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On the asymptotic cycles for Axiom A flows
Dedicated to Professor Tosihusa Kimura on his 60th birthday

By Takashi TsuBol and Seishi TSUKADA

The notion of asymptotic cycles for continuous flows was introduced
by Schwartzman ([11]) to represent the asymptotic behavior of the flows.
An asymptotic cycle for a flow is defined to be a 1-dimensional homology
class of the space and the simplest asymptotic cycles are those given by
the closed orbits. The asymptotic cycles for a basic set of an Axiom A
flow in the sense of Smale ([14]) were studied by Sigmund ([12]). For
such a flow the closed orbits are dense in a basic set and it is known
that the set of the asymptotic cycles for a basic set coincides with the
closure of the set of the asymptotic cycles given by the closed orbits
in the basic set (see Proposition 1.1). Thus it is interesting to know
whether there exists a null homologous closed orbit in a basic set when
0 is an asymptotic cycle of the basic set. For a transitive codimension
1 Anosov flow on a closed manifold, Verjovsky ([15]) and Ghys ([6])
showed that it is the case.

The purpose of this paper is to show that for an Axiom A flow on
the manifold whose first Betti number is 1, if 0 is an asymptotic cycle
of a basic set X, then there exists a null homologous closed orbit in the
basic set X (Theorem 2.1). This is generalized to the case where the
set of the asymptotic cycles for the basic set is contained in a 1-dimen-
sional linear subspace of the 1-dimensional homology group. By using
a result of Fried ([4]), we see that in this case such basic sets have
either a cross section or a null homologous closed orbit (Proposition 2.3).
(It is easy to see that the existence of null homologous closed orbits
implies that 0 is an asymptotic cycle, and that 0 is an asymptotic eycle
implies no cross sections.) We also give examples to show that the
condition on the first Betti number is necessary (Propositions 3.2 and 3.3).
In these examples, 0 is not in the interior of the set of asymptotic cycles,
where the interior is considered in the vector subspace spanned by the
asymptotic cyeles. This leads us to the criterion for the existence of null
homologous closed orbits (Theorem 4.1), namely, if 0 is in the interior
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of the set of asymptotic cycles of a basic set X, then there exists a null
homologous closed orbit in X. This observation gives a second proof of
the results in §2.

§1. Asymptotic cycles and closed orbits of Axiom A flows.

Let ¢,: M—M be a C* Axiom A flow on a compact smooth Riemannian
manifold M. According to the spectral decomposition theorem of Smale
([14]), the nonwandering set of an Axiom A flow consists of a finite
number of connected components. KEach component is either a hyperbolic
fixed point, a hyperbolic closed orbit or a component containing more
than two closed orbits. We call the last one a basic set.

We review briefly the asymptotic eycles for an Axiom A flow on a
basic set X. Let ¢,|X denote the restriction of ¢, to X. We define
the asymptotic cycles for ¢,| X as follows: Let & be the vector field
associated with the flow ¢, For a signed measure g on X invariant
under ¢, | X, there is defined a homology class A, x(¢) € H,(M ; R) given by

Agix(pt) (w)=L<E, w)dp

for any closed 1-form » on M. Hence, we obtain a homomorphism A, x
from the space of invariant signed measures to H (M ; R). We call the
image of a positive normalized invariant measure on X an asymptotic
cycle of ¢,|X. We write the set of asymptotic cycles by Agix-

A closed orbit O of ¢,| X determines the positive normalized invariant
measure with support on O (the CO-measure), and this corresponds to
the asymptotic eyele [O]/per(0) € H,(M ; R), where [O] denotes the homology
class of O and per(O), the period of O. For Axiom A flows, CO-measures
are dense in the set of normalized invariant measures M (see [12]).
Since M is compact, so is the set A, x of asymptotic cycles, and we
have the following proposition.

PROPOSITION 1.1. Let ¢,: M—M be an Axiom A flow and X, a basic
set of ¢.. Then A, x coincides with the closure of {[O]/per(0); O is a
closed orbit in X}.

In the following sections, we study whether 0€ A, x implies the
existence of null homologous closed orbits in X.
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§2. Axiom A flows on manifolds M with dim H,(M ; R)=1.
In this section we prove the following theorem.

THEOREM 2.1. Let ¢,: M—M be an Axiom A flow, and X, a basic
set of ¢,. Let A, x denote the set of asymptotic cycles for ¢.|X. If 0
belongs to A, x and dim H,(M ; R)=1, then there exists a closed orbit in
X which s homologous to 0.

