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§1 Introduction

In this paper we will deal with some inverse problem associated with
the characterization of the structure of solutions of the semilinear ellip-
tic equation (1.1); on a singularly perturbed domain (Figure 1) with
Neumann boundary condition :

Av+f()=0 in 2(C),
( ovfov=0 on 92(C).

(1.1)

Here 2({)CR" is a bounded domain for each {>0 and is expressed in
the form 2(£)=D,U D,UQ({), where the varying portion Q({) degenerates
to a 1-dimensional line segment L as {—0. Our aim, roughly speaking,
is to construct a solution v, of (1.1); whose asymptotic behavior as {—0
is prescribed in a sense to be specified later.

Reaction diffusion equations on a singularly perturbed domain of the
same type as £2(C) have been dealt with by several authors (ef. [5], [9],
[10], [11], [14], [16], [18], [20]). Vegas [20] adopted f(2, v)=Av—v* (p=2:
integer, 2>0:small) for the nonlinear term in (1.1), and investigated the
transition phenomenon of the structure of solutions of (1.1); when the
parameter {>0 decreases to 0 and described a complete bifurcation dia-
gram for sufficiently small 2>>0. Hale and Vegas [5] constructed a per-
turbed solution v, of (1.1) whose behavior satisfies

ve(x)~a; in D; (2=1, 2) for small {>0,
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where f(a;)=0, f'(a;)#0 (¢=1,2) and |f'(u)| is assumed to be bounded by
some adequately small constant determined by the domain. In the above
two cases ([5],[20]), f'(v) is assumed to be small around the solution v,
which is somewhat a strong hypothesis. Under such a hypothesis, v,
necessarily approaches some constant in each D; (i=1,2) as {—0 and the
structure of solutions of (1.1), is rather simple. Moreover, in [5] and
[20], the behavior of v, on the varying portion Q({) was not analyzed.

In [10] and [11], we have dealt with (1.1), in 2({) for more general
S€ C=(R) without any assumption on the bound of —Z{L« and considered
the behaviors of solutions on @({). We have proved that any solution
v, of (1.1), for small {>0 is approximated in the sense of “uniform con-
vergence” by some triple of solutions (w,, w,, V) of the following system
of equations:

Aw;+f(w;) =0 in D,

(1.2) (1=1,2)
awi/auzo on aD,;,
&EV)dZ2+f(V)=0 z2€L,

(1.8)
VlaDinaL‘:wilaDinaL (1=1,2),

where z is the canonical parameter on L ([10; Th. 2 and Th. 3], [11; Th.
2]). We state this characterization theorem in a revised form in Proposi-
tion 8.1, because we make full use of it in this paper. Along with the
above theorem, we have given an example of a nonlinear term f for
which there exist three solutions »{® <v»{® <v{® such that all v{’ (0<;5<2)
approach the same constant in each D; as {—0 while their behaviors on
Q(£) up to the stability are totally different from one another ([10; Th.
4]). In this case, w, and w, are constant stable solutions of (1.2). We
have also proved, by the aid of Matano’s method [16], that for any given
stable solution (w,, w,) of (1.2), there exists a stable solution v, of (1.1),
which satisfies v (x)~w;(z) in D; (¢t=1,2) ([10; Th. 1], [11; Th. 1]). But
in this case, we have not taken into consideration the behavior of v, on
Q(¢). Therefore we have not yet constructed a solution of (1.1); which
not only satisfies the above conditions in D,U D, but also is approximated
on Q(¢) by a solution of (1.3) that is chosen arbitrarily. In order to
study such a problem systematically, in this paper we will consider a
general inverse problem associated with the characterization of (1.1); by
(1.2) and (1.3). More precisely, for any given triple of solutions (w,, w,,
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V) of the system of equations (1.2) and (1.3) without any assumption
on the stability of w; and V in (1.2) and (1.3) respectively, we will seek

for a family {v }occ<c, such that each v,€ C=(2({)) is a solution of (1.1),
and satisfies the following asymptotic behaviors when {—0.

ve~w; in Di (i=1,2), v~V in Q(J).

We will give an affirmative answer to the above problem under the
condition of non-degeneracy of (w, w., V) (ef. (II.5), (II.6)) by a rather
direct method. Thus, from this and the results in [11], we see that the
equation (1.1); for small {>0 is usually equivalent to the system of
equations (1.2) and (1.3). Our method is rather constructive. We redace
the equation (1.1), to a finite dimensional problem by using the eigen-
functions of the linearized problem of (1.1); around the approximate solu-
tion. In this procedure, we have a difficulty that some eigenfunctions
behave in a highly singular manner when {—0 and this phenomena is
associated with the partial degeneration of the domain. Thus we need
some elaborate estimates of these singular behaviors. For this, we rely
on our results in [12], thereby we can obtain a well reduced equation.
Our method can be applied to more general reaction-diffusion equations
in 2(¢). The result in this paper was published in [13] with a brief idea
of the proof.

