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By Ekkehard WAGENFUHRER

Abstract. A system of n linear differential equations zy’(x)=x—B(x)y(x) is
considered, in which s is a positive integer and B(x) is a formal power series.
In a preceding paper [6] the author has developed a method for evaluating a
formal fundamental matrix solution to the system. This method leads to the
algebraic treatment of certain singular matrix pencils. In the present paper
the author provides some transformation algorithms for singular matrix pencils
which are used in all parts of the method for constructing the formal funda-
mental matrix solution.

Introduction.
Let an n by n system of formal linear differential equations

xy'(x) =2~ B(x)y(x)

be given, in which s is a positive integer and B(x) a formal power series
in . The problem is how to calculate a formal fundamental matrix
solution of the form Y(x)=H(x)z'e*”. Here the exponent Q(x) is a
diagonal matrix containing polynomials in negative fractional powers of
x, J is a constant Jordan matrix commuting with Q(z), and H(x) is a
formal power series in a positive fractional power of z. In a preceding
paper [6] the author has developed the theoretical foundations for a new
method by which a formal fundamental solution is computed by columns
In the first step of this method the exponential part is determined.
After this, the problem can be reduced to the computation of single
formal logarithmic solutions as treated in the author’s paper [56]. Both
parts of this method are based on the algebraic treatment of certain
matrices A{’(4) containing the leading coefficients of B(x) and a linear
complex parameter.

The fundamental properties of matrices which are polynomials in 2
can be read from their Smith’s canonical form as it is done in the paper
[6]. In fact, Smith’s canonical form can algorithmically be evaluated —
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see [1], for instance—. From a practical point of view, however, the
evaluation of Smith’s canonical form is not recommendable because the
canonical form as well as the corresponding transformation matrices
contain polynomials of higher degree: this will lead to severe storage
requirements. As the parameter 2 occurs only linearly, the A{’(2) are
so-called singular matrix pencils which can be transformed into Kronecker’s
canonical form by means of an algorithm developed by van Dooren [4].
We will be contented with some weaker properties than Kronecker’s
canonical form.

In Section 1 we report on some present results concerning the
exponential part in the formal fundamental solution: it turns out that
we need the defect numbers and generalized characteristic polynomials
of the A{’(2). In Section 2 we provide the algorithm announced by which
the defect numbers and characteristic polynomials can be determined.
As compared with van Dooren [4], we introduce two modifications. First
we use rational transformation matrices instead of unitary ones, because
we intend to realize the algorithm by a computer algebra system.
Secondly, whenever we have constructed a transformation of an A{’(2)
we want to use this result for a transformation of the subsequent A{)}.(4):
this is desirable with regard to the large size of the matrices. On the
other hand, the latter modifications give rise to weaker structures of the
transformed matrices than obtained by van Dooren’s method. We will
call these structures “property (C)” and “property (R)” suggesting the
words “columns” and “rows”, respectively.

Section 8 is devoted to the computation of the formal logarithmic part
in the formal fundamental solution. We refer to a constructional method
presented in the author’s paper [5]. This method is based on an appro-
priate treatment of certain systems of linear homogeneous algebraic
equations the coefficient matrices of which are derived from the A{(2).
Here we describe the method in a formally simplified way by considering
polynomial identities instead of using augmented coefficient matrices.
The main subject of this section, however, is the practical treatment of
the linear algebraic systems. It turns out that the transformations from
Section 2 are very useful for the evaluation both of the formal mono-
dromy J and of the power series coefficients of H(x).

1. A surview on former results.

The system considered has the form
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(L) oy (@) =2 % +*B. Ju(@).
v=0
where s€ N,, the B, are constant » by n-matrices. The formal funda-
mental matrix to be determined has the form
Y (x) =H(x)x e,

where with a certain integer p€ N,

Q((l/’) = diag(ql(x)r ) q,.(x)), qk(x) = :Z::l ak,u/px_”lp’

(1.2) J a constant m by mn-Jordan matrix commuting
with @, H(x) a formal power series in z'?.

The matrices A{’(2) (re{0,1, ---,s}, m€ N) are defined in the following
way—where I is the n by = identity¥fmatrix, 2 is a complex parameter—:

B,
B, B,

NN, 0

B,_ ,——ZI

AD@)= \\\

(1.3) do = min{dim JUAD(2) : 2€C}  (MEN), d:=0,

B,

For r€{0,1, - - -, s}gwe define

where the symbol J! denotes the null-space, and further

(1.4) x4 (4) :=greatest common divisor of all subdeterminants
of the order (m+1)n—dy’ in A{’(2) (méE N).
X(r)( ) _1

For each r the sequence of the df’ (mé€& NU{—1}) has the following
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behaviour—see [2] and [5]:
(1.6) LEMMA. There exists a unique N,€ NU{—1} such that
V<N, d9<dLy Ym=N, dP=di=:do.
There are the a priori estimates
N.£(s—7rmn—1, d"<(s—7)n.

