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On the pseudodifferential operators with real
analytic symbols and their applications™

By TRAN Duc Van

(Communicated by H. Komatsu)

In [2] Dubinskii presented a concept of pseudodifferential operators
with constant symbols analytic in an arbitrary domain GCRY and gave
various applications to mathematical physics. The basis of these appli-
cations is a nonformal algebra of differential operators of infinite order
(DOIO) as operators acting invariantly and continuously in the corre-
sponding Sobolev spaces of infinite order.

The need to study pseudodifferential operators with analytic symbol
having singularities arises even in the simplest problems of mathematical
physics [2]. To illustrate the idea on the use of pseudo-differential
operators with analytic symbols (P’DOAS) we consider the Dirichlet
problem for the Laplace equation

°u , 0*u
0.1 _ 4= =0, t>0, R,
(0.1) ot? +6m2 0 >0 @€
(0.2) (0, x)=0(x), |ult, 2)|<M< +oo,

where ¢(x) € Ly(R").
For solving this problem we put D;}l,a/ax and regarding D as a
)
real parameter, we find the solution of the ordinary differential equation

au
at’

—DU=0, U, D)=1, |U(t, D) |<M.

It is easy to see that U(t, D) =exp(—t|D|) and, consequently, a formal
solution of the problem (0.1)-(0.2) is presented by the formula

(0.3) u(t, ) =U(t, D)p(x) = exp(—t| D|)o(2),

*)  This work was done during the author’s visit to the University of Tokyo. He
thanks The Japan Society for the Promotion of Science for supporting his staying in Japan.
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where D now stands for the operator of differentiation, i.e. D:l,i?/ax.
)

The operator exp(—t|D|) has the analytic symbol exp(—t|&|) which
has a singularity at £=0. At that time, the formula (0.3) has meaning
if we put

| Dp(x) =Dy, () —Do_(x),
where
04)  pule)=o | 9O Ri=z>0), Ri={s<0),

and ¢ denotes the Fourier transform of ¢. Then the operator exp(—t D|)
acts on ¢(z) by the formula

exp(—t| D|)¢(x) = exp(—tD)o.(z) + exp(tD)p_(),
that is,
exp(—t D|)o(z)=¢,(z+1it) +o_(x—1it).

By the same token the solution of the problem (0.1)-(0.2) is written in
the form

u(l, ®) =@, (x+1it) +o_(x—1t),

where ¢.(x) are defined by (0.4). Substituting these expressions (0.4)
in the last formula we obtain the classical Poisson integral

_t o(y)dy
ule, =) *_Sm Bt (m—y)

T
Thus, the solvability of (0.1)-(0.2) is established.

We note that the domain of analyticity of the symbol exp(—t|&])
consists of two components R. and R, which correspond two function
spaces, where the operator exp(—t|D|) acts invariantly as an operator
of translation on =++4t, that is as a differential operator of infinite order.
Thus, in local the operator exp(—t|D|) is a differential operator of infinite
order acting in a corresponding suitable function space and, in this case,
DOIO is an instrument of investigation. But in the solution of problems,
that are ill-posed in the sense of Hadamard-Petrowskii, the use of the
¥DOASs constitutes] the very essence of the approach. It means that
the problems which are incorrect in the classical sense are correct in
the function spaces, where the corresponding DOASs act invariantly
and continuously. To illustrate this method we consider the Cauchy



Pseudodifferential operators with real analytic symbols 805
problem for the heat inverse equation

ou , o*u 1
. — =0, (0, ) =0¢(x), t>0, x € R
(0.5) 3t + o (0, z)=¢(x)

We can find that
u(t, x) = exp(—to*/ox®)p(x).

For any t>0 the operator exp(—t0*/0z? is a ¥DO, the symbol of which
is a(t, &)= exp(t&?), £€ R*. According to Theorem 5.2 below the operator
exp(—10*/0x*) gives isomorphisms

exp(—t0*/0x?) : Wit (RY) —> Wi (RY),

where
(R ={f(x), f(€) € A/(R"), suppf is compact}
W (R)=(W T (RY))*,

(see the exact definitions of Wir(R") in §2 below). We remark that
for any initial function ¢(x)€ Wir(R') there exists one and only one
solution of the Cauchy problem (0.5) in the sense of W;r(RY) (see §7).
After some simple calculations one can get that for any ¢(z)€ Wir(R)
the solution of the problem (0.5) is given by the formula

1
24/t

Thus, the technique of the ¥DOAS and the introduction of the
spaces Wz=(RY) (see §2.5) are the core of described above method:
problems which are incorrect in the classical sense are correct in these
spaces.