D; 7(o]

Figure 1.
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§2 Formulation and Main Theorem

In this section, we present the main result of this paper. We first
establish the necessary setting in which the problem is formulated, i.e.,
the singularly perturbed domain 2() such as in Figure 1, the nonlinear
term f and the given data (w,, w,, V) and the condition of non-degeneracy.

We set the domain £2() in the following form:

Q(C)=D1UD2U Q(C)

where D; (1=1,2) and Q({) are defined in (II.1) and (II. 2) below, where
&' = (&g, T4y -+ -, ,) € R,

(II.1) D, and D, are bounded domains in R satisfying D,N D,={, each
D; has a smooth boundary 6D; and the following conditions hold
for some positive constant {,>0.

N{e=(x, ') € R*| 2, =1, [0'|<3Cy}={(1, 2') € R*| |2'| <3Cy},
N{e=(x, ') € R*| ;= —1, |o'|<BCu}={(—1, &) € R*| '] <Ly}

(IL2) QE)=Ri\(QURUI(),

(
By(Q) ={(a, ') € R*| 1 -20<m, <1, |o'| <Cp((x,—1)/C)},
By(C) ={(m, @) € R"| —1=m: < —142C, |2'|<Lo((—1—=)/Q)},
(&) ={(m, «) € R*| —14+20<m,<1-2¢, 27| <L},

where p€ C°((—2, 0]) NC=((—2, 0)) is a positive function such that p(0)=2,
p(s)=1 for s€ (—2, —1), dp/ds>0 for s€ (—1,0) and the inverse function
(1, 2)—>(—1, 0) satisfies slrm‘l) %(5):0 for any positive integer
2—
k=1. Hereafter we put two points p,=(1,0, ---,0), p,=(—1,0, ---,0),
and the set L={(z,0, ---,0)€ R"| —1<2<1}.
We impose the following conditions.

(II.3) feC=(R), liéglfupf(s)<0, liEm_inff(E)>0

(I1.4) There _exists a system of solutions (w,, w,, V) of (1.2) and (1.3)
in C=(D,) X C=(D,) x C=([—1, 1]).

DEFINITION 1. For the above solutions (w,, w,, V) in (IL. 4), we denote
by {wi}i=: and {4}, respectively, the system of the eigenvalues arranged
in increasing order (counting multiplicity) of the following eigenvalue
problems (2.1) and (2.2):
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2.1) < A+ (w)$+wp=0 in D,UD,

0¢/ov=0 on 0D, UdD,,
wy(x) for x€ D
where w(z)= , and
wy(x) for z€ D,

a’S

—+(V)S+28=0 —1<z<],
2.2) dz
S1)=S8(-1)=0.
We assume the following non-degeneracy condition of (w;, w,, V).
(H. 5) {(Ok};:o:l U {Zk}l?il 20
(I1. 6) {wk}?ﬂ N {Izk};:il: .

Now we present the main result of this paper.

THEOREM. Assume n=38 and (II. 1)~(II1. 6). Then, for any L€ (0, {,),
there exists a solution v, of (1.1); such that

(2.3) lim sup |vc(x)—w(x)|=0,

{0 z€ DIUD2

(2.4) lim sup |v¢(2y, ') — V(z,)| =0.
(=0 2€Q(D)

REMARK 2.1. This theorem can be regarded as a much improved
version of the results in [5; Th. 2.3], [10; Th. 1] and [11; Th. 1] because
we deal with the case where w, and w, are not necessarily constant
functions and not necessarily stable in (1.2) and also because we obtain
the behavior of the solution v, in the infinitesimal remnant part Q(()
(>0 small) besides its behavior in D,UD,. We can also prove, with the
aid of Proposition 3.2, that the limit of the set of the linearized eigen-
values of v, (as {—0) coincides with {w.}iz.U {A:}5s.

REMARK 2.2. From (II.3), if we put M=sup{£€R| f(&)=0}, M=
inf{é € R| f(§)=0}, then any solution v of (1.1); (if it exists) satisfies the
inequality M<v(x)<M for x€ Q({). Therefore, to prove Theorem, we
have only to construct the solution of the equation given by replacing
fin (1.1) by fx€C=(R) such that fy(§)>0 for <M, f4(§)<O0 for 6>M
and
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fIM+1) for E€[M+2, )
f)=| f) for E€[M—1, M+1]
f(M—1) for §€(—o0, M—2].

In view of this, the proof of Theorem, we assume without loss of gen-
erality that 0f/0¢ has compact support in R; in particular f and 9f/0&
are bounded in R.