In the case r>0, the polynomials x{’(2) for m=N, and N,, serve
for the evaluation of the coefficients a,,, in the ¢, from (1.2). The basic
result is comprehended in the following theorem proved by Schifke and
Volkmer [3]:

(1.6) THEOREM. Let re{l, ---,s} be given. Then for all m=N,
27 (2) = A () [ (4)
18 a polynomial independent of m. Further
deg y"=#{kec{l, ---, n}: 0g,<7}.

The zeros of %™ are

—-l-a,c,, for those q, with 0q,<Zr.
r

Here dq, denotes the maximal rational index ¢ with ¢,,#0, or
0¢,:=0 if ¢,=0. The theorem remains valid for any rational r=p/p
with p, p€N,, r<s, and for systems (1.1) containing a power series in
x''*. For the definition of ' in those cases, we change the variable x
into ¢ with t*=2 and consider the polynomial ¥* corresponding to the
transformed differential system: then we define x"(1) :=3%“(pd). It
turns out that this definition is independent of the p chosen.

Theorem (1.6) is employed for a stepwise evaluation of all g,’s.
Suppose there is 0<r€ Q such that all coefficients «,,, r<o<s, of a g,
are known. Then «,, i3 determined by Theorem (1.6) applied to the
system
(L.7) o' (@)=(27 ¥ 2°B,+ = aa,,,,,x—vl>w(x),
see [6], Section 1. It is important for practice that the denominators p
in the fractional powers of x are as small as possible. Otherwise, the
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matrices A{’(2) occurring become too large. In [6], Section 3 the author
deseribes an algorithm which has the purpose that each g, is represented
with a minimal p dependent on the ¢, considered.

The matrices A (4) are responsible for the formal logarithmic part
in (1.2), namely J and H(x). A preliminary result concerning the poly-
nomial ¥ has been proved in [6]:

(1.8) THEOREM. For all m=N,
210(2) :=xmh(A) 2w (241)
18 a polynomial independent of m. Further,
deg y=#{kec{l,2, ---, n}: q,=0}.

The zeros of x® modulo Z are the diagonal elements of J in the columns
corresponding to q,=0 n Q.

The definition of % is extended to systems (1.1) with a formal
power series in z'? (p€ N,) as it has been done for the x', »>0. Let
g be a polynomial in a negative fractional power of . Then Theorem
(1.8), applied to the system
(1.9) o (x) :(x" 5 va,,—~xdiq(x)I)w(x),

v=0 X
can serve for a test whether ¢ occurs as a ¢, in Q@ or not, and is used
in the algorithm for the minimal choices of p.

2. Singular matrix pencils.

Let A and C be some rectangular » by m matrices with complex
coefficients, n» and m being arbitrary positive integers at the moment.
Then the family (A—2C);. is called a singular matrix pencil. For each
A fixed, A—AC corresponds to a linear map from C™ into C* and the
transposed matrix (A—2C)t to a linear map from C" into C™. We define

d=d(A, C) :=min{dim J1(A—21C): 1€ C},
d=d(A, C) :=min{dim J1((A—21C)"): 1€ C},

where Jl denotes the null-space (kernel) of a linear map. Obviously,
d=d+(n—m). Further we introduce
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x(4)=2(4, C; 2) :=greatest common divisor of all (m—d)X (m—d)—
subdeterminants of A—C.

The basic property of y is that for any A,cC

With a view to block decompositions it also makes sense to admit =0
or m=0. In the case n=0, for instance, we set d=m, d=0, x(A)=1.
In the following lemma, which quotes a well-known result, n and m are
positive:

(2.1) LEMMA. Let P, @ be constant invertible matrices of size m by m
and m by m, respectively, and
A—2C:=P(A-10)Q  (A€C).
Then
d(4,C)=d(4,C), x(d,C; )=x(4,C; 2.
(2.2) DEFINITION. An n by m matrix pencil A—C is said to have
property (C) iff there exists a block decomposition

A—iC= A,—xc,( 0 }"’
\-’_7;{1 \_’;n{l[

and
I‘ank C[:mj, VZ 6 C l‘ank(A”—ZC”) =MNys.

