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Introduction

The study of the large time behavior of the solutions of dissipative
partial differential equations is a major problem of mathematical physics
directly related to the understanding of turbulence. In the simplest
regimes the orbits converge to a stationary solution while in turbulent
regimes the orbits wander around a global attractor. In the Smale-
Ruelle-Takens approach to turbulence, the chaotic behavior is explained
by the wandering of the orbits around the attractor which may be a
complicated set, possibly a fractal. Existence and properties of the
global attractor have been proved for many dissipative equations and
since the attractor is the natural object for describing turbulent flows,
its determination is a relevant problem. However the attractor A is
expected to be in general a complicated (fractal) set and a rigorous
determination is not possible or is of little use at this point. Our object
instead here is to derive partial informations on the attractor, namely
to localize it in some regions of the phase space and to approximate it.

A general presentation of the attractors for dissipative evolution
equations appears in the books by J. Hale [19] and R. Temam [14]. The
idea of approximating the global attractor by smooth manifolds has
emerged from the study of inertial manifolds and approximate inertial
manifolds. We recall (see [56]) that an inertial manifold (IM) is a smooth
finite dimensional manifold which attracts all orbits at an exponential
rate. When it exists such a manifold . necessarily contains the global
attractor. However the existence results for inertial manifolds (see [5]
and the references in Ch. VIII of [14]) rely on a restrictive spectral gap
condition not satisfied by all dissipative equations; in particular it is not
satisfied by the Navier-Stokes equations, even in space dimension 2.

As an alternative to inertial manifolds when such manifolds do not
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exist, or are not known to exist, it was proposed in [4] to consider
approximate inertial manifolds (AIMs). An AIM is a smooth finite
dimensional manifold which attracts all orbits in a thin neighborhood, in
particular this neighborhood contains the attractor 4. An AIM produces
an approximate finite dimensional dynamic and allows for a time uniform
approximation of the semigroup under consideration. Another utilization
of AIM’s, is the determination of new numerical methods called the
nonlinear Galerkin methods. The usual Galerkin method consists in
projecting the equation to be approximated on the linear space spanned
by the functions w,, ---,w, used in the Galerkin method. Nonlinear
Galerkin methods consist in projecting the equation to be approximated
on nonlinear smooth finite dimensional manifolds. For the large time
approximation of the equation, the approximate inertial manifolds are
good candidates for the construction of nonlinear Galerkin methods; and
indeed the method based on the AIM by Foias-Manley-Temam [4] has
proved to be superior to the usual Galerkin method (see [12], [16]).

While a few AIM’s were constructed in [4] and [15], our object here
is to present a methodology which produces an infinite sequence of AIM’s
producing higher and higher orders of accuracy. For the sake of simplicity
we restrict ourselves to the two-dimensional Navier-Stokes equations
(although the method is much more general (see Marion [20])). The
existence of the attractor for these equations was shown in [6] and
further properties derived in [1], [2] and [8]. Our approximation and
localization procedure consists in determining simple finite dimensional
manifolds which attract all the orbits in a thin neighborhood; in particular
the global attractor A lies in such a neighborhood. Actually we deter-
mine an infinite number of such manifolds producing thinner and thinner
neighborhoods as it will appear below. The utilization of these manifolds
for the approximation of turbulent flows is considered elsewhere: see in
particular in [11] the study of convergence of new nonlinear Galerkin
methods derived from these approximations and in [12] and [16] numerical
tests for these methods. :

A partial form of the results appearing here was presented in [15];
related results for other equations appear in [9] and [10]; see also. the
comments in Remark 3.1 hereafter.

In this article we start in Section 1 by recalling a few facts about the
Navier-Stokes equations. Also we write the velocity » as the sum p,.+¢n
corresponding to the first m modes and the other modes and we write
the coupled system of equations for p, and ¢,. Then in Section 2 we
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describe the principle of the construction of the approximations. In
fact we restrict ourselves to one single orbit and show how one can
approximate such orbit at higher and higher order of accuracy with
simpler orbits lying in finite-dimensional manifolds. Section 3 contains the
main results: approximations of an orbit by simpler orbits lying in a
finite dimensional manifold; and localization of the attractor A for the
Navier-Stokes equations in a thin neighborhood of such manifolds. The
manifolds have an equation of the form

Q.v=0(P,v)

where ¢=9,,; maps P,H into Q,H; P, is the projector in H onto the
space P,H spanned by the first m eigenmodes and @,=I—P,. Finally
Section 4 contains the detailed proof of a technical result admitted
without proof in Section 2. This section contains also our approximation
procedure for time derivatives.