The proof of Theorem 2.1 uses two facts. One is that a long nearly
closed orbit in the basic set X can be approximated by a closed orbit,
which is stated in Proposition 2.2 below. The other is that for any
orbit in X, there is a dense subset of X whose points asymptotically
approach to this orbit ([1],[8]). (We give a second proof using the
symbolic dynamies in §4.)

PROPOSITION 2.2 ([1, Theorem 2.4]). For any positive real number B,
there are positive real numbers 0 and L for which the following holds:
if a real number r satisfies d(¢.(x), )<d and r>L, then there are a
point y€ X and a real number v’ such that ¢, (y)=y,|r"—r|<p and

d(e(y), pul)) KB for 0<t<r.

PrOOF OF THEOREM 2.1. By the Poincaré duality, the rank of H(M; Z)
is 1. Let u be a generator of H'(M; Z). Let n: M—M be the infinite
cyclic cover corresponding to u. Then we have the lifting ,: M—M of
¢.. The manifold M has two ends {+c0}. Put X=r"'(X). The essential
part of the proof is to show that there exists a point #€ X such that
L*(&) N M+ @, where L* denotes the w-limit set in MU {+oo}.

First we assume L*(#)={+oo} for all points #€ X, and deduce a
contradiction. (This part can also be deduced from [4, Theorem B].)
The class w€ H'(M; Z) is represented by a continuous map u: M—S.
Let 4 : M—R be a lifting of u. We define a continuous funection ¥ on
X by 9(% t)=7%(¢.(2))—=(#). Then if (&) is contained in a closed orbit
O of period T, we have u([O])=9(%, T'). By the assumption that L*(%)=
{+co} for all points %€ X, 9(%, t)—>+co as t—+oo.

Let M, (c M) be a compact connected fundamental domain of the
infinite cyelic ecover =. For an appropriate choice of 74, we have M,=
#471[0,1]). For any point £€ M, we can take an open neighborhood
U, of %, positive real numbers ¢, and p, such that 9w, t,) >p, for all
w€ U,;. By the compactness of M,, we can take a finite number of open
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neighborhoods U, , ---,U., which cover M, Define the positive real
numbers a and p by

a=max{t,; 1<i<k} and p=min{p,; 1<1<k},

respectively. Then for any point & ¢ M,, there is a real number ¢ € [0, a]
such that 9(, t) >p. Hence for any point & € M, and any positive integer
n, there is a real number ¢t €[0, na] such that 9(z, t)>np. On the other
hand, there exists a positive real number b such that 9(z,¢)>—b holds
for all 2€ M, and t€[0,a]. Let T,. be a real number such that T, .¢€
[0, ] and
(&, T,,,) = max 9(Z, s).
s€[0,t]

Then, by the choice of a, we have 0<t—T,,<a and 9(&, T, . >[t/alp.
Since @,,.(&)=¢,(¢.(€)), we have

(R, t) =D&, Ts,) +0(Ts4(%), t—Ts,.) >[t/alp—b.
If n(2) is contained in a closed orbit of period T, then we have

?(Z, nT) > [nTlalp—0b S D
nT nT — 2a

for a sufficiently large positive integer n. By Proposition 1.1, we see
that A, xC[p/2a, co)C Hy(M ; R), which contradicts the assumption.

Next we assume that for all points #€ X we have either L*(%)=
{+o0} or L*(%)={—oo}, and deduce a contradiction. Put

B,={#e X; L*(#) > +oo}
and
B_={ieX; L*(%) 3 —oo}.

For a positive integer n, put
B,={& € X; there is t>0 such that 9(&, t)>n}.

If #¢ B,, then W*(z}(z(0;)))CB,, and W'z *(x(0;7))) is a dense subset
of X (see [1],[8]). Here O~ denotes the negative orbit and W* denotes
the stable set. For a subset S of X, W*(S) is defined by

W (S)={y € X; d(p.(x), p.(y)) —> 0 as t—oo for some xz € S}.
Thus B, is an open dense subset of X. Since M,NB,= N (M,NB,),

n>1



Asymptotic cycles for Axiom A flows 721

M,N B, is a residual subset of M, Similarly, M,N B_ is also a residual
subset of M, Since M, is a Baire space, (M,NB,)N (M,NB_)*=. This
contradicts the assumption that B,NB_=.