(2.3) THEOREM. Suppose A—AC has property (C). Then
d(A, C)=m”—nu, X(A, C, Z) =X(A1, CI; /2)

ProoF. Sinece C; has full column rank it is easy to see that d(4,, C;)=0.
Further, d(A, Cry)=mu—n and ¥(Arn, Cii; )=1. Therefore the first
assertion of the theorem is obvious. Next we have to consider all
determinants of square submatrices of A—2C of size (m—d)*=(m;+n;)%
First we restrict ourselves to those such matrices which have both an
m; X my-subblock inside of A;—AC; and an n; Xn;-subblock inside of
A;;—2C;;. The corresponding determinant is the product of determinants
defining x(A; Cr; 2) and x(Asu, Ci; 2), respectively. Therefore the
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greatest common divisor of these special subdeterminants is y(4,, Cr; 2)
because y(A;, Ci; A)=1. If any (m;+mn;)*—submatrix of A—2C does
not have a full m;Xms-block in A;—2C; and a full %, Xn;,-block in
A;;—2C,; then its determinant vanishes owing to the block structure of
A—C.

(2.4) THEOREM. Let A—AC be an arbitrary n by m pencil with n, m>0.
Then there exists a rational algorithm to construct constant imvertible
matrices P, Q@ of size m by m and m by m, respectively, such that the
penctl

A—iC:=PA-20)Q
has property (C).

Proor. The rational algorithm which we will present is a modification
of [4], Algorithm 4.1. —Given an arbitrary constant n by m matrix A,
the well-known Gaussian elimination method applied to the rows or the
columns of A, yields a constant invertible » by n matrix P or, respec-
tively, an invertible m by m matrix @ such that

ae(5), s 0)
T

where r denotes the rank of A. Moreover, A; is a generalized upper-
triangular, A a generalized lower-triangular matrix. The latter means
that Ac:: (di,j)

0 0
x 0
(2.5) 0 , © means some nonzero number,
x
x

that is there exist 1<m, < --- <m,<n such that g, ,;#0 (j=1,---,7)
and d;;=0 for all i<n,;, j€{1, ---,r}. —Such transformations, which are
called compressions to full row (column) rank, are used in the following
algorithm.

(2.6) Algorithm. Let an n by m pencil A—2iC be given.
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At first, construet @, such that
CQ,=(C,|0), C, has full column rank.

If rank C,=m —the zero columns in CQ, do not occur— then set P=1,
®@=Q, and stop. Otherwise, let

AQ=:(4,| A)

be subdivided in the same manner as CQ, above. Then we comprime
A, to full row rank by using an invertible n by n matrix P,. We define

0 A4,, 0
PA,=: . PAQ=: " )
o <A1,1> AQ, (Az,l Am)

Let P,CQ, be subdivided in the same manner,

L Che O

rea=(% %)
If C,, has full column rank then P,(A—iC)Q, has property (C). Other-
wise, the first step of our algorithm is applied to the subpencil A,,—C,,,
and so on.

The final form of A—AC obtained by this algorithm is noted in van
Dooren’s paper [4], Formula (4.2). Obviously, property (C) is satisfied.

As an application to singular systems of differential equations (1.1),
we use the preceding results to evaluate the d{ which are the quantities
d corresponding to the matrix pencils A{’(2). For r fixed, we evaluate
the d’ (m=-1,0,1,2, ---) successively until d{},=d{’ occurs for the
first time: then m=N, is achieved. For this purpose it is convenient
to modify the algorithm (2.6) in such way that the transformation of
A1 (A) into property (C) requires only a few steps whenever the analogous
transformation for A{’(2) is present. The latter situation is the starting
point for the next algorithm.

(2.7) Algorithm. Suppose the matrix pencil A—2AC has the following
structure:

0 }ﬁ
A—1C=| G—aH|—| 1",
A'—2C! }n'

m m’
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further let P/, @ be invertible such that

el T

has property (C). Then the full matrix A—XC is transformed as follows.

First, set
I, O I, O
P03:< 0 P,); QoZ=< 0 Q'>

Gi—AH;

0 }n}
ZCH }’ﬂ;r

and compute

Py(A—2C)Q,== A}—2C, 0

777077

We assume that C; has got a generalized triangular form (2.5) by a
preceding algorithm. Then we apply a sequence of Gaussian elimination
steps to the columns of

0

H;

’

Ci

starting with the “x”-elements in C} as pivots. As a result, we obtain
an invertible (m+m/)*matrix Q" such that

0

o =(cp

o)

C® has full column rank. After this modified first step we apply the
rest of algorithm (2.6) to construct P,, @, such that

A,—1C, } 0

_m/Q“*gg%z;4Am_mm

has property (C). Finally, we set

P] G;—ZHI
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PO Q| 0
P:ZPO — |, Q:-_—- — Qo.
0 L, 0 |I.,

Ir

Then P(A—2C)Q has property (C) because
AIII - 2CIII 0
An - ch =
/)| Aiu—iCi

has full row rank for all A.
Next we introduce a property dual to (C):

(28) DEFINITION. An 7 by m matrix pencil A—2iC is said to have
property (R) iff there exists a block decomposition

AI'—RC’I

A-10= ,4// Aﬁ,,—xé,, }ﬁ,,

and
VXGC I‘ank(/i;—lé,):’mz, I'ank Cl[z/ﬁll.