Contents

Projection of the equations: behavior of small eddies
Principle of the construction of the approximations
Approximation of the attractor

Approximation of time derivatives.

el .

1. Projection of the equations: Behavior of small eddies

We first recall a few facts about the Navier-Stokes equations. In
their functional setting the Navier-Stokes equations appear as a dif-
ferential equation in an infinite dimensional Hilbert space H:

du

(L1) Ctudut Bu) =,

(1.2) %(0) =u,.

Here u=wu(t) is a function from [0, +oo[ into H, representing the velocity
vector field; v >0 is the kinematic viscosity, f€ H represents volume
forces. The operator A is an unbounded positive self-adjoint closed
operator in H with domain D(A)cCH and its inverse A~ is compact in
H; finally B(u)=B(u,u) where B is a bilinear continuous operator from
D(A)xD(A) into H, which satisfies further continuity properties recalled
below.
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We denote by (-, -) and |-| the scalar product and the norm in H.
We know that we can define the powers A* of A for all s€ R, and A,
maps D(A’) onto H; |A*-| is a Hilbert norm on D(A4%). We set V=D(A4)
and denote the norm and the scalar product in V by |-, ((-, -)).

Since A~ is self-adjoint compact in H, there exists an orthonormal

" basis of H consisting of the eigenvectors w; of A:

(1.3) { Awm :memy m Z 1’
0</<<- -, An—00 as m—>co,

Equation (1.1) is the evolution equation for the velocity u for a
viscous incompressible fluid in a bounded domain; depending on the choice
of A and H, the boundary conditions are the no-slip condition, or a free
boundary condition, or the space periodicity.

In space dimension 2, it is well-known that for w, given in D(A'?),
(1.1), (1.2) possess a unique solution % bounded from [0, o[ into D(AY%);
see [7], [8]. Furthermore u is analytic from 10, oof into D(A); the domain
of analyticity of % in the complex plan C comprises the region A(||u,||)
defined by

(14)  A(|uol)={C€C, Re >0, [Im{|<T, if Re{>T, and
|Im {|<Re ¢ if Re (<T};
here T,=T,(||u,|]) is a bounded increasing function of v»7', |f|, 47' and

l|uoll; see [13]. If u is a solution of (1.1), (1.2), then we set for t,>0
arbitrary®

(1.5) My(ts) = Sup |u(s)|. Mi(ts)= Sup [u(s)].

8>ty

Finally, let us recall some well-known continuity properties of the
operator B that will be repeatedly used: there exist absolute constants
¢, ¢;, such that for every u,v, wé€ D(A):

R | e | e P
| [ Au |||

(1.7) | (Blw, v), w) [<eolw [l [l 0] | [*[|w]]".

(L6) | Blu, v) [scl{

1) In the applications the time t, can be either t4=0, in which case M, M; depend on
#o. Or ty can be a time large enough, after the entrance of the orbit in the absorbing
set, in which case My, M; are independent of u,; explicit values of Moy, M; in term of the
other data are given in [4].
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Like ¢, ¢, all the quantities ¢;, ¢/ that will appear subsequently are absolute
constants. We recall also that

(18) | Blu, v)|<cullul 0] {1+1og szll; }’ vu, v€ D(A),
(19) (B(u, v),v)=0, Vu, v€D(4). []

In the following we consider for m € N fixed, the space spanned by
w,, -+, w, and we denote by P, the orthogonal projector in H onto this
space, and Q,=I—P,. We recall that P, and @, are also orthogonal
projectors in all the spaces D(A®) and that they commute with A and
its powers. When u is solution of (1.1), (1.2) we write p,=P,u, ¢.=@Q.%
and projecting (1.1) on P,H and Q,H we find a coupled system of equa-
tions satisfied by p. and q.:

(1.10) %+uApm+PmB(pm+qm>=me,
(L11) %—i—qum-l-QmB(pm+qm)=me.
It is clear that p, which corresponds to the eigenfrequencies A7, - - -, 4;}

represents large structures in the flow, while gq,, corresponding to the
eigenfrequencies <2,}, represents the small structures. At this point
the choice of m is arbitrary; a desirable value of m will be determined
by the a priori estimate on the attractor established hereafter.