REMARK 2.3. The condition (II.6) in Theorem can be weakened to
the following condition:

(H- 6)/ {wk}?;lﬂ {Zk}}'c:l:@, {wk}z=1ﬂ{lk}f=1=®
for some natural number ¢ such that

min(w,,1, 4,41) =2 max |f(&)|+4 and o.,>o,
ge(M—2,M+2)

In fact, we use (II.6) to apply Proposition 3.2 where (II.6) exactly cor-
responds to the condition (III.1). But in the proof of Theorem, we only
use certain eigenfunctions up to some finite number q (i.e., {¢s}i-1 and
{ér.c}i=1), and then for this purpose only, (III. 1) is not necessary to hold
completely in Proposition 3.2 and so we can replace (II.6) by a weaker
condition (II.6)". See also Remark 3.3.

§ 3 Preliminaries

In this section we state some of the results obtained in [10], [11]
in a revised form and one in [12]. We will use them in this work. As
stated in §1, Proposition 3.1 is a characterization theorem for solutions
of a semilinear elliptic equation on £({). Proposition 3.2 will give an
elaborate characterization of the eigenfunctions of the linearized problem
around the approximate solution which enable us to earry out a direct
constructive method in the proof of Theorem. We do not give the proofs
of the propositions because the proof of Proposition 3.1 can be carried
out by the same arguments as in [10] and [11] except for some inessen-
tial changes and Proposition 3.2 is the same as Theorem 4 in [12].

We consider the following equation:

Av+fi(x, v)=H(2) in 2(C),

(3.1) ov

o =0 on 92().




Semilinear elliptic equation 169

Here the nonlinear term f; € C=(Q2() X R) is given as follows:

fulw, &) =h(z)g(€)  (0<C<Ly),

where h;, H, and ¢ satisfy the following conditions:
(i) g€C>(R), lignsup 9(€)<0, liminf g(£)>0,
—co §—>—c0

(ii) hg, H € C=(2(C)) and there exist a sequence of positive values
{{a}z-1 and h, HE C*(D,UD,), h, HE C>([—1, 1]) such that

he(x)>0 in 2(¢), lim¢,=0

m—co

lim sup lhe,, (x) —h(x)| =0 (1=1, 2),

m—oo z€D.

lim sup |hc (y, = )* (ml)[:()’
m—o z€Q(L,,)

lim sup |H, (#)—H(z)|=0 (i=1,2),

m—co areDIU 9

lim sup |H (x;, ') —H(x,)|=0.

m-0o z€Q(C,)

Note that k(1)=h(p,), H1)=H(p,), h(—1)=h(p,), H(—1)=H(p,) necessarily
hold from (ii).
In the above situation, we have the following.

PROPOSITION 3.1. Assume (i), (ii) and n=3. For each {€ (0, ), let
v, be any solution of (8.1). Then there exist a subsequence {0,}5_,C{Cn}o=

and functions w € C=(D,UD,) and V€ C([—1,1]) such that the following
conditions are satisfied :

Aw+h(x)g(w)=H(x) in D,UD,,
( owfov=0 on 0D,UadD,,
d*V|dz*+h(2)g(V)=H(z) for z€(—1,1),
( Vl)=w(p), V(=1)=w(p.),
lim sup |v, (x)—w(x)|=0,

m—co £€Dy;UDy
lim sup lv,, (1, ') — V(2,)| =0.

m—rco er(a

REMARK 3.1. In the case where h,=1 and H,=0, Proposition 3.1
is reduced to Theorem 2 in [11].

REMARK 3.2. If there exists an a-priori bound for v, such that
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lv (@) <K in () (0<{<{4), the inequalities in (i) need not hold, for
we can modify g(&) for £€ R with |§|=K.

We consider the following eigenvalue problem.

AD+hE(@)0+p0=0 in 2(0),
(3.2) 00 _

- 0 on 022(0),

where h*e C=(D,UD,) and k*€ C=([—1,1]) are such that

lim sup |h{(z)—h*(x)]=0,

{0 zeD;UD,

lim sup |k¥(x,, o) —h*(x,)|=0.
=0 z€QD

(3.3)

DEFINITION 2. Let {#(0)}. and {@, ], be the eigenvalues arranged
in increasing order (counting multiplicity) and the complete system of
the orthonormalized eigenfunctions of the eigenvalue problem (3.2).

DEFINITION 3. Let {w.)i, and {4}, respectively, be the sequences
of the eigenvalues of (3.4) and (3.5) arranged in increasing order (count-
ing multiplicity),

Ad+h*(@)p+wp=0 in D,UD,

(3.4) z¢ -0 on 9D, UdD,
v

d?S/dz*+h*(2)S+1S=0, —1<2z<1,
(8.5)

S(1)=8(—1)=0.
We assume the following condition.
(IIL. 1) (o N{Ai=0.

