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I. Introduction

In this paper we will prove a sharpened form of an L-value con-
gruence which appears in [3] by using the results of P. Deligne and K.
Ribet in [4].

Let p, » and ¢ be prime numbers such that p=r=—q=3 mod4

and for which one has Legendre symbols (5):(2):-—1. By [3, Prop.

4.1.3], there is a unique complex Galois extension N of Q for which
G=Gal(N/Q) is isomorphic to the quaternion group H; of order eight, and
such that N is ramified at exactly p, r, ¢ and infinity. Let V be the
two dimensional irreducible representation of G, and let L(s, V) be the
Artin L-function of V. Define S to be the set of prime numbers [ for

which /=1 mod4 and G,):(é):—((l):l. If d>1 is an odd square-

free integer, we will denote by ¢,(x) the primitive quadratic Dirichlet
character of conductor d.

THEOREM 1.1. For 1€ S, L(0, V) and L(0, VRt,) are rational inte-
gers exactly divisitble by 8 and 16, respectively. One has

L(0, VRt)=2L(0, V) mod 64 Z.

The motivation for Theorem 1.1 is the conjecture that 2, (L/K)=
W if L/K is a finite normal extension of number fields, where 2,.(L/K)
is the multiplicative invariant of L/K, and W, is the Cassou-Nogués
Frohlich class of L/K. (See [3], [1], [2].) More precisely, Theorem 1.1
is related to the compatibility of the 2,(L/K)= W, conjecture under
twisting, in the following way.

For 1€S there is a unique extension N[l]/Q other than N/Q for
which Gal(N[l]/Q) is isomorphie to Hy; and for which N[I] C N(+/T). In
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[3] it was shown that if Q,(N[l]/Q)= Wypuye for a sufficiently large finite
set S, of 1 in S, then Q,(N[I]/Q)=Wypye for all [ in S. The analytic
ingredient in the proof was the existence of a finite Galois extension H
of Q, depending only on N, such that if €S is unramified in H, then
the Frobenius conjugacy class of ! in Gal(H/Q) determines L(0, V&t
mod 64 Z. Theorem 1.1 shows one can take H=0Q.

The finite subset S, discussed above is effectively computable from
p, r and ¢, but is quite large in general. To show that S, can be taken
to be any non-empty subset of S, one would need to combine Theorem
1.1 with a sharpened form of the algebraic result in [3, Corollary 4.3.3].
The proof of [3, Theorem 4.3.4] suggests how to go about sharpening [3,
Corollary 4.3.3], but we will not undertake this here.

Of course, it would be desirable to show that one can take the set
S, above to be empty, or more generally to show 2,.(L|Q)=W,,, for all
Hgextensions L/Q. To prove Theorem 1.1, we will need only the con-
gruences proved by Deligne and Ribet in [4] via Hilbert modular
Eisenstein series. It seems likely that one will also have to use Hilbert
modular theta series and cusp forms in order to study the 2,(L/Q)=
Wie conjecture for arbitrary Hg-extensions L/Q by the methods in this
paper and in [3].

Theorem 1.1 will be proved by the reduction-of-level method discussed
in [3]. Because this method can be applied to prove other L-value con-
gruences, we now outline it by means of the present case. We will
discuss only two-adic congruences, though one could similarly consider
p-adic congruences for odd primes p.

The L-function L(s, VQt,) equals L(s, x.&¢,) for an odd ray class
character 3,Q¢, of K=Q(+pr). We analyze L(0, VRt,)=L(0, %.Q¢)
by finding a linear combination e=3Y a,y of ray class characters of K
with the following properties. First, the values of e lie in a finite
extension L of Q, and are two-adically close to 0. Second, L(0, €)=
> a,L(0, %) equals L(0, x-®¢:) plus X b.L(0, &) for some linear combina-
tion 3 be£ of ray class characters & for which the conductor of the prim-
itive character £’ associated to & properly divides that of %,®¢.. One
shows that L(0,¢€) is two-adically close to zero using either Shintani’s
formulas [6], as in [3], or by using the extra two-adic divisibilities of
Deligne and Ribet, as in the present paper. The principal advantage of
using Deligne and Ribet’s results is in avoiding the elementary ‘error
terms’ which arose in [3, Prop. 6.3.10] from Shintani’s formulas. One
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then has

(1.1) L0, 1:Q¢) =L(0, €) — 3 b L(0, &)

= —Y b.L(0, &) modulo a high power of 2.

If & is a primitive character inducing an imprimitive character &, one
has L(0,&)=E(& &)L(0,&'), where E(¢ &') is a finite product of Euler
factors of L(s, &) evaluated at s=0. Substituting this into (1.1), one is
reduced to evaluating each L(0,&’) modulo a high power of 2, this power
depending on b.E(¢,&). One may try to do this by evaluating L(0, &)
explicitly modulo the required power of 2, or by applying the reduction
of level method to &, where now &' has strictly smaller conductor than
our original character y.X¢..

Acknowledgement: The author would like to thank MSRI, the NSF and
the Sloan Foundation for their support during the preparation of this

paper.

II. A special case of Deligne and Ribet’s results

Let K be a totally real number field. Let F' be a non-zero integral
ideal of K. Let Gy be the striect ray class group of K conductor F.
Define G to be the strict ray class group of K of conductor F=2*. For
€ a complex valued function on Gy, define

L(s, €)= €(x) Norm(x)~®

for Re(s)>1, where the sum is over integral prime to F' ideals x of K.
Then L(s, €) has a meromorphic continuation to all s€C, and L(s, ¢) is
holomorphic except possibly at s=1, where it can have at most a simple
pole. In particular, L(0, ¢) is well-defined. By a Theorem of Siegel [7],
if € takes values in a Q vector space W, then L(0,¢) lies in W.

Let Jl : G—Z¥ be the continuous character whose value on the
image in G of a prime to 2F ideal is its norm. For c€ G, define ¢, to
be the function on G for which ¢(g9)=¢(cg), where the product cg is
computed in Gr. If ¢ takes values in a finite extension L of Q,, define

4.(0, €)=L(0, ¢) —J1(c) L(0, €.)

so that 4,(0,¢)€ L. A function € on Gy is even (resp. odd) if for each
real place v of K and each g € Gy, we have €(s,9) =¢(g) (resp. €(,9)= —e(g)),
where o, is a Frobenius element for v in Gj.
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The following Theorem results from [4, Thm. 8.4 and Prop. 8.8] and
from the linearity of 4,(0,¢) in e.