Some a priori estimates on ¢, valid for large ¢, were derived in [4].
They show that the norms of ¢, in H and V (and other norms too) are
small for large ¢ and large m. More precisely let us consider initial data
u, in (1.2) satisfying

(1.12) |u| <Ry, [thol| <R

Then we know that there exists a time ¢, which depends on R, R, and
the other data v, |f|, 4, such that for t>t,

(1.13) lu(t) <M, [lu(®) <M,

where M,, M, are independent of w, but depend on v, |f|, 4. Now accord-
ing to [4], for any orbit of (1.1), after a time ¢, which depends only on
v,|f], 4 and on u, through R,, ¢, is small in the following sense
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(L14) | qa(t)|<k L5, [ qu(t)]| <waL6"2, | Aqa(t)|<r L', Vt>t,.

Here r, depends only on v, |f], 2, and

(1.15) d=-H_  L=1+logtns,

m41 A
For later purposes it is noteworthy that the estimates (1.14) are valid
for complex times too, for example for ¢ €t,+4(M,) (and «, appropriate).
Then by a simple application of Cauchy’s formula we find similar esti-
mates for all the time derivatives of ¢, in a domain of C slightly smaller
than 4(R,). For instance

d’qn ’ 1 1 dq " diq
t)| <k, L', m (¢ Lot m T2
= (1) < e ()| <ro L, | AL ()| <k L,

(1.16) ‘

for all >1 and for all ¢ in

(1.17) t1+§<To<Ml)+A<MI>>;

K,,; i8S an appropriate constant depending on v, |f]|, 4, and j.

2. Principle of the construction of the approximations

In this section we shall consider various approximations of one single
orbit, u=wu(t) solution of (1.1), (1.2). Then in Section 3 we shall see how
this induces localizations and approximations of the attractor.

We consider the orbit w=wu(t) solution of (1.1), (1.2) that corresponds
to a specific initial value u, satisfying (1.12). The integer m in (1.10),
(1.11) is fixed and arbitrary. Hence whenever this is possible we shall
omit the index m; for example we write p? and ¢ instead of p, and g¢,,
and P=P,, Q=Q,.

Our first aim is to construct two families of functions ¢, ;=¢.;(t),
@i =¢h ;(t), 7>0, m>0, which represent suitable approximations of ¢.
and diq,/dt".

For 7=0,1, 2, we set

(2.1) Pm =0,

2) p should not be confused with the pressure which does not appear at all in this
article.
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(22) VASDm.l +Q,.B(Pm) :mey
(2.3) VAPt QuB(Ont Pm1) =Qunf.

The determination of ¢, ¢.. from (2.2), (2.3) is obvious (and reduces
to the inversion of A). Then for j>3

(2-4) VASDm,j+QmB(pm+§0m,j—1) +90:n,j—2:me'

As in (2.2), (2.3), (2.4) determines explicitly ¢, ; (with the inversion of A)
once ¢ ;_, is known. The construction of ¢, ;_. is involved and will be
done in Section 4. At this point we admit the following result shown in
Section 4:

(2.5) lA[goin‘,-(t)— d;tm (t)]]gx;aﬂmmﬂ”, Vi>0, V>t

where «! is a constant depending on the data v,|f|, 4, B;; and we prove
the following

LEMMA 2.1. For every j>0, there ewists a constant k5 depending
only on 3,v,|f|, 4, R, such that, for t>t;:

(2.6) | A(@nm,i(t) — qu(t)) |< ;07 LHE,

ProOF. As indicated before we omit the index m; thus ¢;=¢,,;
q=qn.
For =0, (2.6) follows readily from (1.14). Then for j=1,

vAg,+QB(p)=Qf
and we rewrite (1.11) as
(2.7) ¢’ +vAq+QB(p+q)=@Qf.
Thus by difference

vA(p;—q)=QB(p+q)—QB(p)+¢
=QB(p, q)+QB(q, p+4q)+¢'.