PRrOPOSITION 3.2. Assume (III.1) and n=3. The sets {¢.(C)}i: and
(@)1 are separated as follows:

( (e Q)= {0} U {2.(0) Yot
(D1, 1 ={Pr, i1 U (s, i,

where
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(3.6) lim (Dk(C) =Wy, lcl_rjl Zk(C) 221‘.

-0
For any sequence of positive values {{.}o-, such that lim ,=0 there

exists a subsequence {0,}5-,C{lnlo, and the complete system of the eigen-
Sunctions {$.}.CC(D,UD,) of (3.4) and {S,}: of (3.5) respectively such
that (¢k'¢m)L2(DluD2):6k,m (Sk‘Sm)Lz((~1,1)):5k,m for k, m=1 and that the
Sfollowing conditions are satisfied for each k=1:

lim sup |[¢,,, (%) —@lx)[ =0,

m—co zEDIUDz
(3.7) )

lim  sup |@eo (1, ') — Vi(2)| =0.

m—co eQ(um)

lim sup |dY208 "2, , (2, ') —Si(2,)| =0,

m—oo z€Q(0,,) m
(3.8) or
lim sup |d}208 2P, (2, 2') 4+ Sel(e:)| =0,

m—co zeQ(am) L

pCES VI

I'((n+1)/2)
two point boundary value problem (3.9) for each k=1:

(sz/dz2+ﬁ*(z)V+w,,V=0, —1<2<1,

V) =gi(p), V(=1)=¢:(p,.

For any k=1, there exists a constant n.(k)>0 such that
0<liminf  inf " ¥2|¢, ()]

where d,_,= and V, is the unique solution of the following

(3.9)

{0 zER(DUZ;(30)
(3.10)
<limsup sup ("¢, ()| < +oo,
{20 2R (DU, G0
0<liminf inf £ V2|x—p|" 2| (2)]
(=0 zeZ;(mM\ 560
(3.11)
<limsup sup (" PEx—p;|" 2|y (x)]| < + o0,
(=0 z€Z;(M\Z;30)
0<liminf sup ™ 2|¢, ()|
=0 zeD\Z;(m
(3.12)
<limsup sup { " V2|, ()| <+ oo,
g0~ z€D)
0<1ir¢I},ionf C V2l Lo
(3.13)

élil?jup 0 el Lo en < +00,
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(3.14) lgr{)l d B el iy =1
Jor any n€ (0, py(k)) and =1, 2.

REMARK 3.3. If we assume the following condition (III. 1)’ in place
of (III.1), we also have such results as (3.7)~(3.14) for k=1,2, ---, q.

(III- 1), {wk}ii‘él N {Zk}£=1= &, {wk};‘izl N {Zk};c;lr‘ 9,

where ¢ is a natural number such that w,.>wo,.

§4 Construction of the approximate solution

To construet an approximate solution A;€ C=(£2(C)), we prepare the
following function ¢ € C(R) such that 0= (2)<1 for z€ R and ¢(2)=1
for z€[3L, ), ¢(2)=0 for z€ (—o0,2{]. We define A, C=(R(Q)) as

V() zelC)N{—14+3(=<2,<1-3(}

te(1—2) V() +(1—¢(1—z) V(1) 2zel(Q)N{1-3C<e=<1-2¢}

e —1) V(@) + (1= (2, —1) V(=1) z€ '§)N{20-1=2 <3 -1}

_ 'w,-(p,r) z € Ri(C) U 2:(2€)
A(x)= (1=1,2)
te(|2—pil)wi() + (L —ee (|2 —pil) ) wi(p:) x € 2:(3C)\2i(20)

(1=1,2)

w;i(x) z € D)\2(3C)

(i=1, 2).

We can easily check

lim sup |4,(@)—w,(@)|=0 (i=1,2),

{0 z€D;

lim sup |A¢ (2, #) — V(x,)|=0.
-0 z€Q(0)

We define the approximate solution A,€ C=(Q(¢)) by the unique solution

of the equation
@) ( AA— A+ A+f(A)=0 in Q(0),
' 9A,Jav=0 on 99(C).

Then we have the following.
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LEmMMA 4.1.

lim sup |A((x) —wi(x)|=0 (1=1,2),
(=0 =z€D;

(4.2)
lim sup |A¢(@, 2)—V(@)|=0,
-0 z€Q(0)

(4.3) lim sup [AA((x)+f(A(x))[=0.
-0 zeL(0)

ProorF OF LEMMA 4.1. Define the constants K, K,, as follows: K;=
sup{|é| | EE R, f(§)=0}, Kz=|esllslg (1€l +1/@&)]). Then, from (4.1), we have
1

the following estimate:
—K,<A(x)<K, for any x€ 2(0) (0<<Ly).