(2.9) THEOREM. Suppose A—AC has property (R). Then

~

d(A, C) =T, —Mmy, X(A, C§ 2) :X(fin, C'n; 2)-
The proof is analogous with that of Theorem (2.3).

(2.10) THEOREM. Let A—2C be an arbitrary n by m pencil with n, m>0.
Then there exists a rational algorithm to comstruct constant invertible
matrices P, Q of size n by n and m by m, respectively, such that

A—1C:=PA—-10)Q
has property (R).

The corresponding algorithm proceeds in a similar way as (2.6): but
in the present case the column compressions in C must be changed into
row compressions, the row compressions in A are changed into column
compressions. For more details see van Dooren [4], Algorithm 4.5.

In the following we discuss the result obtained by a combination of
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both algorithms.

(2.11) THEOREM. Suppose a matriz pencil A—AC has property (C) and
nr, m;>0. Further let P, @, be invertible matrices of size mi m? respec-
tively, such that

A,—aC, 0 }ﬁ,
7 / / A,,—ZC,, ﬁ,,

P, (A;—2C))Q;=

has property (R). —Then fi;;=";. Further x(A, C, ) =1if fi;;="m,,=0.
Otherwise, C,; 1s tnvertible and

v(A, C; 2)=(det(—C,,)) ' det(A,;;,—C},).
PROOF. A combination of the theorems (2.3) and (2.9) yields
1A, C; )=x(A, Cr, )=x(A:,Cis; 2).

Further, because C; has full column rank, also P,C,Q; has full column
rank: by using the block structure of P,C,Q, we conclude that C,, has
full column rank. On the other hand, C,, also has full row rank because
of property (R), and therefore %, =, holds. If 4, is positive then
C,; is an invertible matrix: this implies d(4;;, C;;)=0, x(Am; Ci )=
(det(—C,;)* det(A;,—C1)).

As already mentioned, we use the algorithms (2.6) and (2.7) for the
successive evaluation of the d{’ (m=0,1,2, ---), r€{0,1, ---,s—1} being
fixed. With regard to Algorithm (2.7) we modify the sequence of the
A (m=0,1,2, ---) as follows. We set

A (2) =B,

Agu=| (m=0,12, )
Betm+1I| A9

Bm+1
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'I:hen each 215,:11(2) has a subdivision as required in Algorithm (2.7) where
A{(2) plays the role of A’—2C’. Let C® be defined by the relations

AR(A)=:AR(0)—2CY  (mEN).

Then it ean be shown by induction that

(2.12) AD() = { AR () +mCy in general,

AP (A—m) in the case r=0.

Lutz and Schifke ([2], Lemma 3.1) have proved that in the case r=1
(and obviously for r=0) each d{’ remains unchanged when A{’(2) is
replaced by A (2) —aC® with an arbitrary « € C. The same is true for
the polynomials x{’ in the case r>1 —see Schifke and Volkmer [3],
Corollary 1 (p. 92).

Summing up, we compute d, N, and x by the following method.
Step 1: For m=0,1,2, --- we transform the 215,1"(2) into property (C)
in order to obtain d§’. As soon as d{},=d{’ (m=—1) for the first time,
we set N,:=m and go to Step 2.

Step 2: Provided N,=>0, we transform the submatrices A;—2C; in the
results of Step 1 for m=N, and N,+1 into property (R). Then we
obtain %y’ (2) and y§’.(2) or y%(A—N,) and x..(2—N,—1), respectively.

Sometimes it is desirable to determine

deg x"'= deg ). — deg %

without performing Step 2. This is the case during the construction of
a q, according to [6], Section 3, when it is checked whether a 3”(4)=1 or
not. For brevity, the proofs of the following results will not be very
detailed. We need Kronecker’s canonical form (K.c.f.) of a singular
pencil, for which we use the notations given in [4], Formula (2.5).

(2.18) LEMMA. Let the matriz pencil A—AC have property (C), and
let the Kronecker’s canonical form to A—2AC be given by [4], (2.5), where
we write d and d instead of q and p. Then the

K.c.f. to A;—2C; 1s composed of the Ly, (i=1, ---,d) and AI—J,
K.c.f. to A;—2Cy; is composed of the L, (i1=1,---,d) and AN—L

In order to prove this lemma, we have to show that the hatched block
in A—AC as in (2.2) can be cancelled by a constant transformation. For
this we apply van Dooren’s Algorithm 4.1 in [4] to the block A;,—2C; in
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order to obtain the special form [4], (4.2) in which the block 2B,.1,1.1— A1y1,141
does not occur. Starting with the latter form, the block in the left
under corner of A—AC is cancelled by a similar method as in [4],
Lemma 3.2.