Thanks to (1.16) written with j=1
(2.8) |q' | < koL,

Here and after, £ denotes an unspecified constant «; depending on v, | f|, 4,
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and R,, and ¢ denotes an absolute constant. Using Lemma 2.2 below
and (1.13):

(2.9) | B(p, 9)1+|B(g, p+q) |[<cL"|plllgl +clq["*| Aq["*||p+q].
Since p+q=u and since P, Q are projectors in V=D(A"%):

210 {n<p+q>(t>||=uu(t)nle,
”p(t>”£”u(t)”£M1, for t>t,.
Hence with (1.14) and since L>1:
(2.11) | B(p, q) |+|B(g, p+q) |<cM,L'"(1+4 L'?)5'*
<eM,Lo".

Collecting these inequalities we obtain (2.6) for j=1:
(2.12) | A(p,—q) [£36*2L.

A (similar) proof is necessary for 7=2 and then we shall proceed by
induection for all 7>2.
Subtracting (2.7) from (2.3) we obtain

(2.18) vA(p:—q)=QB(p+q)—QB(p+¢.) +q’
=QB(p+¢1, q—¢.) +QB(g—¢:, p+9q)+¢'.
We use (2.-8) and, for the terms involving B we proceed as in (2.9)-(2.11):
| B(p, q—¢1) |<cL"*|pllllg— ¢l
| Bl q—o1) |<cl o ['*|Ap, ']l — o]
| B(g—¢1, p+q) [<clqg—@: | Alg— 1) [l p+4ll

<cMiq—¢: %] A(q — 1) 2,
We recall that

(2.14) [EISAEIEN <A AEL, VEE€QnD(A),

and thanks to (2.12) and the previous inequalities, we infer from (2.13)
that

(2.15) | A(py—q) | <KOL.

We now proceed by induction and assume that (2.6) is valid for the
indices 0, ---,7—1 and we want to prove it at order j (j>8). We
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subtract (2.7) from (2.4)
(2.16)  vA(p;—q)=QB(P+q)—QB(®+9¢;-1)+q —¢i-

:QB(p'l'SDj—h q—¢j—1)+QB(q—§Dj—1y p+q) +q/—§D§'—2-
The term ¢'—¢}_, is estimated by (2.5) and (2.14):

|0 — bl < Ahae) 9 LI
< KOIRLIEI L R HI,
The terms involving B are estimated as before, using Lemma 2.2:
| B(p, ¢ — ;1) | <cLY|plllg — @soall <e L' M, [lg — ¢l
| B(¢;-1, a—;-1) |< |94 2| A@;_1 [*llg — @il

| Blg—¢@i_1, p+q) |<clg—oia [T Alg—o;-) [l +4ll
<eM\q—o;. " Alg—e;-) [

We use (2.6) at order j—1 and (2.14); we observe also that since dL=
6(1—log 0)<1 for 6<1:

| Ag,|<|Agq|+]Alp;—a)|
<L g LIRS gL,

Collecting all the terms we find, as expected, that | A(¢;—q)| is bounded
for t>t, by an expression xd/?L**2 T[]

We now prove as announced the
LEMMA 2.2

cl§1| AL )l VE€ QuD(A), VneV,

2.17 B 7)<
@17  |BE¢ ’7>'<{03L1ﬂ||s||||nu, vee PD(A), Ve V.

Proor. The first inequality (2.17) is a particular case of the second
inequality (1.6). For the second inequality (2.17) we use (1.8) and observe
that

AE |2 Zm 1

1+log l <l+4log i+t =1,
A|E1 A

since

(2.18) |AE|<ALIEI<A.6],  VEEP,H.

REMARK 2.1. We postpone till Section 4 the construction very technical
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of the ¢, ; satisfying (2.5). We shall find these quantities expressed as
analytic functions of p,, more precisely polynomial type functions®.

The general idea behind the construction of the ¢, ; is the following.
Thanks to (1.1), w'=du/dt is a polynomial type function of . Similarly
by successive differentiations of (1.1) we find that all time derivatives
of u are also polynomial functions of u. Then (1.11) gives ¢/ in terms
of p, and ¢, and we are able to approximately express g, as a poly-
nomial type function of p,, at higher and higher orders of accuracy;
first with (2.2), (2.3) and then with more involved expressions.

3. Approximation of the Attractor

As indicated in Remark 2.1 we postpone to Section 4 the construction
of the ¢ ;. At this point we want to show how the results of Section 2
lead to the construction of approximations of the attractor.

We recall (see C. Foias and R. Temam [6]) that equation (1.1)
possesses a global attractor AcCH (also called the universal or maximal
attractor). This attractor A is compact, connected and attracts all the
orbits, all the bounded sets. It is invariant under the flow S(¢), i.e.