Therefore we can apply Proposition 3.1, to see that for any sequence of
positive values {{,}2-. such that lim{,=0, there exist a subsequence

{am}:::lc{Cm}::l and AGCOO(D).UDz); Zecw([—l, 1]) Such that
lim sup |4, (¢)—A()|=0, lim sup |4, (2, z')—A(x,)| =0

m—co z€D;UDy m—oo x€Q(0,)

AA—A+w+f(w)=0 in D,UD,
wa ( 0Ajov=0 on 0D,UdD,

dAjd2—A+V+f(V)=0 —1<2<1,
) ( A(1)=Alp), A(~1)=A(p).

By the equation (1.2) and (4.4), we have
Aw—A)—(w—A)=0 in DUD, dw—A)/ov=0 on dD,UdD,

and by the maximum principl_e, we conclude w=A4 in D,UD, Thus
A1) =A(p)=w(p)=V(1) and A(—1)=A(p)=w(p,)=V(—1) are satisfied
and then from (1.3) and (4.5), we have

;;(V—Z)—(V—E)zo in (=1,1), VA)=4AQ1), V(=1)=A(-1)

and we conclude that A=V for —1<z<1. Therefore by the arbitrari-
ness of {{.}o-,, we conclude (4.2). We can easily deduce (4.3) by apply-
ing (4.2) in (4.1) and we conclude Lemma 4.1.
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85 Proof of Theorem

As we stated in Remark 2.1, we assume without loss of generality
that f(&) and af(¢)/o¢ are bounded in R. It is easy to see that for
he(x)=f"(A¢(z)), h(x)=f"(w(x)), h(z)=f(V(2)), the condition (3.3) holds
from Lemma 4.1, that the eigenvalues {w,};>, and {4}, in Definition 1
and Definition 3 coincide with each other and that the conditions (III. 1)
follows from (II.5). Thus let {g(0)}2y, {Drdiz: and {wi}i2,, {42, be
those fixed in Definition 2 and Definition 3, respectively, with h¥, h*, h*
replaced by h¢, h, h. Then we can use Proposition 3.2. Therefore we
can decompose {¢(¢)}: and {@, )i, of the linearized eigenvalue problem

5 ( AP+f(A)P+pu®=0 in 2(C),
00[ov=0 on 92(¢),
as {m @l ={o OB U A0},
{@rdizi={B. i Ui cdizy,
where
(5.2) lclgfl i(l) =i, lci_rj(f)l AWl =24 (k=1).

Now we define the function space as follows. X({) is the Hilbert space
H'£2(¢)) which is endowed with the following inner product:

(@ W)xo=, (VOVE—f(AJOT +MOV)d  (M=sup 7/E)| +1).

a(0)

We decompose X({) as X(£)=X,()PX,(L), where

Xi(€) =L.h. [{s,c}i=1U (P, c}i-i],
X,(8)=L.h. [{s, c}izerr U {dr, iz e,

where L.h.[W] (c X({)) is the closed subspace of X({) spanned by the
set WcX(C) and the integer ¢ is to be determined later.

We define a projection operator, defined in L*(Q(¢)) and mapping
X(¢) onto X;(C), as follows:

PCQ(x) = kzi:l ((SD(C) ¢k,(@dx>¢k,((x) + <50(C)¢,k,(@dx>¢k'((x)>'

LeEMMA b5.1. For any natural number q=1 such that w,.>w, there
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exists a constant d(q)>0 which is independent of { and satisfies
(5‘3) HPcd)||L°°(mt;))<d )”@”L“’(mm fo"' (S Lw<Q(C)) (0<C<C*)-

For any sequence of positive values {{,}3-, such that lim {,=0, there

m—»co

exist a subsequence {0,}5-1C{L.}2=1 and functions {Wk};',:,C<C°°<£Jl(D,~\{p.<})>

ﬂLl(DIUD2)> such that

(5.4) lim sup |20 "y, (41, @) —Si(®)| =0,

m—co zeQ(o' )

(5.5) lim g, [(d:2:05707) =Wy in C=((Di\21(7)) U (D\2(n))) for any >0

m—co

and that the following conditions hold :

(5.6) lim sup

m—oo z€DyjUDy

(P2 )= 5 (., #0dw)aa)| =0,

(57) lim sup l( . ) (@ @)

m—o z€Q(0,,)

—;«S Ska>dz+SD1U 2Wk(Ddac>S,,(xl)+<SD1UB2¢k@dx>Vk(xl)>’:0

for any functions @, € C°(R(Q)) (L€ (0, L)), e C(D,UD,) and @ € C°[—1, 1])
such that

lim sup |® (¢)—P(x)|=0, lim sup |P (z, 2')—P(x;)|=0.

m—oo z€DyjUDy m—oo z€Q(L,,)

Here (¢}, cC(DiUD,), {Vile, {SifiecC?([—1,1]) are those functions
given i Proposition 3.2 for {{.}u-: (¢f. (3.7), (3.9)).