In fact, Lemma (2.13) yields an alternative proof for Theorem (2.3)
which we had proved without using the K.c.f.. —Our main result con-
cerning deg " reads:

(2.14) THEOREM. Let AL (2) for m=N, and m=N,+1 be transformed
into property (C). Let the corresponding quantities n, be denoted n,(A%’).
Then

deg X(T) :’nl(Ay:+1) —-%I(A(I}’)_) .

Proor. Owing to (1.6) and (1.8), deg 3" is the difference between
the sizes of AI—J occurring in the K. ¢. forms to A;,’T’“(Z) and A§)(2). We
conclude from Lemma (2.13) that

d
n,;=size of (AI—J)+
=1

%

(77i+1)

with d=d™ for both matrices. It remains to show that the numbers
»; coincide. By the theory of K.c.f.to a pencil A—2C —see [1]— the »;
are characterized by the existence of x;(2) € J((A—iC)Y) (i=1, ---,d)
which are polynomials in 2 of degree 7; and are linearly independent
for each 1 such that the sum of the »; is minimal. In the case r=0
the matrix A®.(1) contains AQ(A—1) in the left upper corner (N:=N,,
for brevity). Therefore, starting from polynomials x;(2) of degree u;
(i=1, ---,d®) which are in JI(AP(2)") and are linearly independent for
each A, we get

o L z:(2—1) 2O (N et .
£:(2) 1= 0 € JN(AP,,(2)") with the analogous properties,

and vice versa because d{\,=d{. —In the case »>0 the construction of
the corresponding #£;(4) is somewhat more tedious. It is possible to
proceed in a similar way as in the proof of [2], Lemma 3.1.

3. Computation of formal logarithmic solutions.

Suppose ¢(z) is a polynomial in z7"» and occurs p-times as a q,(x)
in the exponential part of a formal fundamental solution (1.2). According
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to [6], Section 2, we can construct the corresponding g columns in H(x)x’
in the following way. We substitute t*=x in the system

2w (x) = (27" B(x) —xq’(x) [ )w(x)

in order to obtain a system of the form (1.1). Then the reduced problem
is the computation of a formal logarithmic n by pg-matrix solution

(3.1) W(x)=H(x)x?

to the system (1.1), where H(x) is a formal power series in «, J a constant
¢ by p-Jordan matrix and the columns of W(x) are C-linearly independent.
In the following constructions the expressions A$’(2), ™, N, xt, and ™
are needed with =0 merely: we omit the superseripts (0), for brevity.
The following fundamental lemma is implicitly contained in [5], Section 1.1:

(8.2) LEMMA. Let ke N,, 4€C, h,,€C" WEN, £=0,1,---,k—1) be
gtven. We set

hy(2) 1= ”;0 (A—2)he, WEN),

2 10

w N

h"(ac):———uzox"h,c,p (k=1,2, ---, k), Je = 1I
ALY

and, finally, defined by columns,
W(x) := (h'(z), B*(x), - - -, h*(x))a™™.
Then W s a formal n by k-matrixz solution to (1.1) vff
(3.3) YmeEN  An(A)(h,(4)]=0 € (A—2)*Cimm,
Proor. Let

Zw, 2) = "j: (A= 20" h1 (@),

Then by definition of the A, (1) the relation (3.3) is equivalent with the
following one
d

(w-d— —27*B (w))x‘Z (x, A)= x‘(x%

—2~*B(z) -I—H)Z(ac, ) € (A=)t 0",
dx

where O denotes the space of formal power series in z. Generally the
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term on the left hand side has the form

k
Flo,2) =0~ ¥ (A=2)fie),  fi€O".
It is easy to show that
Flz, 1) € A—A)wi—0" iff %F(x, z)l =0 for x=0,1, ---, k—1.

a=12,

Further we notice that the differentiation with respect to 2 and to =z
can be interchanged, and obtain that (3.3) is equivalent with

0:<x;_x—xﬂB(x)> %rx‘Z(x, z))

2=2,

/. d s P 1 K—ip i+l — e k—
(2 gy —a7Blo)Jst o 5T log ) (=0, k1)

Obviously, the expression

K
o

— (log &)*~?h7*}(x)
=0 (k—g)!
is the column no. (¢+1) in W(x).
An alternative proof avoiding the differentiation of formal logarithmic
series with respect to 2 can be deduced from [5], Section 1.1. —The
solvability of the infinite linear system (8.3) has been discussed in [5],
Hilfssatz 1.80. The polynomial ¥ mentioned there is yys1 (N :=N,) in our
present notation. We want to replace this yy, by our present y=yx as
defined by (1.8).