In this paper, we shall give new spaces of test functions and general-
ized functions Wi=(RY) whose most important property is invariance of
the basic space W¢=(RY) (and hence also W;=(R")) under the action of
a ¥DO having symbol analytic in G and apply to give some applications
to problems of PDEs. In §1 we assemble some general qualitative
properties of the analytic functionals. In §2-4 we investigate the test
function space Wi=(R") and the space of generalized functions Wz=(R")
in a neighborhood of zero and the properties of DOIOs. The structure
theorem for generalized functions is established: Every generalized
function h(x) € Wz=(R") can be represented in the form

u(t, €)=

Skle“f’z’“go(w—}-if)dé, £>0.
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h{w)=A(D)(2v )" exp(—a*/4),

where A(D) is a pseudodifferential operator with symbol A(&)=Ah(&).
exp(£”) analytic in Sz. §5 is devoted to the construction of an algebra
of the DOASs associated to an arbitrary domain GCRY. In the sections
6-8 we shall give some applications to the Cauchy problems and boundary
value problems. In particular, within the framework of the theory of
generalized functions Wi=(RY) any partial differential operator with
constant coefficients also has a fundamental solution of the Cauchy problem.

The author wishes to express his gratitude to Professor Hikosaburo
Komatsu for the suggestion to use the hyperfunctions in this work and
for discussions. He dedicates this article to Professor Yu. A. Dubinskii
on his fiftieth birthday.

§1. The space of analytic functionals.

Let K be a compact set of RY whose point is denoted by x=(x,, - - -, xx).
Let D*=D%... D, D,=—1idfox;,, j=1,---,N, a=(ay, -, ay), |a|=
a,+ -+ +ay. We denote by A[K] the space of all real analytic functions
in some neighborhood of K. That is, if ¢ € A[K], then ¢ is a C*-func-
tion in a neighborhood of K and there are positive constants C and h
such that

(1.1) sup | D*¢(x) | <Ch'*\a!.

z€K

We say ¢;,—0 in A[K] as j—oo if there is a constant h>0 such that

(1.2) sup Do) __, 0 as j—oo.

wek hlelg)
a

DEFINITION 1.1 (cf. [9,8,10]). We denote by A’[K] the strong dual
space of A[K] and call its elements analytic functionals carried by K.

THEOREM 1.2 (Paley-Wiener theorem, cf. [3,10]). Let u€ A'[K]then
the Fourier-Laplace transform

%(8) =u(exp(—i<-, &)
18 an entire analytic function such that for every e>0

(1.3) |2(C)|<C. exp(L|n|+el§l),  C=&+ineCy,
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where L= sup|x|.
zeK
Conversely, if F({) 1s an entire function satisfying estimate (1.3)
with some constant L>0, then F({) is the Fourier-Laplace transform of
a unique element in A'[S.], where S,={x€ R", |z|<L}.

We can consider A[K,]JCc A[K;] if K,CK, and set
A'(RY)= U AlK]

KcR

Then we have the conclusion
(1.4) E'(RY)CEMY (RY)CEM' (RY)C A/(RY),

where £/(RY) is the space of tempered distributions, &™) (RY). (™' (RY))
is the space of ultra-distributions of Roumieu type (of Beurling type) of
class M, (for the theory of ultradistributions we refer the reader to [6, 1]).

REMARK 1.3. In all papers on ultradistributions (see, for example,
[6, 4, 1]), the Denjoy-Carleman class of several variables is defined as

sup | D*f|<C-h' M, |a|=0,1, ---.

But it is a natural way to define the Denjoy-Carleman class of several
variables as

sup | D*f|<C-h'*'M,, la|=0,1, ---.

(In the case of class of analytic functions we have the estimate
sup | D*f|<C-h'*a!). Then we may consider the space of ultradistributions
OWa'(RY) of Roumieu type and £™«'(RY) of Beurling type respectively.
Nevertheless, the main results of [6, 4, 1] remain valid for &*'(R¥) and
EM2"(RY) by virtue of Lelong’s theorem [8]: The class C(M,) of func-
tions of N real variables is quasianalytic if and only if the class C(M,)
of functions of a single real variable is quasianalytic, where
M,= {n]inMa, p=0,1, ---.
al=p

THEOREM 1.4 [12,3]. If u€ A’(R") then there is a smallest compact
set KCRY such that u € A'[K]; it is called the support of u.

If K,,---, K, are compact subsets of RY and ue A (K,U---UK,),
then one can find u;€ A’(K;) so that

u:ul+ ct +ur-
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§ 2. The space of test functions in a neighborhood of zero.

Let € RY, N>1 and £€ RY be real variables, 0<R<oco be a real
number and let S,={£€ RY: |§|<R}. Assume that f(x): RY—C", that is,
f(x) is a function defined on the whole Euclidean space RY taking complex
values, in general.

