary

(oLl § (B (2T L2,
[k B el

By the same nondimensionalization as before, we have

‘;" cos(j&) + Ao,

@) XE)=¢+ 3 SEeoth(j) sine) +B,  YE)= 3

where v=2ra/(cL). The problem is to solve (8) with the parametrization
(28). Note that a new parameter v€ (0, o0) is now introduced. If we
allow v to be infinity, then (28) reduces to (7). Consequently, the flow
of infinite depth is included in the new problem. We also note that the
definition of F' in (14) should be modified, too. A¥ in (12) remains un-
changed. But B¥ should be defined by

pr=—1 coth(jv)<—d— (&), cos(jE)>= — L coth(u) (@ (&), j sin(je)).
T dé T

By this modification, we see that F' is commutative with the action of
0O(2), which is defined by
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Figure 21. Profiles of waves of almost maximum height for different depths.
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Figure 22. Bifurcation branches and profiles of solutions for £=4.0 and p=0.2.

(A,, B,) — (A, cos(na)+ B, tanh(ny)sin(na),
— A, coth(ny)sin(na) + B, cos(na)),
(Am Bn) — (Am '—Bn)

We will see how bifurcation structures change as the depth of fluid .
becomes shallower. Now we introduce a parameter p=exp(—2y). {1>0>0}
corresponds to {0<<v<oo}.

In Figure 21 we show profiles of pure capillary waves (namely the
case of r=o0) in four values of depth, 0=0.02, 0.05, 0.2 and 0.4. These
values of p correspond to the depth of 0.623L, 0.477L, 0.256 L and 0.146L,
respectively. For p<0.02, profiles of pure capillary waves are similar to
Kinnersley’s waves. For p>0.02, a depressed part of the wave touches
the bottom of fluid before the wave encloses a bubble.

Now we put p=0.2, then the depth of fluid is 0.256L. Figures 22-
26 show bifurcating solutions and diagrams near the double bifurcation
point of mode (1,2). Dotted curves in diagrams indicate solutions with
self-intersections as before. Dotted lines in wave profiles indicate mean
water level. Figure 22 shows the case of k=4.0. There is no secondary
bifurcations. The highest wave of mode 2 encloses two bubbles and just
touches the bottom of fluid. The highest wave of mode 1 does not
reach to enclose a bubble. Figure 23 shows the case of £=0.55. There
are two secondary bifurcations which emanate suberitically from the
upper part of the branch of mode 2 with no turning point and connects
again with the branch of mode 2. Figure 24 shows the case of £=0.45.
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Figure 23. Bifurcation branches and profiles of solutions for r—=0.55 and 0=0.2.
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Figure 24. Bifurcation branches and profiles of solutions for £=0.45 and p=0.2.
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Figure 25. Bifurcation branches and profiles of solutions for £=0.4 and p=0.2.



Figure 26.
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Bifurcation branches and profiles of solutions for £=0.32 and p=0.2.
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Each of the secondary branches has a turning point and it connects again
with the branch of mode 2. Figure 25 shows the case of double bifur-
cation point of mode (1,2) and £k=0.4. We could not extend the com-
putation until the branch of mode 1 meet that of mode 2 again. In
Figure 26, the case of £=0.32 is shown. Secondary bifurcations emanate
from the lower part of mode 2 branch.. The branches of mode 1 has
a turning point. ‘

As we have seen, Figure 21-26 are similar to the results of infinite
depth. As far as we can compute, we could not find any significant
change in bifureation structures by a change of the depth. All the free
surface of the highest waves in Figure 23-26 do not touch the bottom
of fluid. The reason why tracing of branches become hard does not
come from physical meaning. Rather, the difficulty lies -in the fact that
the matrix condition becomes worse in the Euler-Newton iteration.

§ 3. Results for the bifurcation of mode (1, 3).