(3.4) LEMMA. Suppose 3,€C and o€ N are given such that y(i,+m)+0
for all me N with m=c+1. We set

V(4y) 1= i) (multiplicity of 2,+J as a zero of y).
i=0

Then for all m€ N, m=c+1:
(1) Aw(A+m)#0, Aysi(do+m)+#0,
(ii) () =multiplicity of 2, as a zero of Ywim-

PRroOOF. Since yy(4) divides yy4i(4), we have only to prove that
Yn+1(A+m)#£0 for m €N, m=o+1. Suppose xw.1(d+m)=0:then because
YA =xA)xn(2+1) and x(2+m)+0, also 4, +m+1 is a zero of yy and



696 Ekkehard WAGENFUHRER

Yv+1- By the same argument we could prove that all 2,4y, vEN, v=m
are zeros of yy: this is impossible. Part (ii) is proved by the relations
m—1
toenl) =(TL2(3+9) Jxla+m),  gulatm) £0,
o
see (1.8).
(3.6) DEFINITION. For arbitrary 4,€C, me€ N, k€ N, we set

T(An, 2) :={Xn=Xn(4): C—C*™*V polynomial in 2 of degree
<k—1 with A, ()X, (2) € (A—2)-C D),
Mo i(Z0) :={(h,)ps= (h,(2)) 1y : C—C "+ for which further
h, (v=m+1, ---,m+N+1) exist such that
(B) 32" € Th(Amiyans A0)}.

Here N:=N, as in Lemma (1.5). Finally, let

Meori(A0) :={(h,(2))2y of degree <k—1 satisfying (3.3)}
{(hy(2)520: YME N (hy(2))7=0 € Mn,i(Z0)}-

I

It is easy to show that each Jl,(4.,2,) (m€N) is isomorphic with
J1(AY(2,)) as defined in [5], Definition 1.17, by means of the natural
isomorphism

36)  Xall)= % (A=A Xuers € Th(Au, ) —> (Xuo)ims € TUAL)).

In an analogous way, each M, .(4,) is isomorphic with (H%(4,) according
to [6], Definition 1.27. Therefore the following lemma is an immediate
consequence of [5], Hilfssatz 1.30.

(8.7) LEMMA. Suppose 3,EC and o€N are such that x(A,+m)#0 for
all meN, m=c+1. Then for each kEN,, mEN, m=c+1

Mo, (20) = M (Z) by (1s(2))520 —> (ls(2) 2

The next step in our program is the construction of practicable
representations of the spaces M,.(4) (K€ N,). After this, we shall
give an algorithm for extending any (h,(3))i—€ M,..(2) to a sequence
(hy(2) 20 € Moo i(2). First we prove a more general lemma.

(8.8) LEMMA. Suppose A—AC is an arbitrary | by r matrixz pencil,
Sfurther Y :C—C' is a polynomial of degree <k and 2,€ C is fixred. For
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X :C—C" let (+) denote the following statement:
(%) {X is a polynomial of degree <k—1,
*
(A—2C)X(2)—Y(2) € (A—2y)*C".
(1) If A—2C 1is surjective then there exists an X satisfying (x).
(ii) If A—aC is ingective then there is at most one X satisfying ().

For the proof we note that (x) is equivalent with
— k-1 k
(A4 )‘é (A=) X, — (21— 4) 2 (2—20)‘CXK—g’(l—lo)‘Yxe(l—lo)"C’-

This provides a recursion formula for the X, (¢=0,1, ---, k—1) which is
always solvable in the case (i) or admits at most one solution in the
case (ii).

During the algorithms required for the evaluation of d and N we
had to transform the pencil Ay(4) into property (C) as described in
Section 2. Therefore we are given invertible matrices Py and @y such
that

AI"XC[

0
. ///‘l A —iCy >’

where C; has full column rank and A,,—2C,; has full row rank for any 2.

(3.9) PyAy(2)Q@y=:

(3.10) THEOREM. Suppose 4, € C and g € N are given such that y(4,+m)+0
for all meN, m=c+1. We extend Py, Qy from (3.9) to

Iowyn O Ioone O
=157 ) (17 )
N N

and set Ay,110() :=PriireAys1eeA)@ys1eor  Then Ay,1y.(2) has the follow-
ing block structure:

0 0
. D, ()
(3'11) AN+1+¢(2):: ,2+0'+1 CI 0

[//// 7 / / A —(@+0+1)Cy;

We consider the following submatriz of Ay,iy.(d):
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0

(3.11) Ay :=| D,
‘ A—(A+0+1)C,

We define I(Ay 140 4) i an analogous way as we had done for A, in
(3.5). Then for each k

mk(x‘iN+1+a» 20) = ﬂa,k(%)

by the tsomorphism
X.(2)

XW:( X:(3)

) — X,(4),

where X,(2) consists in the leading (c+1)n components of X(A).