THEOREM 2.1 (Deligne and Ribet). Suppose F is not the trivial ideal.
Let € be an odd function from Gg to the ring of integers O, of a finite
extension L of Q,. Then 4.(0,¢) lies in 20, for all ¢ in G, where r=
[K:Q]

COROLLARY 2.2. Let K(p) be the extemsion of K generated by all
roots of unity of two-power order. Let Kyp be the strict ray class field
of K of conductor F. Suppose that Kp and K(pw) are disjoint over K.
(This will be the case if F is prime to 2 and K 1s unramified above 2.)
Let d be an element of Gr. Then there is an element ¢ of G with 1mage
d in Gy for which Jlc)=1 in ZF. For this ¢ and € as in Theorem 2.1,
we have 4.(0,€)=L(0,e—e,) €20, If € is an odd character of Gy then
L(0,e—e¢,)=(1—€(d))L(0, €), where e(d)=¢(c).

Proor. Let K’ be the maximal abelian extension of K which is
unramified at all finite primes of K which are relatively prime to 2F.
Then Gal(K'|K)=Gyr-=G. The existence of ¢ follows from the fact that
the norm Jl:G— Z¥=Gal(Q(¢~)/Q) corresponds to restriction of auto-
morphisms from K’ to Q(¢.=). If € is a character of Gy, then L(s, €)=
> e.(x) Norm(z)*=3 e(c)e(x) Norm(x) *=e(d) L(s, €), so L(0, €,)=¢(d)L(0, ¢€).

III. Characters of some ray class groups of Q(V/pr)

Let K=Q(~/pr). Suppose that f and f’ are integral ideals of K, and
that y is a character of the strict ray class group G, If f’ is divisible
by the conductor of the primitive character y’ which induces y, then we
will denote by ,x the character of G, induced by ¥’

Let P and P, be the prime ideals of K over p and r, respectively

Since< Xq> < X )——1-—1—-1 the prime ¢ splits in K as
P,P,. Let P and P_ be the two infinite places of K. Fix [€S. Since
(plr)zl, [ splits in K as P,P,.

PROPOSITION 3.1. The group G./G} is tsomorphic to (Z[2)°. The even
characters of G./G: are induced by the elements of S,={¢, ¢, ¢V, di},
where ¢, (resp. ¢) is a primitive quadratic character of conductor P,
(resp. P,), ¢, 1s the trivial character, and ¢,=¢] ) =t,cNormge 18 prim-
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itive and quadratic of conductor IOx=P/P, The odd characters of
G,/G? have the form 3, ¢, where ¢ is tn S, and ¥, ts the primitive odd
quadratic character of conductor 1 corresponding by class field theory to
the quadratic extension K(v/ —p) of K.

Proor. By genus theory, the class number of K is odd. Let J be
the multiplicative group of elements of K* which are prime to P,P,.
Define h:J—(Z/2)* by letting h(a) for « in J have coordinates the
quadratic residue symbols of « at P,, P, P, and P.. The ideal content
map induces an isomorphism

(Z/2)* _ 1 e
(3.1) h—(@,";—)—Gl/Gl'
where 0% is the unit group of K. Under this isomorphism, the even
characters of G,/G; are those induced by characters of (Z/2)* which are
trivial on the factors corresponding to P, and P, as well as on h(O%).
By [3, Lemma 4.2.1], there is a totally positive fundamental unit
€, for K. The extension K(v/ —p)=K(v/—7r) of K is quadratic and un-
ramified at all finite primes of K since —p=—r=1mod4. Hence the
quadratic character y, associated to K(v/ —p)/K is odd of conductor 1.

By Kummer theory, K(v —p)=K(v —¢,,). Now (;)):1 by assumption,

so the primes P, and P, over [ in K split in K(v/—p)=K(+ —¢,,). Hence
—e¢,, is a square at both P, and P,. Since [=1mod4, it follows that all
the units of K are squares at P, and P,. Proposition 8.1 now follows
from the isomorphism (3.1).

ProposiTION 3.2. Let f=P,P,P,P,=P,P,q. The group G,=G,/G} is
isomorphic to (Z[4)D(Z/2)°. The representation V im Theorem 1.1 has
the form Indgy. for a faithful, odd, primitive quartic character ¥, of
Gs. The character x5 is induced by a primitive even quadratic character
t, of conductor qOx, where p, corresponds by class field theory to the ex-
tension K(v q)/K. There is a unique primitive odd quadratic character
Ys (resp. xb) of conductor P,P.P, (resp. P,P,P,). Let y, be as in Proposi-
tion 3.1. Then there is a unique primitive odd quartic character y, of
conductor qOx such that ;.= %% There is a unique odd primitive
quartic Dirichlet character 2, of conductor q if q=5mod8 and of con-
ductor pq if q=1mod 8 such that y, is the primitive character associated
to A,0Normg,e. The odd characters of G, which factor through G, are
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induced by the elements of the following set of primitive characters:

S={, e Yo Lo Az = o Yoo X Ao X X =P Ah-
The set of even characters of G, factoring through G, is ,x-S.

PrOOF. Let I be the multiplicative group of elements of K which
are relatively prime to f. Let g:I—(Ok/f)*P{x1}H{+1}=B be the
homomorphism such that the first coordinate of g(«) is the residue class
of @ mod f, and the last two coordinates of g(a) are the signs of « at
P, and P.. Let ¢’:I—>B/B‘=B’ be the composition of g with the
quotient map B——B/B*. Since K has odd class number, ¢’ induces an
isomorphism

(3.2) B¢’ (0%)=G,|G}.

For P a prime ideal of K and j a positive integer, define F(P,j)=
Ok/P)*|((Og/P)*)’. For P=P, or P, let F(P,2)=F(P,4)={+1}. Since
p=r=—1mod4 and the primes over p, r and ¢ in K have residue field
degree 1, we have

(33) B'=F(P, 2)xF(P,, 2) X F(P, 4 x F(P, 4) X F(P.., 2) X F(P... 2).