REMARK 5.1. (5.6) in Lemma 5.1 is independent of the choice of the
orthonormal systems of eigenfunctions {¢,}i_,.

ProorF oF LEMMA 5.1. By using the definition, we have

q
||Pc@||L°°<a(;))_ ; {||@”L°°(Q(())”¢k.5”Ll(Q(C))”¢k,§”L°°(.0(C))
1Pl Lcaien 9w, ell Leacen 19, ¢l z=cacen }-

By Proposition 3.2, there exist {4>0, d’(g)>0 such that



176 Shuichi JiMBO

(5.8) sup ||Pe.cllz=wn=d’(q),
z€Q(4)

(5-9) ”¢k,c”L°°(n(c>)~0(c_(”_1”2)’

(5~10) Hﬁbk,;“Ll(a(cn""O(CM_I)/Z)

for any (€ (0,¢%), 1=k=<q. By applying these estimates to the first
inequality, we conclude (5.3). By Proposition 3.2, for any subsequence
{or)e,c{Ca)e_,, we can take a subsequence {o,}3_,C{oL}e-: and {$.}in.C
C=(D,UD,), {Sii1, {Vi}zicC=([—1,1]) in Proposition 3.2.

- kzi:l {<Snlunz ¢k’cd)cdx>¢k‘ @)= <SDIU D, ¢k@dx>¢k(x)}

+ kgql (sO(c)sbk’chdw)m't(x) + ké (Sa(c>¢k'c(p(dx>¢k’((x)

61 (PO (], |, s0dx)slz)

We put {=o0, and let m—co in (5.11). From the properties (3.7), (5.8)
and lcim Vol(Q(¢))=0, the first and second terms tend to 0 as m-—co,
-0

uniformly in D,UD,. From (3.10)~(3.12), it follows that
(5.12) | @r.cll Lo upy~OE~ "),

and then the third term in (5.11) tends to 0 as m—oco, uniformly in
D,UD,. Thus by the arbitrariness of the choice of {d,}5-;, we conclude
(5.6). By (8.11) and (3.12), there exist positive constants d”(g)>0 and
¢%>0 such that

1 2
(5.13) dljsz @l <qr(q )<1+[T—E|72> for w€ U (DAZ3C),
for £€(0,¢Y), 1<k<q. Applying some a-priori estimates of elliptic
equations (cf. [12; Prop. 8.2]), repeatedly to ¢,./(d2.C""V%) (£>0), we ob-
tain the compactness of these functions by a diagonal argument. Then
we get a subsequence {c,}3-,C{oh}e-, and W,,EC""( (D\{p: })) satisfying

(5.5) and

1

WIS @1+ s

) for any x € D,UD,.
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614 |P@)@. o)
-2 () sdazt |, | Witdz)sim) + +(],.,, s0a)Viz}|
< 2 |([,. arctete et ([ si6dz)sim)
+ 2 1([,5, 002 )prce ([, | 0z
+ 5[, oY ([, Wbz )Siim)
+ 5 ([, $ecuda)gcta)|.

Similarly, put {=0¢, and let m—oco in (5.14). By (3.7), (3.8), (5.8) and
lcil?‘ Vol(Q(£))=0, the supremum of the first, second and forth terms of

the right side of (5.14) in Q(c¢,) tend to 0 as m—oco. On the other hand,
from (5.5) and the Lebesgue’s convergence theorem, we have

lim S _¢’°_”()_(D,, (x)dx :L oo W (x)®(x)dx.

m—co ) D,UD, dl/z oir- YE] m

Then from (3.8), the supremum of the third term of the right side of
(5.14) in Q(o,) tends to 0. By this, we conclude (5.7) and complete the
proof of Lemma 5.1.

We apply the Lyapunov-Schmidt procedure to seek for the solution
v, of (1.1); in the following form:

(6.15) ve(w) = Ac(@) + O (2) + P (),

where @ € X;({) (i=1, 2).
We project the equation (1.1) to the subspaces X,({) and X,({) respec-
tively, according to (5.15), i.e

(5.16)  ADP +f(A)O
+ P f(A+ 0P +00) —f(A) —F (A (0P +0) +9¢)=0 in Q(0),

A@@) +f/( ) (2)
+(I= P flAc+ O +0) —f(A) —f (A (@F +0F) +, )=0
in 2(0),

(6.17)

00 [oy=0 on 3£2(C),
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where g(x)=AA(x)+/(A(x)).

From Lemma 4.1, we have lim sup |g.(x)|=0.
=0 z€Q(

We parametrize @f’ as follows (and we denote it by @%):

O:(@)= 3 (riuc(®) +rradie(a)) € Xi(0),

where ¢ () =i (@)/I|Prcllzoowyy and T=(ty, 75 -+, 75,). We easily see
from Proposition 3.2, that there exists a positive constants Cy € (0, C4)
and d(q)>0 such that

0<1/J(Q)§“@(1)§||L°°<9(C))/|T|§ (@) (0<C<ly),

2 12

where |T|=<Eq |r,,|2> . By this we can use T as the parameter in place
k=1

of OF,.