Now by the above argument, there is a point Z€ X which satisfies
either L*(2)D{+oo} or L*(#)NM+#@. Since L*(#) is connected, L*(&)D
{+co} implies that L*(2)N M# . Hence, there is a point #€ X such
that L*(#) N M+@. Then there exists a sequence of real numbers {t,}3.,
such that ¢, (&)—p as m—oo for some p€ M. We take positive integers
n>m>0 such that d(¢. (%), . (2))<0 and t,—t,>L for the positive real
numbers ¢ and L of Proposition 2.2. Put y==(¢. (£)) and T=t,—t,.
Then

d(y, ¢z(y)) =d($,, (%), ¢, () <6 and T>L.

By Proposition 2.2, there exists a closed orbit O in X which approximates
¢n,m(y) and we have [0]=0.

REMARK. For a basic set X, we define dim H,(X;R) to be the
dimension of the minimal linear subspace of H,(M;R) which contains
Agx. Then, if dim H,(X; R)=1, Theorem 2.1 holds.

As an application of Theorem 2.1, we give a criterion for the
existence of a cross section for a basic set X. A codimension 1 sub-
manifold K of M is called a cross section for ¢,|X, if every orbit of
¢.| X intersects K transversely. By a result of Fried ([4, Theorem E]),
the existence of a cross section is equivalent to the fact that A,y is
contained in an open half space of H,(M; R). Hence we have the follow-
ing proposition.

PROPOSITION 2.3. Let ¢,: M—M be an Axiom A flow, and X, a basic
set of ¢,. Suppose that dim H,(X ; R)=1. Then either there exists a null
homologous closed orbit in X or ¢,| X admits a cross section.

§3. Examples with zero asymptotic cycles.

In this section we construct Axiom A flows ¢, with a basic set X
such that dim H,(X ; R)=2, 0 belongs to A, x and no closed orbits in X
are homologous to 0. We construet such Axiom A flows with singular
points on T® and such Axiom A flows without singular points on T
For this we use the symbolic dynamics. A similar construction is appeared
in Fried ([4, §3 Note]) in a slightly different context.
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Let F' be a finite set with the discrete topology, and consider 3=
1;[ F with the product topology. We denote an element (m;);c; of 3 by

m, and write m;=m;. The shift homeomorphism o¢: 3—23 is defined by
g(m);=m,,,. A finite sequence (I)=(m,, ---, m,_;) in F is called a loop
and determines a periodic ¢ orbit (---, M,_y, My, <+, My_y, My, +--) (the
j-th component is M;nea.). Put

A=23x[0,1]/(m, 1)~(c(m), 0),

and consider the suspension flow o,: A—4 of . We call g, a hyperbolic
symbolic flow.

First we construct an invariant set X embedded in 7%x[0,1] such
that the flow ¢, on X is topologically conjugate to the hyperbolic sym-
bolic flow ¢, for F'={1, 2} and dim H,(X ; R)=2. Then the loop (/) deter-
mines a closed ¢, orbit and, via the topological conjugacy, a closed orbit
r)y=y(mo, ---, m,_,) for ¢,

Let P, and P, be the rectangles in [3, 3] given by

P,=[—-2, —1]X[—3,3] and P,=[1,2]Xx[—3,3],
respectively. Let @, and @, be the transposed rectangles;
Q=[—8,8]x[1,2] and Q=[-8 8]x[-2 —1]

Let ¢: P,UP,—Q,UQ, be the orientation preserving locally affine map
preserving both the vertical lines and the horizontal lines which sends
P, onto @, and P, onto @,. Put P,;=¢ ' (Q:NP;) (¢,7=1,2). Let Y be
the space obtained from the disjoint union

2
[—3. 3P[0, 1/2U( U Puy)x[1/2.1]

by the identification by the inclusion map (U P;;) X {1/2}—[—3, 83Fx{1/2}
and by the map ¢: (UP;;) X {1}—=[—3,3Fx{0}. Let ¢, denote the suspen-
sion semiflow on Y. As in the case of the suspension of the horseshoe
diffeomorphism ([14, Proposition 5.3]), ¢, has a unique invariant subset X’
where the flow is the hyperbolic symbolic flow for F={1,2}. Y is
topologically a 3-dimensional disk with 4 handles. Hence H\(Y ; Z)=Z",
where the generators a,; of Z* correspond to P;;x[1/2,1] with the direc-
tion of the flow. Consider an embedding ¢: Y—>T%X[0, 1] such that

tx0=(1, 0), tx0:2=1(0, 1),
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5*“212(0, 1)9 l*a'zz:(_]—r O)

in H,(T*x[0,1]; Z)=Z% Since Y has the homotopy type of 1-dimensional
complex, the semiflow on (Y can be extended to a nonsingular flow on
T?x[0, 1] pointing normally outwards along the boundary. Put X=((X’).
Then we have the following lemma.