As in the proof of Proposition 3.1, we have K(v —p)=K(V —¢,,)
when ¢,, is a totally positive fundamental unit for K. By quadratic

reciprocity, <g>:(§> and (g)):—l by assumption. Hence —e¢,. is a

non-square at each of the primes P, and P, over ¢ in K. Since q=1
mod 4, it follows that ¢,, is a non-square at P, and P,, Hence the image
e of ¢,, in F(P, 4) is a generator of F(P, 4). Let € be the image of ¢
in F(P,, 4) under the nontrivial automorphism of Gal(K/Q). The image
of —1 generates F'(P,,2) and F(P,, 2) since P, and P, have residue field
degree 1 and p=r=3 mod4. Define =1 if ¢,, is a square at P, and let
0=—1 otherwise. Let y=2 if ¢g=b6mod8 and let y=4 if ¢=1mod8.
We now claim that in terms of the factorization of B’ in (3.3), the images
of —1 and ¢, under ¢’ are given by the following table.

TABLE 3.3. The images of —1 and e, under ¢’'.
F(p,2) F(P,2 FP,4 FP,4) F(P,2 FP,2)

-1 —1 -1 € e —1 —1
o 9 —9 € et 1 1
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The entries for —1 in this table are clear. Since ¢,, is totally positive,
the last two components of ¢'(¢,,) equal 1. Because ¢, =¢;} if ¢ is the
nontrivial element of Gal(K/Q), the third and fourth components of g¢'(e,,)
are as indicated. The first component of ¢’(¢,,) is @ by definition. Sup-
pose that the second component of ¢’(¢,,) were equal to @ rather than
—0. Then there would be a quadratic extension K’ of K which ramifies
only over P, and P,. This K’ would be Galois over Q; but since p=
r=3 mod 4, there are no quartic Galois extensions of Q ramified only
over p and ». This establishes Table 3.3.

From Table 3.3 one sees that ¢’(O%) is isomorphic to (Z/4)P(Z/2).
Hence (3.2) shows G,/G% is isomorphic to (Z/4)+(Z/2)®. We will now give
the local components of the characters of B’ which by (3.2) induce the
characters of G, appearing in Proposition 3.2.

Let @ be a character of order 4 of F(P, 4). Define @ to be the
character @oc of F(P,4). For Pc{P, P. P, P.} and j=2 or 4, let
(=)=(—)r be the (unique, quadratic) non-trivial character of F(P,j), and
let 1=1; be the trivial character of F(P,j).

TABLE 3.4. Local components of some characters of B'.

F(P,2) F(P,2) F(P,4) F(P,4) F(P.2) F(P..?2)

X 1 1 1
e (=) (=) @ o (-) (=)
X (=) (=) (=) 1 (=) (=)
%a 1 1 o o (=) (=)

=
—
—
—
—

One readily verifies from Table 3.3 that the characters of Table 3.4
are trivial on ¢’(—1) and ¢'(¢,,), and hence that they give characters of
G,;. The character ;x,=y. is primitive, and satisfies y,00=y%;'. Further-
more, the restriction of 7, to rational ideals relatively prime to prq is

the Dirichlet character mod prq induced by the Legendre symbol (Z?k r)_

Since %, is odd, it follows from [5, exercise 7] that the fixed field N’ of
. is a quaternion extension of Q which ramifies at exactly p, 7, ¢ and co.
By [3, Prop. 4.1.3], we must have N'=N, and so V=Indg,), is the
unique two-dimensional irreducible representation of Gal(N/Q). The re-
maining assertions in Proposition 3.2 are readily verified from Table 3.4.
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The following Corollary will be used in the proof of Theorem 1.1.

COROLLARY 8.5. Let 1 be a fixed fourth root of unity. There is an
element d of Gy, such that ,¢p(d)=1 for ¢€{d, ¢, oV, o, axe(d)=
add)=1 and ;i (d)=sxs(d)=—1. For this d one has ;p,(d)=—1.

ProorF. From Table 3.4 it is clear that we can construct a d’e B’
which has nontrivial components only at the factors F(P,, 4) and F(P.,2)
of B’ such that ,x.(d')=,x(d")=1% and x5 (d')=,x(d")=—1. Since ,z¢,=
(%)’ we have ,u,(d)=—1. Let d” be the image of d’ in G,/G}. Let
Gi be the wide ideal class group of K of conductor (Ox=P,P,. By
Proposition 3.1, the character group of G{.=G7/(G{)* is {i, @l PV, i}
Let K, (resp. K;,) be the abelian extension of K corresponding to G,
(resp. G;/G%) by class field theory. Since K/, K is unramified over [,
and every nontrivial subextension of Kj,/K is ramified over [, the fields
K;, and K}, are disjoint over K. Hence since Gal(K;/K)=G}, and
Gal(K,.,/K)=G,/G} are both quotients of G,;, we can find a lift d of d”
to G, such that ¢(d)=1 for all characters ¢ of G{,. This d satisfies
all our requirements.

IV. Proof of Theorem 1.1

Throughout this section we will assume the notations of Propositions
3.1 and 3.2, and we will let V and ¢, be as in Theorem 1.1.

LEMMA 4.1. The numbers L(0, V)=L(0, x.) and L(0, VQt,) = L(0, 1)
are rational integers which are exactly divisible by 8 and by 16, respec-
tively.

Proor. Since V=Indg,ox. and VRt =Indg o).y we have L(0, V)=
L(0, %) and L(0, VQt,)=L(0, y¢,). In [3, Prop. 4.3.7] it is shown that
L(0, VRt,) is a rational integer exactly divisible by 16. When one
replaces I by 1, the same arguments show L(0, V) is a rational integer
exactly divisible by 8.

DEFINITION 4.2. Let f and d € G, be as in Corollary 3.5. Let F=fI
in Theorem 2.1, and let ¢ € G=Gy»p~ be defined as in Corollary 2.2 for
the above d€ Gyr. Let S and S, be as in Propositions 8.1 and 8.2. Let
k be the odd function from Gy to Q.(i) defined by
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LEMMA 4.8. The values of h lie in 16 Z,.

ProoF. By Propositions 3.1 and 3.2, the set {zxy x ¢:x €S and ¢ €S}
is a group of characters of Gr. The order of this group is 32. Hence
#Xa b takes values in 16 Z,, so h does as well.