Proor. The block decomposition in (3.11) is an easy consequence
of (3.9) and the block structure of Ay,,,(2), namely

y %
N+1+o
AN 2+0'+1
0+1

Next we prove the characterization of %, .(2,). Obviously

YN+1+a e mk(AN+1+m ]0) (“T‘é XN+1+0 ::QITI-I}—1+UYN+1+0 e 3,llt:(‘;{l‘f+1-}—ay 20)-
Now let

X,
Y,
(3'13) YN+1+U=: < >y XN+1+U=: XI ’
Yy
XII

corresponding to the subdivisions (3.12) and (8.11), respectively, into
column blocks. The special structure of Qy,,,, yields X,=Y,. This leads
to the criterion:

X, € Mou(2) iff there exist X,, Xy; such that Xy,i., a8
in (3.13) satisfies Xwireo € T(Aniriar Ao)-

The matrix A;;,—(2,+0+1)C;; has full row rank because of property (C)
n (3.9). Therefore, Lemma (3.8), (i) provides the weaker criterion
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X, € M, (%) iff there exists X; such that

X:<§)emwumN»

Finally, yn(4+0+1)#0 because of Lemma (3.4), (i), where yy is the
characterizing polynomial corresponding to the pencil Ax(4) as well as
to A;—AC,;. Consequently A;—(2,+¢+1)C; is injective, and Lemma (3.8),
(i) implies that the linear map X +—> X, leading from J1,(Ay,1.., 4) onto
M, .(2) is injective.

Our next aim is the extension of a given X,(2)=(h,(4))i=€ M, i(40)
to a full sequence (h,(2))=20€ Mwri(d). We deseribe the constructional
step leading from (h,(2))7 to (h,(2))r% (m=0c). For this we subdivide
Ay imi2(2) into

e A) j 0
RNV AAM(HmH)

Then we apply Theorem (3.10) to 4,+m+1 in the place of 2, and to ¢=0.
We extend the matrices Py,;, Qu,: as defined in the theorem, to

Imiyya O Ipiya O
PN+2+m:< D )v QN+2+m:< (b >

0 Pyu 0 Quwan
and obtain
(3.14) PririnAnizinA)@uizin=: Aniosn(d) ™ o
A,.(2) 0 0
= E.Q) |Aya(d+m+1) 0

7 ////// /) A= (@ m+1)Ci

with Ay,, as in the theorem with respect to ¢=0.

(3.15) THEOREM. Let 2,€C and c€N with y(XH+m)#0 for all meEN,
m=o+1 be given. Further, let ke N,, m=c and (h,())™€ HMn.(4) be
fixed. Then there exists a unique polynomial X :C—C" of degree <k—1
such that

(%) Ay aA+m+1) X (2) + En(2) (h(2) 10 € (2—2)5C,
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where r, | denote the numbers of columns and rows in Ay, respectively.
Let X(2) be subdivided into

X(2) =< X ) X,()ect
X2 ) ’ ‘
Then hai(2) :=X,(4) is the unique complement by which (h, ()™, is extend-

ed to (h,(2)m31 € Musr.i(Ao).

PROOF. m=¢ implies yw,i(4+m-+1)#0 and further M, (2 +m+1)=
{0} for any k€ N —see Lemma (3.4) and [5], Hilfssatz 1.29.— We conclude
from Theorem (3.10) that Ay,,(4,+m+1) is injective: therefore the system
(*) admits at most one solution X of degree <k—1 as it was proved in
Lemma (3.8). On the other hand, M,,,..(4) is isomorphic with ., .(4,)
by an analogous isomorphism as mentioned in Lemma (3.7). This means
that the given (h,(2))™, can be supplied by further h,..(4), -, hyimsa(4)
such that

X imia(4) 1= (R, (2)) 05" € mk(AN+m+2v o).

Then Yyimio(d) :=QiinssXvims2(d) € T(Aximsz A).  Obviously Yy ,miz(d)
can be subdivided into

(P ) ([ (Ru(2)S0

X(2 A
Yy imie(d)= 4 = ((2; ,
X11(4) X1:(4)

and X,(2)=h,:(2) owing to the structure of Q...