DEFINITION 2.1. The space of test functions Wi=(R¥) is the set of
function f(x) satisfying the following condition: f admits analytic con-
tinuation as an entire function to CV and for each ¢>0 there exist
constants r<<R and C, such that

2.1) |flx+1y) |<C, exp(r|y|+e|x]), r+iy=2z€ C".
From the Paley-Wiener theorem 1.2 it follows that

PROPOSITION 2.2. A function f(x) belongs to Wi=(RY) if and only
if its analytic continuation f(z) is the Fourier-Laplace transform of an
analytic functional u with support in Sp (supp u<Sy), that is

Ff=u, a=f.

We list here some examples of test functions. From the inclusion
(1.4) it is easy to see, that they are: all functions in H®(Sg)={f(x)€
L,(R"), suppfcS:} [2], all functions in M,,, 1<p<+oo, v<R [11], all
functions in W*=(S;) [14], in particular, all polynomials P(x), and ex-
ponential polynomials exp(idx)P(x), 1€ S, ete...

We introduce a topology in Wi=(R") as follows:

DEFINITION 2.3. A sequence f,(x) € Wi=(RY) is said to converge to
flx) € Wi=(RY) if and only if: For each ¢>0 there exists » <R such that

SUII)JIfn(Z) —f(z)| exp(—r|y|—¢lz]) —> 0,  m—oo.
2€C
Let {r,} be a sequence 1,<7:,,, k=1,2, --- and r,—~RE. In this case

S.cSz. We define a space Wi=(R") as a set of entire functions f such
that their analytic continuations on C¥ admit the estimate: for each ¢>0

| flx+1y) |<C, exp(ri y|+el2]).
It is not hard to see, that
Wi=(R¥) = lim W;=(RY).
_—

k —co
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By virtue of the property of inductive limit [7] and the Paley-Wiener
theorem 1.2 we have

PROPOSITION 2.4. The sequence {f,} converges to f(x) in WE=(RY) of
and only if there exists a compact KCSy such that

fo—>F in ATK]

§ 3. The differential operators of infinite order (DOIO).

Let the function A(£) be expanded into the Taylor series

3.1) Ag)= 3 ade  §€Sn a,=D"A(0)a
and (8.1) converges for £€S;. We now consider the action of DOIO
(3.2) AD)= 3 a,D*

la|=0

in the space Wi=(R¥). A main result of this section is the following
theorem.

THEOREM 3.1. A DOIO with the symbol as above acts invariantly
and continuously in Wi=(RY).

ProOF. Let f(x) be an arbitrary function in Wi=(R¥). We will
show that in W3}>(RY) there exists the limit

lim A,(D)f@),  AuD)= 3 a,D*.

la|=0

For this purpose we define the analytic functional g(¢)€ A[S,] by the
formula

9(6)=AE)fE), suppfcS, r<R.
Since A,(&)—A(&) in A[S,] we have
lim (4,(&) 7(€). ¢(€)> = lm{7(6), Au(E)e(€)>
=€), A€)p(€)>=<g(&), p(€)>, Y€ A[S]
On the other hand, supp A4.(&)f(&)csupp (&), n=1,2, ---. Hence

lim A,.(&)f(€)=g(§) in AS.]

n—>c0
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From the Proposition 2.4 we obtain

lim A,(D)f(x)=§(x) € Wi=(R").

n—»c0

We put A(D)f(x)=g(x) by definition and the invariance of A(D) in
Wi=(R") is proved.

Let now f,(x)—f(x) in W}>(RY). Then there exists a number r<R
such that f,—f in A[S,]. Consequently A(&)7.(&)—A(&)f(&) in ATS,].
Applying the Fourier transform we obtain the continuity of A(D)

lim A(D)f.(x)=A(D)f(x). Q.E.D.

n—oco

§4. The space of generalized functions Wz=(R").

4.1. The definition of Wz=(R").

We denote by Wz>(R") the space of all continuous linear functionals
defined on Wi=(RY). We call elements of Wz>(R") the generalized func-
tions. The space Wi=(R") has all the standard properties; for example:

oh

i

<_aax£ "">:<h’ - aii S0>’ Yo € Wi=(RY).

a) If he Wz=(R") then € Wz=(R") can be defined by

b) If he€ Wz=(RY) and f is a function such that foe€ Wi=(R¥) for
all ¢ € Wi=(R"Y), then we define the product fh by
(fhooy=<h, fo), @€ Wi™(RY).