Now Theorem 2.1 gives

COROLLARY 4.4. 4.(0,h)= 3 X 4.(0, »(x¢))/2 lies in 64 Z,.

XES ¢ES;

In the next paragraphs we analyze the contributions mod 64 Z,[¢] of
various terms in the sum for 4,(0, ) in Corollary 4.4.

IV. 1. x€{) 22"} and ¢ € {¢y, ¢}

By Corollary 2.2 and our normalization of d and ¢ we have

(4.1) 4.(0, rXz ¢)+4.(0, rxz'¢)
=(1—sxz ¢(A) L0, rxe ¢)+(1—rxz'¢(d)) L0, rxz’¢)
=(1—1¢(d)) L(0, rx= ¢)+(1+i4(d)) L(0, rxs'¢)-

Now Indgox:=Indkox:", and F is fixed by Gal(K/Q). It follows that
L(0, pxs ¢)=L(0, rxz'¢). Thus the sum in (4.1) equals 2L(0, ry, ¢). If
¢=¢, then y, ¢, is primitive of conductor F, so L(0, r(x. ¢:))=L(0, % ¢,
and this is equal to L(0, VQt,) by Lemma 4.1. Suppose now that ¢=¢,.
Then

(4.2) L(0, #(xz ¢1)) = (1 — %o P1)) (1 — %2 P1)) L0, %e)-

By Proposition 3.2, xﬁ(Pz)=((lI

Since the nontrivial element of Gal(K/Q) takes y, to x:*, we have x,(P)=
Xe(P:)~'. Thus (4.2) is simply

L(0, r(x2 ¢1))=2L(0, %) =2L(0, V)

>:—1, S0 x(P:) is a fourth root of unity.

where the second equality is from Lemma 4.1. We conclude that

(4.3) 2 2 40, #(29))/2=L(0, V®t:)+2L(0, V).

1€{Xp13 ) dEldy )

IV. 2. % €{X x4} and ¢ € {Py, ¢, &Y, P}
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These terms contribute nothing to 4.(0, 2) mod 64 Z,[¢] because of
LEMMA 4.5. For y and ¢ as in IV. 2,
4.0, »(x¢))=0 mod 128 Z,.

Proor. Let L be the quadratic extension of K corresponding to x¢
by class field theory. We have L(s, x¢)=C(.(s)/Cx(s), where {.(s) is the
zeta function of the number field k. One has

llm S_r(k)ck(s) = —hk Reg(k)/wk

30
where 7(k)=r,(k)+7,(k)—1 is the order of vanishing of {.(s) at s=0, h,
is the class number of k, Reg(k) is the regulator of %k, and w, is the
number of roots of unity in k. Since 3¢ is an odd character, the func-
tional equation of L(s, x¢) shows L(s, x¢) does not vanish at s=0. Hence

w4 L0, 1) :1?: geegg((féiiﬁf '

Let f’ (resp. f”) be the conductor of the primitive character y (resp. ¢).
We have

frm P,P.P, if y=yxs
“\p,PP, if x=yx

and cond(x¢)=s"f". Thus L/K ramifies over odd primes of K, and L is

not Galois over Q. Since y¢ is an odd character, L is totally complex,

with r(L)=r(K)=1. It follows that w,=wr=2, the units of L and K

are equal, and Reg(L)=2Reg(K). Now (4.4) becomes

(4.5) L(0, x) =2h/hy.

Let @ be the number of prime ideals dividing f”. The class number
of K is odd, and L/K is quadratic and ramified over P., and P., and over
the 8340 prime divisors of cond(y¢)=f"f". Since 0% has two generators,
it follows from genus theory that 2°%9/22=2%+? divides the integer 2h./hx=
L(0, x¢). Now by Corollary 2.2,

4:(0, r(x¢)) = (1—29(d)) L(0, #(x¢))
=(1—x¢(d) T (1—xp(@)L(0, xg).

Q|F/cond(x¢)

Here y¢(d) and y¢(Q) for Q|F/cond(x¢) are in {+1}. Since there are
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6—(3+0) primes @ dividing F/cond(x¢), and 2**? divides L(0, x¢)€ Z,
we conclude that 27 divides 4.(0, r(x¢)) € Z. This proves Lemma 4.5.

IV. 3. %€ {x tt, 2} and @€ {¢y, &, &Y, i}

These terms contribute nothing to 4,(0, k). For later use, we prove
a slightly more general result.

24

LEMMA 4.6. Suppose that Y€ {x., ¢, 1} and ¢ E{¢y, ¢, o, ¢}, Let
F,|F be an integral ideal divisible by gq, by the conductor of the (primi-
tive) character 3¢, and by at least ome of the primes P, or P,. Then

4.0, 5, (X)) =0 3f ¢’€{c, ¢}

Proor. From Corollaries 3.5 and 2.2 we have y(c)=pg,(c)=—1 and
¢(c)=1. Hence

400, 5, (00 2o P))=[1=20 g P(ENL(O, 5,(Xa 4 ¢))=0.

We are thus reduced to considering the case in which y=y. We will
need the following table.

TABLE 4.7. Some character values B(P).

ﬁ\f P, P, P, P,
he -1 -1 1 1
& +1 F1 0 ?
o F1 +1 ? 0
R -1 —1 0 0

To establish this table, first note that by IProposition 3.1, y, corre-
sponds to the quadratic extension K(+/—p)/K. Since P, P, P, and P,
are of degree 1, and —(%):(é)zl, the first row in Table 4.7 is as
indicated. The last row of the table is clear from ¢,=%,0Normg,e where
t,(q)z(é):—l by assumption. Now ¢,=¢jo¢/, and Gal(K/Q) permutes

the elements of {¢], ¢/}, {P,, P} and {P, P,}. Hence the middle two rows
of Table 4.7 follow from the last one together {with the fact that ¢



776 Ted CHINBURG

(resp. ¢}') has conductor P, (resp. P,).