So far the construction of sequences (h,(4))2, of A-degree <k—1
satisfying (3.3) for 4,€C, k€ N, fixed. According to Lemma (3.2) each
sequence of this kind corresponds to a formal logarithmic solution with
only one Jordan block J,. The next problem is to construct

W ()= (R (), - - -, hr7(x))a > (z=1, -+ -, 1)

each corresponding to 4, such that the formal power series h"'(z), - - -, h"*(x)
are linearly independent and Z k. is maximal —see [5], Satz 1.7—. Owing

to Lemma (3.7), this problem is reduced to the evaluation of te N, k. € N,
(c=1, ---,¢t) and
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X§(2)=(h5(2))g=0-_—<
(r=1, -+ -,t) such that

(A—=2)Psr) € HMos(A0)
=0 T

v

(3.16) (h1,)5=0, -+, (Bi,)i=0 linearly independent

and ,t};lkf is maximal. We set
Moo(de) :={0}, & := dim M, .(4) (kEN).
Obviously two canonical inclusions are valid:
(3.17.1) (2= 2) My 1(2) EMoiia(d)  (KEN),
(8.17.2) My rs1(A0)/ (21— 20) My 1(R0) T Mk(20)[(2—20) M, 1-1(2) (K € N.),

where the inclusion (3.17.2) is generated by omitting the (1—2,)*-term
in any element of M, .,.(4). As a consequence we get

(318) Ekéek-!-l (keN), 8k+1—ek.§ek_€k—1 (k€N+).

It has been proved in [5], Satz 1.19 and Hilfssatz 1.29, 3) that there
exists a K€ N such that ¢,=v(4,) for all k=K, where v(4,) is defined as
in Lemma (3.4). If we choose K minimal then

(3.19) a=v(d), @.<e (k<K).

For practical application, we use that the ¢, are the dimensions of the
T(Aysieo %) (k=1,2,8, ---) as defined in Theorem (3.10), and that v(2,)
is well-known. Provided v(4,)>0, we evaluate ¢, for k=1,2,3, - -- until
e,=v(4,) is achieved for the first time. We set

tj:ZeK'H—j_eK—i (j__'O, 1’ ""K)v t:thy
such that ¢=0, tx=e¢, and further
k.:=K—j t;+1<r<t;,,; 5=0,1, - -+, K—1).

The first X;€ M, (4) (r=1, ---,t,) are determined as a base of M, x(4)
with respect to (2—2) M, x_1(4). If K>1, these X without their (1—2,)%*-
terms are contained in M, x_,(4,) and linearly independent with respect
to (A—20) M, x_2(2) —see (3.17.2)—: we evaluate additional X:€ M, x_,(4)
(t=t,+1, ---,t;) to get a full base of M, x_.(4) with respect to
(A—20) M, x_2(4), and so on. By this construction, the properties (3.16)
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are obvious. Of course, this method is quite analogous with the con-
struetion of principal vectors to a constant square matrix: in the special

cage that all k, (r=1, ---,t) are equal (t=1, for instance), it is possible
to begin with the construction of a base for ., .(4,).
The foregoing constructions have to be applied to appropriate 4,, - - -, 1,,

such that the corresponding formal logarithmic solutions altogether
provide a formal logarithmic n» by g matrix solution (3.1) with full
column rank. g has to coincide with degy, as mentioned in Theorem
(1.8). We choose 4, - - -, 4, the zeros of x with the properties

A—2A;¢ Z (1#3),
each zero of y has the form A+t (k€N, 1€{1,2, ---, m}).
Then by definition of v(4;) in Lemma (3.4) it is clear that

m

2, v(%) = deg 1.

=

(3.20) {

On the other hand, our construction provides v(2;) linearly independent
formal solutions for each 2, Because the 2; are distinct modulo Z, all
these solutions together are linearly independent. We note that in [5],
Satz 1.32 the choice of 2; is the same as in (3.20) but with yy.,(2) in
the place of y(2) =yxws1(2)/xn(2+1). The 2 in [5] can differ from the present
ones by some nonpositive integers, but the corresponding formal solutions
are the same.

References

[1] Gantmacher, F. R., Theory of Matrices, Vol. I and II, Chelsea, New York, 1959.

[2] Lutz, D. A. and R. Schifke, On the identification and stability of formal invariants
for singular differential equations, Linear Algebra Appl. 72 (1985), 1-46.

[3] Schifke, R. and H. Volkmer, On the reduction of the Poincaré rank of singular
systems of ordinary differential equations, J. Reine Angew. Math. 365 (1986), 80-96.

[4] Van Dooren, P., The computation of Kronecker’s canonical form of a singular pencil,
Linear Algebra Appl. 27 (1979), 103-140.

[5]1 Wagenfithrer, E., Uber regulir-singulire Losungen von Systemen linearer Differen-
tialgleichungen, I, J. Reine Angew. Math. 267 (1974), 90-114.

[6]1 Wagenfiihrer, E., On the computation of formal fundamental solutions of linear dif-
ferential equations at a singular point, to appear in Analysis.

(Received March 15, 1989)

Universitit Regensburg
Postfach 397

D-8400 Regensburg
Fed. Rep. Germany