Let he Wz=(R") and let A(D) be a DOIO whose symbol A(&) is
analytic in S;. Then

(ADI(@), ()= h(), A(—D)g(x)y, @€ W=(RY).
This expression is well-defined, because A(—D)p € Wi>(R") for any test
function ¢ € Wi=(R").
As a consequence of Theorem 3.1 we have

THEOREM 4.1. The space Wz=(RY) 1is invariant under differential
operators of infinite order whose symbols are analytic in Sk.
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From Theorems 3.1 and 4.1 we obtain

THEOREM 4.2. The set of all DOIOs with symbols analytic in Sk
constitutes an algebra of operators isomorphic to the algebra A(Sz) of
Sfunctions analytic in Sp. This isomorphism 1is defined by the corre-
spondence A(D)«<A(§):

aA(D)+BB(D) «— aA(§)+BB(£),
A(D)-B(D) «— A(§)-B(§).

In particular, if A7 &) s also analytic in Sk, then B(D)=I|A(D) 1s
inverse to A(D).

4.2. Examples of generalized functions in Wz=(R").

Example 1. If |h(z)|< exp(—alz|), a>0 then h(x) determines a
generalized function by the formula

(4.) 2| h@lol)ds,  Voe Wis(RY).

A generalized function in W;(RY) is called regular if it is represented
in the form (4.1).

Example 2. The delta function d(x) determines a singular generalized
function over Wi=(R¥) by the formula

<o(x), p(x)>=¢(0)
This is well-defined because every ¢(x) € Wi=(R") is continuous.

4.3. The Fourier transformation in W3;*(RY).
We introduce the Fourier transform A(£) in W5*(R¥) by the formula

(4.2) Chi(E), P(—&)>=(2m)¥(h(x), p(x)),

where ¢(x) € Wi=(R") is any test function and $(€) is its classical Fourier
transform. Since ¢(x) € Wi=(R"), $(—&)€ A’(R¥) and there exists a
number r<R, such that supp §(—&)cS,cS;. It is clear that h(€) is a
continuous linear functional over A’[S,], Yr<R. Hence it follows that
h(€) is an analytic function in S [9]. Because e **¢c Wi>(RY), £€ Sy we
have

Ch(@), €78 = (2x)

“Ch(e), 2(E'—8))
= (2x)h(¢

),
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then

A

(4.3) h(&)=(2r)~"¢h(x), e7=¢),

and, in particular, §(§)=1. It is clear that the formula (4.3) defines the
Fourier transform k(€) of a generalized function h(x) € Wz=(RY) in the
same way as the classical Fourier transform, and A(&) is analytic in Sg.

We are going to prove a structure theorem of generalized functions
in Wz=(RY).

THEOREM 4.3. FEvery generalized function h(x)€ Wz=(RY) can be
represented in the form

(4.4) h(x)=A(D)(2v/ 7))~ exp(—a?/4),

where A(D) is a pseudodifferential operator with symbol A(E)=h(€)
X exp(&h) analytic in Sk.

PRrOOF. Since h(x) € Wz=(RY) it follows that A(&) is a function analytic
in Sp. Then we can write

h(g)=h()-1

and applying the inverse Fourier-transform to this equality we have

where B(D) is a pseudodifferential operator with the symbol B(&)=h(&).
Thus if we prove the following lemma, the proof of Theorem 4.3 will
be accomplished.

LEMMA 4.4. The delta function 6(x) over Wi=(R") is represented in
the form

(4.5) d(x)= (247 )Y exp(—A)exp(—a?/4),
where A 1s Laplace operator.
Proor OF LEMMA 4.4. We consider the following Cauchy problem

Oe(t, )

(4.6) of

—Ae(t, ) =0

(4.7) e(t, @) [i-o=0(x) € Wz=(R").
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The existence and uniqueness of ¢(t, x) follow from Theorem 7.2 below.
Then we have

e(t, x)= exp(tA)o(x),
in particular

(4.8) e(1, ©) = exp(A)d ().

By virtue of Theorem 4.2 or by Theorem 6.1 below from (4.8) we obtain
that

(4.9) 3(x) = exp(—A)e(1, x).

Now we consider the generalized function ¢(¢t,x). The action of this
generalized function of ¢(x) € W3>(R"), 0K R<+oco, is defined by

(4.10) Celt, x), p(w)y={6(x), exp(—tA)p(x)), o€ Wi(RY).

We shall calculate the expression exp(—tA)p(x). Let g€ Wi=(R") (For
simplicity we consider the case N=1.). Then it follows from Theorem
3.1 that the function

dZ
dux?

u(t, ©)= exp(—t )go(x)

belongs to Wi=(R') for ¢>0 then (4.10) is well-defined. We claim that
u(t, x) can be written in the form (Poisson representation)

(4.11) u(t, x) = eI (x—s)ds.

T
24/ 7wt Jr

Indeed, since ¢(x) is an entire function,

1 —s2j4t _ _ 1 S —s24t 1 d"§0(x) RY
w1e) Lle plo—sds=t| e=in 552 LOW (g,
1
!