From Table 4.7 we see that if ¢ € {¢}, ¢/, ¢} then there is a prime
Pe{P, P} sol—y, ¢(P)=0. Hence since qOx=P,P, divides F, by assump-
tion, we conclude that L(0, r,(x: ¢))=0 for these ¢, and hence also that
4..(0, r,(x2 ¢))=0 in view of Corollary 2.2. The only remaining case is
when y=y, and ¢=¢,. Then if Pc{P, P} we have y, ¢(P)=x(P)=1
by Table 4.7. Since one of P, or P, divides F, by assumption, it follows
that L(0, r,(x1 ¢1)) and 4..(0, r,(x: ¢1)) are 0.

IV. 4. y€{te 27} and ¢ €{d, ¢, &, i}
These terms contribute nothing to 4.(0, k) mod 64 Z,[7] because of

ProPOSITION 4.8.

= > 40, 5(x9)=0  mod 128 Z;[i].

1eltg 1yt $Eld1, 61,954,
The following lemma will be used also in Section IV. 5.
LEMMA 4.9. The number L(0,y,) lies in 4 Z[1] but not in 4(1+1)Z,[7].

Proor. First suppose ¢g=1 mod 8. By Proposition 3.2 we have
sale=(rt,)oNormg,q, Where 7 is a primitive even quartic Dirichlet character
of conductor ¢ and t, is the Legendre symbol mod p. From this and
K=0(~pr) we have Indgox,=7t,+7t., where yt, and rt, are identified
with primitive Dirichlet characters of conductors gp and qr, respectively.
Hence L(0, x,)=L(0, rt,)- L(0, y¢,). If we show L(0,yt,) is in 2 Z][:] but
not in 2(1+1%)Z;[7], then the same will be true of L(0, 7t,) by symmetry,
and Lemma 4.9 will be proved when ¢=1 mod 8.

It is well known (cf. [4, Section 1]) that
L(0,2)= ¥ 2i) L)

J=1 2 m

if z is a (possibly imprimitive) Dirichlet character of conductor m. We
will write this as

(4.6) L(0, z) =0(2)p(m)/2— Jm; z(3)5/m

where 9(z)=1 if 2z is the trivial character mod m and 9(2)=0 otherwise,
and ¢(m) is Euler’s phi function. From this one has the following:
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If z is an odd character and m is odd, then

(m—1)/2

(4.7) L(0,2)=— % z(j)(—(m—j))/m

i=1
(m—1)/2

=% 2()(m—24)/m
Consider now the funection

€= (r—gt) - (L +,t)
=1l 7t —wts— b

on (Z/qp)*, where t, denotes the trivial Dirichlet character of conductor
1. The values of € are in 2(1+¢)Z,[¢]. Hence (4.6) gives

(4.8) L(0, €)=L(0, rt,) + L(0, 7,t.) — L(0, ,,t,) — L(0, ,,t,)
= —glgp)/2— 3 e(s)ijm
=0 mod 2(1+13)Z[7].
Since 7,t, and ,t, are even characters of conductor ¢p, we have
L(0, 7,t.) =L(0, ,,t,)=0.
Hence (4.8) gives
(4.9) L(0, yt,)=L(0, ,,t,) mod 2(1+1)Z,[7].
Here

L(0, ot,) = (1—1,(9) L(0, t,)

=(1-(2))'E bl -2l

=2 mod 427,

since (;1;):(2):—1» t, is an odd character of conductor p, and p=3

mod 4. Now (4.9) shows L(0, rt,) is in 2 Z,[4] but not 2(1+7)Z,[%], so by
our earlier remarks, we have proved Lemma 4.9 when ¢g=1 mod 8.

Now suppose that ¢g=5 mod 8 By Proposition 3.2 we have y,=
AoNormyg,, where 2 is a primitive odd Dirichlet character of conductor
g. Hence in this case we have Indgy,=2+4t,, so

(4.10) L(0, x,)=L(0, 2)- L(0, at,.).

Now (4.7) gives



778 Ted CHINBURG

(¢-1)/2

(4.11) L(0, 2)= ; A(5)(a—27)/q

(¢=1)/2

= Z; A(3) mod 2 ZjJi].

Since A(—j)=—4(7), exactly half of the integers j in the interval [1,
(q—1)/2] have 2(j)==1, while A(j)==+1 for the remaining j. Since
(g—1)/4 is odd, we conclude from (4.11) that

(4.12) L(0,2)=147 mod 2 Z3].
Consider now the function
€=2 b+ 2 5t + 4 b+ Ay,
on (Z/prq)*. This function takes values in 4 Z,[¢], so (4.6) gives
(4.13) L(0,e)=L(0, 2 ,.t,)+L(0,2 ,t,)+L(0, 2 ,t,)+L(0, it,,)

pr

% —ealil(pra)
0 mod 4Zjf1].

I

-

if

Since 2 ,,t, and 2 ,t, are even Dirichlet characters, we have L(0, 2 ,,t,)=
L0, 2 ,.t.)=0. Thus (4.13) shows

(4.14) L(0, 2t,.)=—L(0, 2 ,,t;) mod 4 Z;7].
Now
(4.15) L(0,2 ,.t)=(1—2(p))(L—A(r))L(0, 2).

Since 2* is the Legendre symbol mod ¢, both A(p) and A(r) are fourth
roots of unity. Hence (4.15) and (4.12) show L(0, 2 ,.t,) lies in (1+%)® Z[7]
but not in 4 ZJ[i]. Hence (4.14), (4.12) and (4.10) show L(0,%,) is in
4 Z,[7] but not 4(1+14)Z[7], so Lemma 4.9 is proved.

LEMMA 4.10. Let F'=P,P,P,P, and suppose 7€ {x,x:'} and
de{d, ¢, o7, ). Then x¢p(P,) and y¢(P,) are primitive fourth roots
of umity, so y¢(P,P,)==x1. One has
24,0, . (x4)) if xp(PP)=1,
—2xP(P)4.(0, » (x¢))  of 2$(PpPr)=—1.

Proor. By Propositions 8.1 and 3.2, the primitive character associated

440, )=
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to (x¢)® is p,=t,oNormg,e Now yq(Pp)zt,,('p)=<g>=—1, and similarly

t(P,)=—1. Hence y¢(P,) and 3¢(P,) are primitive fourth roots of unity,
so x¢(P,P,)=+1. Since F'=F'P,P, we have

4.(0, #(x9)) = (L—xP(P,)) (L= (P,)) 4.(0, r.(x$))

so the last statement in the Lemma is clear.