(3.1) St) A=A Vi >0,
where S(t) is the mapping
u(0)=u, € H—u(t)€ H,

w=u(-) being the solution of (1.1), (1.2) (see R. Temam [13]).

The attractor A which is expected to be in general a complicated
(fractal) set, is the mathematical object describing all the permanent
regimes, in particular the turbulent ones. It is important for computa-
tional and theoretical purposes to be able to approximate it.

We recall that if u, € A then u, belongs to a complete orbit, i.e.
ux=u(0) where u=wu(t) is a solution of (1.1) defined on the whole real
axis, t€ R. Since A is compact (in H and V), we can set

M,= Sup | ux|, M,= Sup ll 4]l
us€l PR

Then for any orbit u=wu(t) lying on A, u is an analytic function of ¢t € C,

3) By this we mean here (in infinite dimension) finite sums of multilinear functions of
Pm-
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for |Im t|<T(M,).
As it will appear from the construction of ¢}, ; in Section 4, any ¢, ;
is a function of ¢ through p,(f):

Som‘i(t) :(Dm,i(pnv.(t))

or dropping the indices m as mentioned before
(3.2) @;(t) =,(p(t)),

where @, maps P,D(A) into Q.D(A).

As indicated above any point uy € A is of the form uy=wu(0), where
u(-) is solution of (1.1) for all ¢. Thus with a time shift of —t,, we see
that (2.6) applies:

| A(@m,i(0) —qn(0)) |<k5072LH2
or

(3.3) | AD,. (P (0)) — Aqa(0) | < R32LI*,
Alternatively, dropping any reference to time, we have on the attractor
(84) | AD, ;(Putty) — AQuuy |<EWPLINE, V>0, Vi, Vuy € .

With (2.14) this readily implies

Qijm —Q. S gaj/2+1Lj/2+1/2
(3.5) {| i (Prths) — Quus | <k

D5 (Prth) — Qs | <3071 LI,

Vi>0, Ym, Yus € A.
In conclusion we have proved the following results

THEOREM 3.1. Let u be any solution of (1.1), (1.2) satisfying (1.12).

Then there exists t, depending on v, |f|, 4 and R, and for every
3=>0 there exists £} depending on v, |f|, 4, R, and j, such that the follow-
ing holds: for every m € N, there exists a function

(3.6) ®,,;: P,DA) — Q.D(A),
such that
: | D, (Pru(t)) — Quu(t) | < k50917 LiP*12
(3.7) @, i (Pr(t)) — Quu(t) | <kjoiPHHELAIE,
| AD,, ;(Pau(t)) — Quu(t) | < £50FLAIH2,
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vi<0, ym>0, vi>t". []
Alternatively we have

THEOREM 3.2. Let A denote the global attractor for (1.1).
For every m,j€ N, there exists a function

(3.8) D,.,;: P.D(A) — Q.D(A)?

such that
| Do, i( Prths) — @ity | K 5G7EH L2,
(3.9) 1D i(Prths) — Qe || < £30912FHEL 312112
| AD,, ;(Putts) — AQ iy | < K2FIPLITHE,

uy € A, ¥m, 3, where r; depends on v, |f|, 4 and j but mot on m. Also

o=

b L=1+logtus,
m1 A

REMARK 38.1. (i) The graph of the function @, ; is an analytic
manifold M;= M., ; (whose explicit equation follows from the explicit
expression of ¢;). Theorem 3.2 asserts that the attractor A lies in a
neighborhood of M; of thickness (in H, V or D(A)) given by the right-
hand side of (3.9). Also, by Theorem 3.1 any orbit enters this neighbor-
hood in a finite time. Hence Theorem 3.2 is a localization theorem for
the attractor A.

(ii) Since the constants x) are independent of m, we can make the
right-hand side of (3.9) (or (3.7)) arbitrarily small by increasing m.
Hence by increasing the dimension (m) of the manifold M;= M., we
can make the neighborhood mentioned above arbitrarily thin.

(iii) For j and j/ given, j<j’, and for m sufficiently large, A is
closer from M/ than from M, However since we are not able to
compare 5, £%, we are not certain, for j, 5/, m given, j<j/, that A is
closer from ; than from ;.