[\]

— o - d"gD(fB) 1 S —82/4t —_a\n
Z n!  dzt 24/ 7t I (=s)ds.

Next, by the substitution s=24t» we find

1 —32/4¢ __a\» —_ 1 . I \n - n
e R e e N WO
0, n=2m+1,

=V _ 1 gpm Cm—1)V7
Ve 2 (m—1)1
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Then we derive directly from the last formula and (4.12) that

L e ade o 1 d0(x)
24/ nt Lle ol@ S)ds_mzﬂ m!  dx*™ (®)

= exp( —t j;z >so(x),

as required.
In accordance with the formula (4.10) we find that

Celt 2) o= [ e ol =)

It follows that ¢(¢, x) is a regular generalized function determined by the

function —E(—j%)?e‘”z’“. In particular, by setting t=1 and from (4.9)
we obtain
1 2
o0(x)= exp(—A)————e " 14,
() p(—A4) V)" e
Hence we have Lemma 4.4. Q.E.D.

§5. The algebra of pseudodifferential operators with analytic symbol.
Let GCRY be some domain, that is an open set in R}.

DEFINITION 5.1. The space of test functions W§=(R") is the set of
functions f(x) satisfying the following conditions:

i) f(x) admits analytic continuation as an entire function to C¥ and

il) f() is the Fourier-Laplace transform of an analytic functional
u € A’(R"), with suppucC KCG@G, where K is a compact.

We now turn to a description of the structure of Wi=(R"). We
denote by Sz(2)={£ € R": |£§—1|<R} a sphere centred at 1 completely con-
tained in G and, in accordance with the definition of W¢{=(RY) we set

EA(RY)={f(x): F(§)=2(C), u€ A’(R"), supp uCSk(2)}.

Then we have that f(x) € Wi%(RY) if and only if exp(—tiz)f(x) € Wi=(RY).
Hence one can write symbolically

#2(RY) = exp(idz) Wi=(RY),
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where W3=(R") is the space of test functions in the neighborhood of
zero constructed in §2.

Further it is not hard to show that any function f(x) € W§=(R") can
be represented in the form

S@)= 2 s, (%),

kel

where u,,(v) € Wiz, (RY), Se,(4)cG and I is a finite set of indices.
Indeed, if f€ Wi=(R"), then f& A’(R") and supp f=KcCG. We can choose
the compact subsets K, such that K= UK, and K,CSg, A& k€I. By

Theorem 1.4 we have f= kzlihk, where %, € A[K,]. Consequently
€

f= k;luxk, where u, € Wi=, (RY).

DEFINITION 5.2. A sequence {f,(x)} is said to converge to f(x) in
W¢=(RY) if there exists a compact LCG such that

fo—F in A[L]

Let now A(§) be an arbitrary complex-valued function which is
analytic in G. It is possible to choose Sk (4) so that in each Sg ()
the function A(£) can be expanded in the Taylor series

AE)= 3 0ub)E—h)7 K€L E€Sn, ).

For any function u(x) € W¢>(RY) we have

w(@)= 3 Uy, (¥),

kel
and define the action of A(D) on u(x) by the formula

AD@)E 5 5 au(l) (D= AT us @),
and by Theorem 3.1 A(D)u(x) is again a function in W§=(R"). More-
over, it can be shown by using Fourier-Laplace transform that this
definition does not depend on the number of representing of function
u(x), i.e. the action is well-defined.

We now define by (W¢2(RY))* the space of all continuous linear
functionals on (W{=(R")) and we set Wz=(R¥)=(Wg(R"))*. Let A(£) be
a function analytic in G. We assign to it a pseudodifferential operator
A(D) acting in W5>(R") according to the formula
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def

CAD)h(@), olw)>=<h(x), A(=Dp(x)),

where h(x) € Wz=(R"), ¢(x) € W¢=(RY). The definition is correct because
for ¢(x) € Wi=(RY), A(—D)p € W{=(RY). Applying Theorem 4.2 we obtain
the following results.

THEOREM 5.1. A ¥DO A(D) with symbol A(E) analytic in G acts
mvariantly and continuously in WE=(RY) (and hence also in Wz=(RY)).

THEOREM 5.2. The set of operators A(D) with symbols A(E) analytic
m a domain G and defined on WE=(RY) forms an operator algebra which
1s isomorphic to the algebra of functions analytic in G. This isomor-
phism s defined by the correspondence A(D)<>A(E). Here

aA(D)£BB(D) «— aA(§)£BB(§),
A(D)-B(D) «— A(§)-B(§).

In particular, if A7) is also analytic in G, then B(D)=I|A(D) s the
operator tnverse to A(D). For any function A(&) analytic in G the maps

A(D): Wg=(RY) —> W5=(R")

are continuous. Here “+ corresponds to “+> and “—" to “—".