LeMMA 4.11. Define 0=0 if y,(P,P,)=1 and let d=1 otherwise. Let
F'=P,P,PP, and let T be the following function on Gg:

T= > 2 2(—(xP) (Po))?r (1)
1€y iy k) $€191,971,97,94)
Here (—(x¢)(P,))? ts in {1, =1}, and this number is 1 1f 0=0. Then
4,0, T) lies tn 128 Z[1].

PrROOF. As 7y ranges over {x, ' %u Y # and ¢ ranges over
{1, @1, &Y, i}, the character r (y¢y.) ranges over a group of characters
of Gy., this group having order 16. Hence the function 77 which is the
sum of these r (y¢y.) takes values in 16 Z. Suppose a€Gr. We have
T(a)=2y(a) ' T"(a) if 8=0. If 9=1 then T(a)=—2y(8)'T"(8), where
B=[P,]Ja and [P,] denotes the image of P,in Gr. Thus T takes values
in 82 Z[7] in all cases. Hence Lemma 4.11 follows from Theorem 2.1.

LEMMA 4.12. ¢|(P,P,)=¢/(P,P)==+1 and ¢ (P,P,)=¢(P,P,)=1.

ProOF. We have ¢1(P,,P,)=t,(pr)=(pf>=1. Since ¢=¢] ¢/ and ¢

and ¢/ are quadratic, the lemma follows.
To prove Proposition 4.8, we now distinguish two cases.

Case 1. ¢j(P,P,)=1.

Suppose ¢ € {¢y, ¢, OV, di}. Since ¢}(P,P,)=1 by hypothesis,
¢(P,P,)=1 by Proposition 3.1. Hence y, ¢(P,P,) =y;'¢(P,P,)=y,P,P,)=
+1. Now Lemma 4.10 gives 4.(0, r(x¢))=2(—x¢(P,))?4.(0, .(x¢)) if
1€ e 277}, Thus

DN 2 40, 2(x¢))}— 4.0, T)
X€{Xgxy } 9€Ld1,97,97:4))
= X 2 —2(—x¢(P,))°4.(0, 5. (x9)).

XElXL A Kyt $ELD191,47.4))
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By Lemma 4.6, each of the terms in the double sum on the right hand
side is 0. Since 4.(0, T') € 128 Z,[t] by Lemma 4.11, this implies Proposi-
tion 4.8 in case 1.

Case 2. ¢j(P,P,)=—1.

Suppose ¥ € {x,, x:*}- By Proposition 3.1, y¢,(P,P,) =x¢,(P,P,) =2.(P,P:)
and y¢i(P,P,)=x¢!(P,P,)=—x,(P,P,). Hence Lemma 4.10 gives

{2 2z 4:(0, r(x$)}—4:(0, T)

relug 't 9199404
= X X (=2+40)(1+x9(Py)4:(0, r (x4))
1elrgpayt GE€165.97)

-z 2 2(— (1) (P5))°4.(0, r.(x)).

X€lxp Xy kgt $€141,97:¢7,41)

By Lemma 4.6, the second double sum on the right hand side is identi-
cally 0. Since 4.0, T) € 128 Z,[i] by Lemma 4.11, we conclude that

(4.16) 2 2 4.0, #(x9))

1€ty ) G EldL )97 ¢)
= X X (—2+49)(1+x9(P))4.(0, 7 (x¢)) mod 128 Z;[1].

reltg ) deld e

Let Gal(K/Q)={1,0}. Then x;=yx, (¢)°=¢/, F"=F', P;=P, and
¢di(c)=¢)(c). Thus if € {x, x;'} we have

(L+ 21 (Po) 4:(0, £ (x1) = (L +x1(P,)) (1 —xi(€)) L (O, r(x¢1))
(1421 (Py)) (1 —x ¢’ (€)) L(O, r (x¢r"))
(L+x¢ (P,)) 400, 7 (x41).

Il

Thus (4.16) becomes
(4.17) > P 4,00, »(x9))

IR R I U IR T )]

= T (—4+89)(1+x4i(P,)4:(0, 5. (x$1)) mod 128 Zy[i].

1€ltg 1y )
Let W be the function on Gy, defined by
W= Py Z (+xp(Py) e (24)-

ey Lapng ty) $€191,97)

Then W takes values in 8Z, so 4,00, W)€322Z,[i] by Theorem 2.1.
Hence we may subtract (—4-+89)4,(0, W) from the right hand side of
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(4.17) to have
(4.18) ) > 4.0, #(x¢))

1E Tl GEldy, ¢, 07,01
°%q 1

= ¥ (4-8)1+xhi(P) 40, r(xdr)

-1
relxgay )

+ Z T (4—80)(1+x4(P,)4.(0, r.(x¢)) mod 128 Zj1].

x€{xp X Hg) $ELI1 Y]

By Lemma 4.6, each of the terms in the double sum on the right
hand side of (4.18) is identically 0. Since ¢, is the trivial character, we
may now rewrite (4.18) as

(4.19) 2z 2z 4:(0, #(x9))

1€ X, ) G €D )40}

= 3 (4—83)(1+x(P,))4.(0, »y) mod 128 ZJ[4].
1€y )

For y € {x, x;'} we have
4,00, p.y) = (1—=2(0) (1 —x(P.)) (1 —x(P.)) L(0, ).

Since yx;' is the conjugate of yx, by the non-trivial automorphism of
Gal(Q(2)/Q), we conclude that

(4.20) ) (4—80) (1 +2(P,))4:(0, rx) =Traceq)q(B)
XElxXg Xy
where
B=(4—80)(1+2,(P;))4.(0, rx,) B
= (4—80) (L +2,(P)) (1 —x4(€)) (1 — %o(P2)) (L — 24 (P)) L0, ,)-

By Corollaries 3.5 and 2.2 and Proposition 8.2, each of x,(c), %(P)), % (P))
and y,(P,) are primitive fourth roots of unity. Since L(0,y,) lies in
47ZJ[1] by Lemma 49, B lies in 4-(1+47)*-42Z[1]=64 Z[i]. Hence
Tracequ)e(8) is in 128 Z[7], so we are done by (4.20) and (4.19).