(iv) The manifolds M;= M, ; are approximate inertial manifolds
for the Navier-Stokes equations. For inertial manifolds see for instance
[61[14] [17] and the references therein. For approximate inertial mani-

4) t2=t1+%Tu(M1), see (1.17); and of course M; depends only on v,|f], 4.

5) The same as in (3.6).
6) Here R,=M, is a function of v,|f|, 4;; see [14].
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folds see [4]; see also in [18] a totally different aspect of the approxi-
mation of inertial manifolds.

4. Approximation of time derivatives

Our aim is now to construct the functions ¢} used in Section 2, and
satisfying (2.5). At the same time we must define two families =P, i»
Ji=di, ;, where the ¢ ; approximate in some sense d'g./dt’, while the
¢} approximate d'p,/dt'.

At the step j, i.e. when we want to determine ¢, ; from (2.4) (7>3),
we construct the sequence

(4.1) ¢f,-._1—2iy 1=0, - - -, [(.7._1)/2]
for increasing values of 4, and then the sequence
(42) ¢;:—21'9 ?::[(.7"’!'1)/2], ct ey, 1, 07

in decreasing order of i. Of course at that stage, the similar sequences
with j replaced by k<j—1 are already defined. If ¢=0,

(4.3) 5-1=D, ¥J
while
(4.4) Pi=9;

which will be determined from (2.4) after ¢};_, is found (¢=1 here). For
convenience we agree also that

(4.5) ooy =¢;=0, Vk.

The sequence (3.1) is determined by the following recursive formula:

(4.6) ;t:ls—z@"*'VAS/)?—x-zi'i‘ kZ=)D< Z)PB(¢?—1—2k+¢§—1—zky Slf';‘:lf—zwmc +§0§':l{—2i+2k)

:{Pf, for 1=0
0, for >1.

Note that (4.6) gives ¢ifi_,; explicitly and that all the necessary quanti-
ties are known when we compute ¢it; ,; (¢=0, ---,[(7—1)/2]). The ex-
pression A¢j_;_,; makes sense since ¢j_;_,; belongs to the finite dimensional
space P,H.
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Since ¢;*' is intended to be some approximation of di*'p/d¢+ for
large ¢, relation (4.6) ought to be compared to relation (1.10) and the
relation obtained by differentiating (1.10) 7 times; i.e. using Leibnitz
formula:

dit p dp i d* di-*
4.7
D g At ¥< ) <dt" 0. = (p+q))
:{Pf, for i=0
0, for >1.

The difference between (4.6) and (4.7) is the replacement of d*p/dt* and
d*q/dt* by ¢* and ¢! with appropriate values of s.

Similarly, by differentiating (1 10) ¢+ times we obtain an analog of
(4.7):

dH—l d q 1 ’l; dk(p+q) di_k
4.8
( ) dtitt + dt' + ; <k>QB< dt* 4 dti—* (p+Q)>
_ { Qf, for =0,
0, for i>1.

Once the sequence (4.1) is determined we construct the sequence (4.2)
by decreasing order of the index 7. We start from (4.5) and then we
write

k
(4-9) VA§D§—2i+90§t;—2i+ 2,( )QB( —1- 2k+§03 1-2ks 9[’] 1— 2z+2k+$0;, - 21+2k)

:{Qf, for =0,
0, for >1.

Relations (4.9) allow us to determine ¢} , € QD(A) (by inverting A).
Note that all the necessary quantities are known when we determine
@i they have been computed either at the step j—1, or at the step j
during the determination of the sequence (4.1); finally ¢;*; ,; has been
determined at the step 7, at the previous value of ¢ since we consider
decreasing values of 7. Of course (4.9) simply mimics (4.8).

REMARK 4.1. A perusal of the construction above of the ¢}, ¢}, shows
that these are all polynomial type functions of p=p, (i.e. finite sums
of multilinear continuous functions of p). []

We now proceed with the proof of (2.5). More generally we shall
prove by induction the following estimates.
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LEMMA 4.1. For every j>0, there exist constants r}; depending only
on j,v,|f|, 4 and R, such that, for every m and every t>t,:

dip

(4.10) —a

Pl =20 <mprrLEnE, 0<i<[(i-1)/2)

(@1 |Agiult —A%%?—(t) | <mpr L, 0<i<[(+1)/2)

ProoF. We first notice that due to (2.14), (2.18), relations (4.10),
(4.11) imply similar inequalities with the other norms of H, V, D(A); i.e.
changing the name of the constants