§ 6. Application to pseudodifferential equations.

Let A(D) be a pseudodifferential operator with analytic symbol A(&).
We consider the equation

(6.1) A(D)u(x)=h(x), x € R".
The results of §5 have the following consequence.

THEOREM 6.1. Suppose that AE) and A7'(€) are analytic in some
domain GCRY. Then (6.1) for any h(x) € W5=(R") has the unique solution

(6.2) ulw)= —A(lT)h (x).

Example 1. We consider the Helmholtz equation (0 is a complex
parameter)

(6.3) Au(z)+o*u=h(z), ©€R".
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Note that the symbol of the Helmholtz operator and of the inverse
operator I/(A+w?I) are analytic for &++w? £€RY. Hence, the whole
space RY is the common domain of analyticity of the symbols of both
operators, except when w is real. Consequently, the space W iR(RY)
consists of all function h(x) that admit an analytic continuation as
entire functions and are the Fourier-Laplace transform of he A’(RY).
For any such function we find that the solution of (6.3) is given by

I
(6.4) u(x)= mh(x).
But when o is real, then G=R{\S, where S is the sphere 52-—-(132. Hence
in this case (6.4) yields a solution of (6.3) for any function h(x), hcC A’(RY),
supp hCG.

Example 2. We consider the problem of the existence of a funda-
mental solution for the operator A(D), that is, the solvability of the
equation

A(D)é(x)=0(x), =ER".

Suppose that the domain of analyticity of the symbols A(¢) and
A7'(§) is non-empty, G#J. Then clearly d(x) € Wz=(R"), therefore, the
fundamental solution &(x) exists as a functional on W§=(RY) and is given
by

E(x):ma(w)

Example 3. We consider the equation with a shift
(6.5) u(@x+1)+u(x—1)=h(x), TER.

Using Taylor’s formula, we can write this as a differential equation
of infinite order. We set

d
6.6 2 cosh( - = 1
(6.6) cos (dx>u(x) h(x), x € R
Since cosh(i§)#0 for &#r/2+kr, k=0, +1, ..., we find that (6.6) or,

what is the same, (6.5) for any h(x) € Wi=(R"), where G=R'\{r/2+kx},
has a unique solution

1
2

sech<di)h(x).

X

u(x) =
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Let us now discuss the equation (6.1) when the symbol A(£) has
singularities in G, h(x) € Wi=(R"). Applying the Fourier transform to
both parts of (6.1) we obtain

A@)n(E)=h(), EcRY.
Let u(x) € W§=(R"Y) be an arbitrary solution of (6.1). Then
sup %(€) C supp h(§) U{EEG, A(€)=0}.

Hence, if h(¢)=0, suppd(&)cC{€€G, AE)=0}. We denote the set
{£eG, A(§)=0} by O(4,G).

We recall that a linear continuous operator ¢: X—Y is called
Fredholm operator if dim Ker ¢<+co, dim Coker ¢<+oco and Im ¢ is
closed in Y. Clearly, Im A(D)=W}>(RY) for any A(D) with symbol
analytic in G. Therefore, these operators are Fredholm if and only if
dim Ker A(D) < +oo.

PROPOSITION 6.2. If the operator A(D) with symbol analytic in G
is Fredholm operator in W§=(R"), then the set O(A, G) is finite.

ProorF. Let A(&) have an infinite number of different zeros: &, &, - - -
in G. Then the funections §(6—¢&,), 6(6—¢&,), - -- are linearly independent.
Because A(£)=0, then <(A(§)0(E—E), ¢@)>=AE)0E)=0, Yoc AG).
Consequently, F~!(0(6—¢&;)) is the solution of the equation A(D)u(x)=0
and, thus, dim Ker A(D)=co. Q.E.D.

The inverse to Proposition 6.2 statement is valid only for the case
N=1.

PROPOSITION 6.3. Let N=1, GCR'. Let the symbol A(§) have a
finite set of zeros in G. Then A(D) is Fredholm operator.

Proor. It is sufficient to prove Proposition 6.3 in the case A(§)
has only one zero of order » in G. For simplicity, let A(0)=0 and 0€G.
Then, if S(€) in a solution of the equation

it follows that supp S(&)={0}. Consequently, S(&) is represented in the
form

S(§)= é a0?(§), a;€C.
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Thus we have dim Ker A(D)< +oco. Q.E.D.

For the case N>2 the Proposition 6.3 becomes false. We consider
the counterexample constructed in [16, p.112]. Let N=2 and A()=

%(§§+E§). It is clear that 0 is a unique zero of A(£). Then for all n>2

there exist numbers c¢,#0 so that

SE)= 2 c.0(§)

laj=n

will be solutions of the equation A(£)S(£)=0 (For the details, see [16].).