IV. 5. 2 €{x xz'} and ¢ € {¢], '}
ProrosiTION 4.13.

> > 4,00, £(x¢) =64 mod 128 Z[3].

relagazt deldq.of

The proof of this proposition requires several preliminary results,
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and will be completed after Lemma 4.22 below.

LEMMA 4.14.
hM) 2 400, p(x¢9) =2{L(0, r(x= ¢1))+ L0, p(xz'¢)}.

1€l ) deld] o]

Proor. Let Gal(K/Q)={l1,0}. We have yi=y7", (¢1)°’=¢) and F=F".

Hence L(0, »(xi"¢1)) =L(0, r(x"¢7)") =L(0, (x5 '¢7)). Thus since ¢i(c) =¢i'(c)
=1 and yx.(c) is a primitive fourth root of unity, we have

2z 2 A0, #(x9))

1eltp gl $Eld} 95
= (1—x2(€)) L(0, r(xz ¢1) +(1—x2(c)) L(O, r(x2 ¢V))
+(L—x"(e) L0, p(x:'¢1) +(1—x2'(e)) L(O, »(xi'¢1))
=(1—2ale) +1 =22 () (L0, r(x2 ¢1)) +L(0, r(xz'¢)))
=2{L(0, r(x= ¢1))+L(0, r(xs'¢1)}-

COROLLARY 4.15. There is a ¢ €{c,c™} so y&'¢i(c')=y3'¢|(P). Let
—P,P,P,P,P,=F|P, Then

(4.21) > > 4.0, #(x¢)

1elipay ) deldgoq)
=2{4..(0, 5-(x2 ¢1) +4..(0, p.(xz"¢7)}.

Proor. By Proposition 3.2 and Corollaries 8.5 and 2.2, 3.(P,) and
x=(c) are primitive fourth roots of unity. Since ¢] is quadratic character,
we can find a ¢’ as in the Lemma. Smce Xz $'¢) is a primitive character
of conductor F”, we have

L( ) F(Xz ) = (1—xi'¢i (P))L(0, p(x¢1))
=1—x"¢i(¢")) L (,F(leslf’))
=4..(0, 7. (x5"¢1))-

Hence (4.21) follows from Lemma 4.14.
LEMMA 4.16. Let F” be as in Corollary 4.15, and let S be the set

of characters defined in Proposition 3.2. Define T' to be the following
function on Gg.:

=23 X rUd-

1€S dEldpd))

Then 4.0, T")=0 mod 128 Z[1].
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Proor. By Propositions 3.2 and 3.1, n(x)T'/2 is a sum of the
elements of a group of characters of Gz, this group having order 2§S—=
16. Hence T’ takes values in 32 Z,[¢], so 4..(0, T")=0 mod 128 Z[7] by
Theorem 2.1.

COROLLARY 4.17.

(4.22) X 40 xd)
X€lxgxg '} dELGL O}
=—2{4..(0, p(xe)) + 4.0, p-(xz"))}—2 T 2 40, m(x4))

relxg ;) deldp o))

mod 128 ZJ[i].

Proor. Subtract 4..(0, T’) €128 Z[1] from the right hand side of
(4.21) in Corollary 4.15. Since r.(xi'¢y)=r.(x3"), one gets the terms on
the right hand side of (4.22) in addition to the following terms:

(4.23) -2 ¥ 2 400, m(xg)
x€f{xg,x3} ¢€1d1,¢)
(4.24) -2 ¥ 2 4.0, o (x).

1Elt X #y) $E€1d1,6)

One shows that (4.23) lies in 128 Z,[¢] by an argument very similar to
that of Lemma 4.5. (The fact that one is now working with conductor
F”=F|P, rather than F' is compensated by the fact that one is proving
a congruence which is weaker by one power of two than that in Lemma
45.) By Lemma 4.6, the sum in (4.24) is identically zero.

LEMMA 4.18.
2{4.(0, 5 () + 400, 5 (xz"))}=32(14-¢(P))) mod 128 Z,[1].

Proor. Since Indgex.=Indgey;* has rational character, we have
L(0, %)=L(0, xz") €Q. The conductor of y, is P,P,P,P,=F"|P,. Hence

(4.25) 4.0, 5 (x2) + 4. (0, -(x:7))
={(1=22(¢")) (1 —22(P)) + (L =z (¢") (L — 2™ (P))} L (0, 2)-

Since ¢’ € {c, c™'} we have ¢j(¢/)=1. Hence y.(¢/)=yx}(¢') =70)(P). Now
Xz(P)=7z"'(P)) is a primitive fourth root of unity by Proposition 8.2, and
¢{(P)==+1. On using these facts to simplify the right hand side of
(4.25) we get
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(4.26) 4::(0, g (Xz)l (0, 5 (x2")
={1—=% $1(P) —xa(P) + 2 (P P) i(P)

+1—x ' Pi(P) — 2 (P) + " (PP)I(P)ILAO, 1)
={2+2¢1(P)}L(0, Xz)-

By Lemma 4.1, L(0, x,) is a rational integer which is exactly divisible
by 8, so Lemma 4.18 follows from (4.26).

PROPOSITION 4.19.

2 2 > 4.0, m(x) =32(1—¢i(P,P,)) mod 128 Z,[1].

relagry ) veldy, 90}

To prove this proposition, we will need the following two lemmas,
which are proved in exactly the same way as Lemmas 4.10 and 4.11.

LEMMA 4.20. Let Fy=P,P,P, and suppose ¥ € {x, 2"} and ¢ € {¢, i}
Then y¢(P,) and xp(P,) are primitive fourth roots of unity, so y¢(P,P,)=
+1. Ome has

24,.(0, r,(x9)) if (P, P) =1,
—2¢$(P,) 4.0, £, (X)) of 29(PpP)=—1.
LEMMA 4.21. Define 8'=0 if x, ¢|(P,P,)=1 and let 9'=1 otherwise.

Let F,=P,P,P, as in Lemma 4.20, and let T” be the following function
on Gg,:

4,00, -29)) =|

T"= = E A= (P)" 5, (X9)-

XE(Xq,l;l,ll,Xlﬂq’ delddg)
Then 4,0, T”) lies in 128 Z,[1].
To prove Proposition 4.19, we now distinguish two cases.