LemMA 3.1. X s an tnvariant set for ¢, on T*X[0,1], ¢,| X s the
hyperbolic symbolic flow for F={1,2}, 0 belongs to A, x, and no closed
orbits of ¢,| X are homologous to 0.

ProOF. We show the latter two statements.
For a loop (I)=(m,, ---, m,_;), the homology class of the closed orbit
r(l) is
Ck@mgm, T+ * 0 O om, 4O

n—1 n—1M0"

Hence for any loop (1), [y(1)]+#0.
We show that 0€ A,y Put

(l,‘):(L - 1,2, ...’2)’

then [r(l)]/per(r(l)) =(1/2k)(0,1). This tends to 0 as k—oco. Since A, x
is closed, A, x>0.

We extend the flow on X to an Axiom A flow on T

PROPOSITION 3.2. There exists an Axiom A flow ¢, on T® with the
basic set X such that 0 belongs to A, x and mo closed orbits in X are
homologous to 0.

Proor. Take two copies of T?X[0,1], one with ¢, and the other
with ¢_,. We paste these by the identity map of 7%Xx{0,1} and obtain
T*® with the induced flow ¢,. Let X, and X, denote the invariant sets
corresponding to X, and Y, and Y, be the images of Y containing X,
and X,, respectively.

We take a finite family of local cross sections S, ---,S, in T°—
Int(Y,UY,) satisfying the following conditions: Each S; is diffeomorphic
to a 2-dimensional disk, and, for a small positive real number e,

T5 —Int(Y,U Ya)C Ul Pren(S)C T — (X, U Xy).
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We modify the flow ¢, in a small neighborhood of each S; as follows.
Consider the flow f; on D*X[0, 5] generated by the vector field » satis-
fying the following conditions:

(1) »=0/oz along 8(D*X[0, 5]), where z is the coordinate of [0, 5].

(2) f. has exactly four hyperbolic fixed points at (0,k) (k=1,2,3,4),
where the index is 4—¥k, and {0} X[0, 5] consists of 4 fixed points and 5
regular orbits of f,.

(3) The 2-dimensional stable manifold of (0,2) intersects D?x {0} along
dD3,x {0} and the 2-dimensional unstable manifold of (0,3) intersects
D*x {5} along 8D}, {5}, where Dj, is the disk of radius 1/2 in D*=D;.
(4) The other orbits are either passing (Int Di,)Xx {0} and having (0,1)
as the w-limit, having (0,4) as the a-limit and passing (Int D3%,) X {5},
or passing (z,0)€ (D*—1Int D3,)x{0} and (x,5)€ (D*—Int Di;) X {5}.

We replace a small neighborhood of each S; by the above flow f,
(with the parameter changed appropriately) in such a way that the orbits
originally passing through S; pass the images of (Int Dj.)x{0} and
(Int D3,) x{5}. Note that the flow is unchanged near X,UX,.

Now, the resulted flow ¢, on T have no cycle, and the nonwandering
set 2(¢p,) coincides with X; U X,UFix(p,). So ¢, is an Axiom A flow. By
Lemma 3.1, we see that dim H,(X,;R)=2 for i=1,2, A,x 30, and no
closed orbits in X; are homologous to 0.

Now we construet a nonsingular Axiom A flow on T¢=T3*xS' with
the same basic sets.

PRrOPOSITION 3.3. There exists a nonsingular Axiom A flow @, on
T* such that 0 belongs to A, and no closed orbits are homologous to 0.

ProoF. Let & denote the vector field associated with the flow ¢,.
We use two vector fields {, and & on S* satisfying the following condi-
tion: ¢, is a nonsingular vector fields, and ¢, has exactly two hyperbolic
singular points, a source s, and a sink s,.

Let U and V be open sets in T° such that Fix(¢,)cU, X,UX,CV
and UNV=g. Let p be a smooth function on 7° such that

( {o it zeT—(UUV)
x)=
e 1 if « is near Fix(p)UX,UX,

and consider the vector field » on T*=T°XS" given by
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(&(x), p(x)Ci(s)) on UXS!
7(x, 8) =4 (E(x), p(x)Ce(s)) on VXS
(&(x), 0) elsewhere.