In this section we show the results on the interaction of mode 1
and mode 3. We only show the results of infinite depth, since we could
not find any significant difference between those of finite depth and of
infinite depth. ’

We consider the case of m=1 and n=3. Let (&, ¢,) be the double
bifurcation point of mode (1,3). Then from (15), we have £,=1/3 and
2=4/3. By a perturbation of x from x, we see variety of bifurcation
structures near the double bifurcation point of mode (1,3). Each of
Figures 27-32 consists of three diagrams (i), (ii), (iii) and wave profiles
(iv). Figures (i~iii) are viewed from three different directions. (ii) is
a view from p-axis. (iii) is a view from Asaxis. We give profiles of
bifurcating solutions in (iv). Meaning of dotted part of bifurcation branch
is the same as in §2. Figure 27 shows the case of x=0.3<#, The
branches of mode 1 and mode 8 are bifurcating from trivial solution.
Difference from the bifurcation of mode (1,2) is that there exist another
branches located apart from them. Figure 28 is concerned with the case
of the double bifurcation point of mode (1, 3), from which four different
bifurcation branches are emanating. Figure 29 shows the case of £=0.35
>k,. Two secondary branches bifurcate from the branch of mode 3
transeritically. These two branches are symmetric about p-axis. Figures
30-32 show the results for larger k. When £=0.55, each secondary branch
crossing the branch of mode 3 extends to connect with the branch of
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Figure 27. Bifurcation diagram of mode 1 and 8 for #=0.3 of infinite depth.
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Figure 28. Bifurcation diagram of mode 1 and 3 for £=0.33 of infinite depth.
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Figure 29. Bifurcation diagram of mode 1 and 3 for x#=0.35 of infinite depth.
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Figure 30. Bifurcation diagram of mode 1 and 3 for £=0.55 of infinite depth.
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(i) (@iv)

Figure 31. Bifurcation diagram of mode 1 and 3 for £=0.7 of infinite depth.
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Figure 32. Bifurcation diagram of mode 1 and 3 for £=0.76 of infinite depth.
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mode 3 again as we can see in Figure 30. Namely the secondary branches
form closed loops. As x increases, emanating point and rejoining point
on the branch of mode 3 approach each other. When £=0.7, secondary
bifurcation point disappears and the closed loops do not have intersections
with the branch of mode 3 as shown in Figure 31. They are symmetric
about p-axis. As we increase &, such closed loops become smaller and
disappear (see Figure 32). These diagrams of Figures 30-32 are new
bifurcation structures we have discovered.

§4. Conclusions.

We use the Stokes expansion method due to Chen and Saffman ([1, 2]).
However, to make the bifurcation structures clear, we improved their
procedure in the following sense: The first is that bifurcation theory
given by [3,9] is applied by using equation (8’) instead of (8), and then
bifurcation diagrams are obtained. We showed that qualitative agree-
ment of the numerical results with the mathematical analysis is guaranteed
by considering not only ordinary solutions but also those which have
self-intersections. The structures of our results for mode (1,2) are new
examples for O(2)-equivariant systems in that a turning point appears
or disappears as one of bifurcation parameters changes. Such structures
have analyzed only theoretically in [12].

For the results of mode (1, 3), the phenomena such as shown in Figures
30-32 seem to be new. Although we do not present a mathematical
proof for the case of mode (1,3), we discuss it in a forthcoming paper
[15].

As a final remark, we mention some issues which are not treated
in this paper. Although some other methods are applicable, the Stokes
expansion method is useful and simple in the case of £>0.24 for infinite
depth by the reasons that numerical integrations are not necessary by
virtue of FFT method and that the Fréchet derivatives can be written
explicitly. However, many interesting phenomena for small «, especially
asymptotic behavior to the pure gravity waves, can hardly be obtained
by this method. Hogan ([7]) investigates such case by using the Padé
approximation. His result, however, seems not to cover all the phenomena.
There appears no qualitative differences between cases of finite and
infinite depth as far as we can simulate. It may be possible that
_interesting phenomena will occur in cases of shallower depth. We hope
to analyze such cases elsewhere.
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Finally we note that Euler-Newton’s iterations converge in 2~4

steps. We mainly compute by NEC PC-9801 and TOSBAC UX-700. We
give an example of CPU time: it needs about 1 day to obtain whole
branch of pure mode 2 for £=0.7 and v=c0 on NEC PC-9801 with a
numeric processor.
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