Fix q large so that

( min(we41, 4,41) =2 sup| f/(§)| 44
(5.18) fek

wq+l>wq'
First we seek for the solution of (5.17) for given &% € X,({).

LEMMA 5.2. There exists a constant d,>0 such that for any 0%, €
X&) (|T|<0,, C€(0,0,)), there exists a unique solution OF. € X,(C) which
satisfies

(5.19) lim sup [|9%]|L20c) =0.

80 0<{<3,|TIZ8

ProoF oF LEMMA 5.2. We define the functional J; on X({) by

Je(u) Sa(o(il ulw S A dE>d for ue X(C).

We will find the solution of the equation (5.17) as the minimizer of the
functional J (A,+@P+0) in P € X,(() for small &€ X ({). By a
simple calculation, we have,

(5.20) J(A 4+ 0P +OP) —J (A +OP)
— (VD2 C+¢é1)+¢£2) A O]
[, (o= e —racropde

(1)
+ (P(

— 0P (AP +f(A+0F) —f(4:) +90) )i
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z[ (Ivopr—2 suplreiof;—Tiopr
20

— AP +f( A+ OP) —f(A) + g<|2}dx
Z[108 [ 2ain — 1AD + /(A + D) —f(Ad) +9cllizow-
Thus for fixed @{"=0@%,, we can find, by (5.20), a minimizer @7 of

J(A+ PP +0P) in X,(¢). By lim sup |g.(x)|]=0 and the relation be-

{0 «€
tWeen @(1); and T ( A Tzq) and AQ(I) —_Zq(Tkwk(c)¢k,(,+Tq+k1k(c)¢~k,ﬂ)v

we can easily deduce (5.19) for any minimizer (D‘Z’ If there exist two
solutions @P,, @P, of (5.17) for fixed @, we deduce an equality for the
difference of two solutions by (5.17) and integrate it over £2(() after
multiplying it by @@, —®%, and we have

@ _ @ \|2
sa(C)OV(@T'C 7]
— (S A+ PR D) — A+ DY+ D)) (O~ D) YA =0.
In view of (5.18), let 3,>0 be a constant such that
min(@,..(¢), 2q+1(C));2§;1’p |/(€)1+2  for any C€ (0, dy).

Then we conclude @%.=0%, in Q(¢). Thus we complete the proof of
Lemma 5.2.

LEMMA 5.3.

lim sup |9 Lo =0.
30 |T|<8,LE(0,8)

Proor oF LEMMA 5.3. (First step) We will prove

limsup sup [|@F |z < + o0 for any 0>0.
[ |TIS8

Assume that there exist 6>0 and {T,.}a-1, {a}n-1 such that

|T,| <6, lim{,=0 and llm 1P ¢ llL=aic,)n="00.

m-—co

Put 5‘2)( )=0P(x)/|DF CILL‘”(D(())- We investigate the asymptotic behavior
of (D‘Z’ From (5.17), @Y, satisfies.
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(6.21)  ADF+f(A)DF
+(I—Pq){ FAAH DL+ 0P) —f(Ar) —f(A, )(QTC _I_@m))_'_ ge }

Qr,¢

=0 in £(Q),
(5.22) 00@.Jav=0 on 32(L),

where az,.=|[PF%| L=

We can not apply Proposition 3.1 directly to (5.21) and (5.22) because
(5.21) contains the integral operator P,, but by the good properties (5.2),
(5.5), (5.6), we can prove a result similar to Proposition 3.1 as for (5.21)
and (5.22) by recovering the arguments in [10] and [11] by using
limar . =oco and [0%, ]| =0y =1. There exist subsequence {m(j)}y,

m-»c0

@ cC*D,UD,), e C>[—1,1]) such that O(p,)=0(1), D(p,)=P(—1) and
that

lim sup |¢( R (x) —-@(x) 1 =0
j—oo 1€D;UD, T i)+ (i)

(5.23) ]
lim sup I@‘i’nm G B0 &) =D (@) =

j=o0 3€Q Ly, (j))
By lim |2 ¢ llz2oc,, =0, we see ®=0in D,UD,. We consider the limita-

tion {—0 in (5.21) and (5.22). From Lemma 5.1 there exist subsequence
of {m(5)}=, (which we also denote by {m(j)}=.) and @ € C>([—1,1]) satis-
fying the following equation: Putting (=C{,.;, T=T.y, and letting
j—oo in (5.21) and (5.22), we have

520 #0)az+7(V0+{—r(Vo+ 5 ([ S.r(718dz)s,} =0, ~1<z<1

@(1)=F(—1)=0.