Let @, denote the flow generated by ». A fixed point of ¢, cor-
responds to a closed orbit of @, and we have

2(9,) = (Fix(p,) X §) U (XU X:) X {0, 81}).

Hence the flow @, is a nonsingular Axiom A flow on 7. By Proposition
3.2, 0 belongs to A, and no closed orbits of @, are homologous to 0.

§4. Existence of null homologous closed orbit.
In this section we prove the following theorem.

THEOREM 4.1. Let ¢,: M—M be an Axtom A flow, and X, a basic
set of ¢,. Let V denote the minimal vector subspace which contains Ay x.
If 0 belongs to Int, A, x, then there is a null homologous closed orbit in X.

The proof of this theorem follows from the description ([3]) of the
basic set by using the symbolic dynamics. For the finite set F and
2= 1;[ F appeared in §3, let G be a subset of F'XF and consider the

subset Y of 3 consisting of the elements m=(m,);.z such that (m,_,, m;) € G
for all 1€ Z. The shift homeomorphism ¢ maps 3; to itself and the
suspension flow

0,0 de —> A (Ag=2eX[0,1]/~)

of this ¢|2¢ is called the hyperbolic symbolic flow of finite type. Bowen
([3]) showed that for a basic set X of an Axiom A flow, there exist
a hyperbolic symbolic flow (4¢, ;) of finite type and a semiconjugacy h
from 4; to X which is finite to one. This hyperbolic symbolic flow and
the semiconjugacy can be taken so that there is an embedding ¢ of the
1-dimensional complex Z with the vertices v, (f€ F) and the edges
e ((f,9) €G) in a neighborhood of X and the closed orbit y(l) for an
admissible loop (I)=(m,, -« -, M,_y) (Muy=my, (M;_;, m;) EG for 1=1, ---, n)
is homotopic to the curve

‘(e(mo.ml) T e(m”_zymn_l)e(mn_l,mo)) CZC M.

Proor oF THEOREM 4.1. First take the hyperbolic symbolic flow of
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finite type (4, 0,) and the semiconjugacy h: Ad¢—X. If the dimension
of the vector subspace V is m, there are closed orbits O,, O,, - - -, O, such
that the corresponding asymptotic cycles [O;]/per(O;) span a non degen-
erate m-simplex in H,(M ; R) such that the origin belongs to the interior
of the n-simplex. Then the origin belongs to the interior of the simplex
spaned by [O;]. Let (L;)=(m{", ---,m{_,), m{?=m{" denote the admis-
sible loop corresponding to O; O;=y(L;). For an element feF, let
(A, mP)=(f, ---, m{’) and (B, f)=(m", ---,f) be admissible paths from
f to m§{» and from m{® to f, respectively. For a positive integer N,
consider the admissible loop

N
(L:):(An Liy Sty Liv Bi)'

Put O;=y(L}). Then the homology class of this orbit is written as

follows.
[O/1=NI[O]+[7(As, B)].

Since the origin belongs to the interior of the simplex spaned by [O:l,
it belongs to the interior of the simplex spaned by [O!] for a large
integer N. Since the homology classes [0!] are integral classes, there
exist positive integers k; such that

_i‘o k[0/]=0.

Let L be the admissible loop given by
ko kn

L

(LY=(Lt, ---, I, L - ).

Then the closed orbit O=y(L) is homologous to zero.

At the end of this section we show that, by using a result of Fried
([4]), Theorem 4.1 implies Proposition 2.3.

A SecoND PROOF OF PROPOSITION 2.3. Suppose that the above V is
1-dimensional. We take the hyperbolic symbolic flow of finite type
(Ag, o) and the semiconjugacy h as before. An admissible loop (I)=
(Mg, - -+, M,_,) is called minimal if m, are distinct. By Theorem 4.1, if
there are no null homologous closed orbits, the simplex spanned by the
homology classes [7(l,)] and [y(l)] for any two minimal loops (I,) and (I,
does not contain the origin. Then the set of [r(l)] lies on one of the
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components of V—{0}. Now a result of Fried ([4, Theorem H]) says
that if there is a rational 1-dimensional cohomology class which is positive
on 7(l) for all minimal loops, then there is a cross section. By choosing
an appropriate cohomology class and applying this result, there is a cross
section for ¢|X. The converse is clear; if there is a cross section, there
are no null homologous closed orbits in X.
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