§7. The Cauchy problems.

7.1. The Cauchy problems in the space of functions valued in
Wi=(RY). In the space R¥*' of the variables t€ R' and x € RY we study
the Cauchy problem for any system of partial differential equations of
the form

1) am—g‘t—fn’fﬁl+ kzijl At 3/0t, D)ualt, ) =h,(t, 2):
(7.2) 0'u,(0, @) ot =py(x),  k=0,1, -+, my—1, j—1, -1,
where
m]-—l i
Ault, 00t D)= & At D)%,

the m;>0 are integers, the A,,(t, D) are arbitrary pseudodifferential
operators, and for each ¢ the symbols A;;(t, &) are analytic functions of
& in some domain GCRY which depend continuously on € R

We denote by WE='(RY) the space of vector-valued functions

w(®) = (uy(2), - - -, wy(x)), ui(x) € WE=(RY), i=1,---,1 and we denote by
ChteeR(R', W&'(R"Y)), the space of vector-valued functions wu(t, x)=
(u, (t, %), -+, wi(t, x)) which for each £€ R' are vector-valued functions in

Wg=YRY) and u,(t, ) depends continuously on t together with its deriva-
tives through order k; (:=1, ---,1).

THEOREM 7.1. Let ¢,€ WE™'(RY) and h(t, x) € C> (R, W=HG)) be
arbitrary functions. Then there exists a unique solution of the Cauchy
problem (7.1)-(7.2) in the space C™ ™(R', W='(RY)).
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Proor. We use the method analogous to that of [2] except for the
uniqueness of a solution. For simplicity of the exposition we consider
the case I=1, m;=m. First of all, we observe that by Duhamel’s
principle it suffices to consider the case h(t,x)=0. Thus, we are looking
for the solution of the problem

omu , "= oy
3 =0u —
(7.3) L(3/at, D)u e + ,,;,A"(t’ D) ST 0
*u(0, x) _ _
(7.4) —atk—_go,,(x), k=0,1,---,m—1,

where ¢,(x) € Wi=(RY). With this aim we set formally D&, (€= (&, - - -, &x))
and solve the family of Cauchy problems for the ordinary differential
equation
L(o/ot, &)u.(t, &) =0,
u®(0,8)=0s  (0<k,i<m—1),

where §;, is the Kronecker symbol and £ is a real parameter.

Since the A.(t, &) depend analytically on & in G, each wu;(¢ &) is an
analytic function of & in G. We assign to each such “basic” solution
wi(t, &) a DOIO U,(t, D), whose action is continucus in W{(RY), in ae-
cordance with §5. Clearly, the formula

u(t, x)= io U.(t, D)oi(x)

then determines the required solution.

To prove the uniqueness of the solutions of the problem (7.1)-(7.2)
we note that the Fourier-Laplace x-transform 4i(t,&) of the solution
u(t, x) is a solution of the Cauchy problem for the system of ordinary
differential equations valued in the space of hyperfunctions and is there-
fore unique. Hence, so is u(t,x). This completes the proof. Q.E.D.

7.2. The Cauchy problem in the space W;>(RY) and its fundamental
solution.

THEOREM 7.2. Let ¢, € W™ (R") and h(t, x) € C* °(R', Wz='(R")) be
arbitrary functions. Then there exists a unique solution of the Cauchy
problem (7.1)-(7.2) in the space C™v " ™(R', Wz='(RY)).

The proof of this theorem is analogous of the one of Theorem 5.2
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in [2] and we omit it.

We now consider the problem of the existence of a fundamental
solution of the Cauchy problem. The fundamental solution of the Cauchy
problem for the operator L(9/ot, D) (7.3) is a function (¢, ) that solves
the problem

L(3/at, D)e(t, &) =0, t+0,
e(0, &) =0, - - -, e D(0, £) =0, ™ (0, 2)=0(x).

If we know the fundamental solution of Cauchy problem we can obtain
(at least formally) a solution of the Cauchy problem with arbitrary
initial conditions ¢,(x), 0<k<m—1, by means of the operations of dif-
ferentiation and convolution. Since d(x) € Wz=(R¥) we have from
Theorem 7.2:

COROLLARY 7.3. For any operator L(0/ot, D) of the form (71.3) with
symbols A.(t, &) analytic in G the Cauchy problem has a unique funda-
mental solution valued in Wz=(R"Y).

7.3. The Cauchy problem for ordinary pseudodifferential equations.
Let A(D) be a pseudodifferential operator with the symbol A(&)
analytic in GCR' which has a finite number of different zeros in G.