Case 1. ¢j(P,P,)=1

Suppose ¥ € {x,, 2} and ¢ € {fy, ¢i}. In Case 1, x$(P,P,)=y,(P,P,)=
+1. Hence Lemma 4.20 gives 4,.(0, r(x¢))=2(—xP(P,))* 4..(0, 5, (X))
Therefore

2 X 40, p(x)}—4.(0, T")

relxgpty ) dEldp o))

= X Y A=) (P) 4.0, 5 (xP)).

XE{X X1 4} Y €LY, PY)
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By Lemma 4.6, each of the terms in the double sum on the right hand
side is 0. Since 4..(0, T”) € 128 Z,[i] by Lemma 4.21, this implies Proposi-
tion 4.19 in Case 1.

Case 2. ¢}|(P,P,)=—1.
Suppose x € {3, 2} In Case 2, x¢,(P,P,)=7y,P,P,) and y¢|(P,P,)=
—x.(P,P,). Hence Lemma 4.20 gives

4.0, p(x1)) =2(=x$1(P,))" 4..(0, £, (x41))

and

4.0, r-(x$1)) =2(—x1(P,)) " "14..(0, £, (x1)).
Thus

2 X Y 400, - (x)}— 4.0, T")

1€ty ;') dedn o))

= X (—4+80)(14xh(Py))4..(0, r,(x1)

-1
A€ (XgoXg )

- Z 2 A=) (P,)") 4.0, £,(x9)).

X€{X Xy Hg) dELGL 4}

By Lemma 4.6, the second double sum on the right hand side is identi-
cally 0. Since 4..(0, T7”) €128 Z,[1] by Lemma 4.21, and ¢, is the trivial
character, we conclude that

(4.27) 2 ¥ 2 4.0, p(x9)

relngxy 't deldy o))
= X (—4+8)(1+x(P))4.(0, r,(x)) mod 128 Zjz].

-1
XElLgxg )

Since y,;' is the complex conjugate of y,, we have

(4.28) X (—4+80)(1+%(Py)4.(0, £,(x)) =Tracequ o8’

1€l g )
where

B'=(—4+480")(1+2,(P,))4..(0, r,(1,)
= (—4+80") (1+24(Py)) (1 = xo(¢) (1 = 2o(P1)) L0, x,)-

Each of y,(P,), x.(¢’) and y%,(P,) are primitive fourth roots of unity,
and L(0, ¢,) lies in 4 Z,[i] but not in 4(1+1%)Z,[¢] by Lemma 4.9. Hence
B’ lies in 4(1+419)*4 Z[t]=32(1+1)Z,[¢] but not in 64 Z[i]. It follows that
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Traceg.o(f) =64 mod 128 Z,, Hence (4.27) and (4.28) show Proposition
4.19 in Case 2.

LEMMA 4.22. ¢)(P,P,)=d¢}(P).

Proor. (Compare [3, p.107-110].) By Proposition 3.1, {¢,, ¢1, ¢, ¢}
is the group of characters of G;/(G{)? when G{ is the narrow ray class
group of K of conductor I[Ox=P,P,. Let L be the biquadratic extension
of K which corresponds by eclass field theory to Gi/(G})>. Then L is a
Galois, non-abelian extension of Q of order 8. Since Gal(L/K)=(Z/2)D
(Z/2), Gal(L/Q) must be dihedral. The biquadratic subfield of L must
be Q(vpr, v/ 1) since I=1 mod 4. The places of Q ramified in L are
those determined by p, r and I, and the ramification degree of each of
these places is two. If L/Q(v/ 1) were eyclic, then all the inertia groups
of Gal(L/Q(+/ 1)) would be contained in Gal(L/Q(vpr,+/1)). But then
Q(Wpr, v 1)/Q(+/ 1) would be unramified, which is not true. Hence
L/Q(W'T) is biquadratic, and so L/Q(+v'prl) must be cyclic and unramified.

Suppose t=p, r or I, and let f(t) be the residue field degree of a
place of L over t. If t=p or r, then since P, is fixed by Gal(K/Q) and
has residue field degree 1, f(t) equals 1 if ¢;(P,)=1 and otherwise f(t)=2
and ¢|(P)=—1. If t=[, then f(I)=1 if ¢|(P,)=1 and otherwise f(I)=2
and ¢|(P)=—1. Thus the equality ¢j(P,P,)=¢}(P,) which we wish to
show is equivalent to

(4.29) Sp)+S(r)+/()=1 mod 2.

The extension L/Q(+/prl) is eyelic, quartic and unramified, and hence
Gal(L/Q(v/prl)) is identified via the Artin map with a quotient
Cl(Q(v/prl))/H of the ideal class group Cl(Q(vprl)) of Q(+v/prl). Let Q.
be the (ramified) prime of Q(+/prl) over t for t=p, r or l. Since the
primes over Q. in L have residue field degree 1 or 2, we conclude that
f(t)=1 if the ideal class [Q.] of @, lies in H, and otherwise f(t)=2 and
[@.] is not in H. Because (vprl)Oqwsi, is a principal ideal, we have
[Q,1-[Q.]-[Q]=1, and this implies (4.29).

ProoF OF PROPOSITION 4.29. By Corollary 4.17, Lemma 4.18 and
Proposition 4.19 we have

2 > A0, #(x9))

1elxpxz ) SEPL O
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= _32(1+¢{(P)+1—¢(P,P,) mod 128 ZJi].

Hence Proposition 4.13 follows from Lemma 4.22.

IV. 6. Completion of the proof of Theorem 1.1.

Let & be as in Definition 4.2, so 4.(0, k) € 64 Z, by Corollary 4.4. We
compute 4,(0, h) via equation (4.3), Lemma 4.5, Lemma 4.6, Proposition
4.8 and Proposition 4.13. This leads to the congruence

(4.30) L(0, VRt) +2L(0, V)+32=0 mod 64 Z[4].

By Lemma 4.1, L(0, VQt,) and L(0, V) are rational integers which are
exactly divisible by 16 and 8, respectively. Hence (4.30) implies

L(0, V®t)=2L(0, V) mod 64 Z

as claimed.

IV. 7. An example.

When (p, r,q)=(3,7,5), one has L(0, V)=—8, so Theorem 1.1 gives
L(0, VRt)=—16 mod 64 Z for [€S. This example was treated in [3,
Thm. 4.3.11] using Shintani’s formulas.
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