(4.12) ‘Sbj—l—zl'— ZZ’) "Sx}afIZ—i+1/2Lj/2+1[2
Adi i —A ZZ’ ‘ < glgirmiLie
i diq 18j/2+1—i T §j2+1/2—i
(4.13) i <kl L )
i d'q 159121 2= [ ij2+1j2—i
(pj—zi—W <kj0 .
Also, since
(4.14) oL R L ¢,

for 1<(5+1)/2, the relations similar to (4.11), (4.13) hold for the ¢;; in
particular”

(4.15) ‘

PR 1 P

The proof of (4.10), (4.11) (and its consequences (4.12)-(4.15)) will
be done by induction. The induction on 5 and ¢ proceeds in the same
order as the determination of the ¢i_, ,, ¢i ;: increasing values of j and,
for fixed j, increasing values of ¢ for the ¢i_,_,; and then decreasing
values of 7 for the ¢i_,. ‘

For j=1, 1=0 and (4.11), (4.12) are obvious because of (4.3), (4.5).
Then assuming that relation (4.10) have been proved up to order 7—1,
we want to prove them at order j. As indicated before we proceed by

T) Compare to (4.13) with j replaced by j—1.
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induction on % in the order indicated above.

Thanks to (4.3), relation (4.10) is obvious for ¢=0. Assuming that
relations (4.10) are proved up to order %, we now prove them at order
1+1. For that purpose we subtract (4.7) from (4.6):

dc’+1p

| =

Agiyy— ALP

4.16 A si— _
( ) J 2 dt'

+ ;< >’B(/’; 1- 2k+§0, 1—2k» 911, 1- 21+2k+€01 1- z.+2k)

dl

T ,,('p+q)>|

d*
(g
g P19
Thanks to the induction assumption and (4.12):
(4.17) ‘A(/)}i_lﬂgi—A;Z;? ‘Sxailz—iLj/2+1/2.

Then using the bilinearity of B, the induction hypotheses and Lemma
2.2 we bound the difference of the B-terms by the sum from k=0 to ¢
of quantities of the form:

k
(418) kL'? S[), 1-2 dtk ""IC QDJ 1-2k ;lti]
k kpy |1/2
+x SDI;—l—zk dt" —1-2k A%t%

As in (4.17), all these terms are bounded by the appropriate powers of
0 and L that are necessary for (4.10) (we use also (4.14)).

Then we continue with (4.11) and proceed by decreasing induction
on 1. For i=[(j+1)/2], 7—2i=0 or —1, pi=¢>,=0 and (4.11) reduces to

|A |</cL"2 it j=2l, i=1,

(4.19) .

Lm0t =24l i=l4L

|A

In both cases this follows readily from the third inequality (1.16).
Assuming now that (4.11) has been proved for :=[(j+1)/2], - - -, +1,
we want to prove it at order 7. We subtract (4.8) from (4.9) and find
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diq

Api_y—A—
Prn T g

g_l_ | goi“ di+1q
)]

j—2-2i W

+l- i < v ),B(¢?-1—2k+ﬁ0?—1—2m ¢§:f—2i+2k+¢§:;‘—2i+2k)
y k=o\k

i—k

—B(g; (p+4q), d (p+q)>|-

dti—k
By the induction hypothesis and (4.13)

< kO

(4.20) ' oith di*'q

J-2-2T dtitt

< RISzt

Then using the bilinearity of B, the induction hypotheses and Lemma
2.2, we bound the difference of the B-terms by the sum from k=0 to
i of quantities of the form (4.18). They are all bounded by

PrEEARTElY Rl KOIZF] 12k
The worse (largest) terms are obtained for k=u:
(ORI G124y ,Cajlz-iLj/z—i’
and they are both bounded by the desired expression, namely
P kel sl
The proof is complete. []

REMARK 4.2. We can observe, as we did in Section 3 that ¢j_;_.,
¢_s; depend on t through p(t)=p.(t):

D1 ai(t) =T 1u(p(t)),
gD;:_gg(t) =@;—21(p(t))'
Here ¥i_,_,; and d);:—z.' are polynomial type functions of p, mapping PnH
into @.D(A).
Furthermore we can reinterpret (4.10)-(4.13) as approximation results

for the time derivatives of p=p.(t) and ¢=g¢.(t) and these results com-
plete those in Section 3.
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