THEOREM 7.4. Let &,&, ---,&, be the zeros of A(E) in G with their

multiplicity m,, - - -, n, respectively. Then there exists a unique solution
u(x) € WE=(RY of the Cauchy problem
(7.5) A(D)u(x)=h(x),  h(x) € W=(R),

(7.6) U (x)=¢;, ¢;€C, 1=0,1,.--.,n—1, n=n,+ --- +n,.
Proor. By virtue of Proposition 6.3 it follows that any solution of
(7.5) is represented by the formula

m nk-l
w@) =u(2) + T 20 Auje b,
=0 j=0 ‘

where u,(x) is a solution of (7.5), A,; are arbitrary numbers. We will
show that if u(x) satisfies (7.6) then 4,; are uniquely defined. In fact
we rewrite (7.6) in the form
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O1(@o) o @a(o) A Ci—Uo(%o)
(77) Soil) (xo) te ‘/75»1) (20) /?2 — cz_uél)(xo)
Lot e 0w | LA | L e ug @)
where we denote
S01(x) :6”€1v cee, §9n1(fb) zeiflzxnl—ly
¢n1+1(x) :efIEz’ cee §0ﬂ1+n2(x) :e”ézx’Yz—‘,
Pyt -+ 4y _y1(L) =€m, oo 0, (1) =€ Emgmn ™,
'21:'210v 22:211v tt znl’:zl,nl—lv tt Zn_:zm,nm—l'
Clearly,
O1(®o) <+ Palo)
det SD{I)(xO) oo (pfnl)(xo) ?&0
o) -+ - gz
then (7.7) has a unique solution (4, - -, 4,). Q.E.D.

§8. The boundary-value problems.

In the strip £€ (a, b), x€ RY, we consider the boundary-value problem

omu(t, x) | "= 0fu(t, x)

8.1 ult, @) | S g g p) Ot T) g

(8.1) Fve + :ZB i(t, D) ot

8.2) ﬂlbj,a””i(;; %) —g @), =01, m—n—1, n<m,
8.3) ’gbﬂwzwx), j=m—n, -, m—1

where A;(t, D) are ¥D0Os with the symbols A;(t, &) analytic in some
domain GCRY and depending continuously on t€ R, |b,] is the non-
singular numerical matrix.

In this section we will show that the problem (8.1)-(8.3) may be
reduced to the Cauchy problem for the system of pseudodifferential
equations with the initial conditions which are, in their turn, solutions
of some systems of differential equations of infinite order.
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We consider the family of Cauchy problems for the systems of
ordinary differential equations with a real parameter &€ G:

a’"Uok(t, &) m_lA. t aonk(t, E) =0
(8.4) —atm + ,; i ’E)___—at’ )
8.5) Valt, )= "3 b, L0ul &)
=0 ot
(86) V,-,,(a, E) :551;»
where 7,k=0,1, ---,m—1. These problems have unique solutions Uy, V;

depending analytically on & [5]. Further, we constitute the equations
m—1
87) = Vb, Dipife)=¢ya),  j=m—n, -+, m—1,

where V,,(b, D) are ¥DO with symbols V,,(b,&). We rewrite (8.7) in the
form

m—1 m—n—1
83) T Vb Dpa)=¢;)— "3, Vb, Digu(a).
Then (8.8) is a system of n pseudodifferential equations with analytic
symbols, where ¢,(x), s=m—mn, ---, m—1 are unknown functions.

THEOREM 8.1. Let ¢;, j=0,1,---,m—n—1, ¢;, j=m—n, ---,m—1
belongs to space WE™(RY). Then the solution of the problem (8.1)-(8.3)
can be represented im the form

8.9) ult, 3) =%, Unlt, D)ga(o)

and belongs to the space C™(R', W¢>(R")), where ¢, k=m—mn, ---, m—1
are solutions of the system (8.8). Conversely, if u(t,x) is a solution of
the problem (8.1)-(8.3) then

ov= ’”Z‘l b, o*u(a, x)

b s=me—m, o m—1

are solutions of the system (8.8).

ProoF. The fact that (8.9) satisfies (8.1) and (8.2) is a consequence
of (8.4) and (8.5). We will show that (8.9) satisfies (8.3). Indeed using
(8.7) we have for j=m—mn, ---, m—1
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8=0 ats k=0 s=0 7 ats SDI‘(x)
m—1
=z Vii(b, D), () =¢;(x).

To prove of the second part of Theorem 8.1 we will show that

(8.10) z Vu(b, D)(z bska“aj; v ) —g,(a),  j=m—m, -, m—L

But (8.10) follows from the fact that

m—t m—1 k
u(t, x) = .§J U(t, D)<kz=:0 bxk%j"x)).

This completes the proof.

REMARK. Using the results of this paper we can give the approxi-

mate methods of solving problems of mathematical physics based on the
techniques of DOIOs. For the function space W+*=(G) constructed in [15]
some approximate methods are considered in [13, 14].
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