On the other hand, we have, for any £ (1<k<q),

m (3) Sm ()

op d 2R ‘”Zgbk; dx=0.
9y i) ™

Let j—> ~in the above equation. By using (5.3), (5.19) and the conver-
gence of Of . . we see (0-S,);c_11,=0 for any k such that 1<k<g.
Multiply (5.24) by @ and integrate over [—1,1] and then we get

Sl |06/3z|*dz=0 and then from &(+1)=0, we conclude ®=0 in [—1,1].
—-1
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But from [8Y.=0w,=1 and (5.23), it follows that max(|®|i=wo,up,
|| z2¢-113)=1. This is a contradiction and we complete the first step.

(Second step) We will prove the conclusion. Assume the contrary,
i.e., there exist sequences {T,}3_:, {{.}5-: and a constant d>0 such that
( lim|T,|=0, lim{,=0,

m—»co

(5.25)
0<1/d§”@(Tz,:l.c_muta""m(cm))lg_d (m=1).

In the same manner as in the first step, we can apply an analogue of

Proposition 3.1 in (5.17) with (5.25) for @ =0f . and we obtain a

subsequence {m(j)}<, and functions @€ C*(D,UD:), @€ C=([—1,1]) such

that

lim sup |99 . (x)—®(x)|=0,
jooo z€DyUD, m (3)°>m(J)
(5.26) lim sup |09 . (&, @)—0(x)|=0,

=00 2€QULy ;)

O(p)=0(1), O(p)=P(—1).

Applying Lemma 5.1 again, we obtain the following equation satisfied
by @.

8D+ w0+ (I P)( flw+0)=Flw) ~fw)@)=0  in DUD,

(5.27) (
a0/ov=0  on aD,UdD,

where P¥(x)= i‘ <SD o ¢k¥fdx>¢,,(x) for x€ D,UD, Multiplying (5.27)
1

k=1 g

by @ and integrating over D,UD, we get

SDM('V@!Z—(f(wW) —f(w))¢>dx=0,

Therefore
[,.., (1vor—supi )0 iz =o.
DjuDy §ER

But, by (5.2), (5.18) and (3.7), (5.26), we have w,,,=2sup|f’(§)|+4 and
EER

(P i) 20,00y =0 (1=k=q). Hence we conclude @=0. Simultaneously
we also have the following equation by Lemma 5.1 with @=0.

( @A+ (F(V+P)—f(V)P=0, —1<z<1

(5.28) o
#(1)=F(—1)=0.
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To deduce (5.28), we have used Sl S Pdz=0 (1<k=<q) which can be
-1

proved as in the first step. Similarly, multiplying (5.28) by & and

integrating over [—1, 1], we have

| (140/deir—sup | 7€)1101 Jae=o0

and by using 4,,,=>2sup|f’(€)|+4, we conclude #=0. This contradicts
the fact EQR
max{|®i=w,upp: 19llz=c-1p}21/d  (ef. (5.25)).
We complete the proof of Lemma 5.3.
LEMMA 5.4.
208,

07,

=0 (1<k<2q).

lim sup
L®Q(L))

00 |T1=5,L€(0,9)

Differentiating (5.17) by r,, we have the following equation which

a@(z) .
—%¢ gatisfies.
Tk

M) (a9 25

(1) (2)
5:20) | +U—PO{( FActORi+08)—r (40 22re 4 2N~ in 0(0)
07, 07,

( m) 0 on 2(Q).

aTk

(2)
We can carry out the completely same procedure for %3 as the
Tk

first and the second steps in Lemma 5.3. Therefore we omit the proof.
By the properties in Lemma 5.2 and Lemma 5.3, we can reduce the

equation to a finite dimensional problem by multiplying (5.16) by &,

and ||¢de.cllreeendn: (1<k=<gq) and we obtain the following equation.

F,(T) 0

(5.30) E(T)=| @ |=|:
Fooo(T) 0
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where we put, for 1<k<q,

FudT) = =00t | duclo)Grclo)da

FroaalT)= —zk(c)r,,+k+§ grcllimanduc@)Gre @)ds
Gr.c=(ActOf+ 08 = FlA) —f (A O+ 05 + g

From Lemma 5.3 and lim sup |g.(x)|=0, it is easy to see that

{0 z€Q(0)
(5.31) lim sup (sup IGT,C(xH):O-
60 L€(0,0),ITIS8\z€2(0)

Then by using (8.12) and (3.13), we also have
(5.32) lim sup |E/(T)|=0.

30 L€(0,8),1TI<d

To apply the standard inverse function theorem of finite dimensional
type, we investigate the Jacobian matrix of E.(7T) as follows:

Fu (T)=—0;,;0:(C) + S Pue () 0 (x)dz,

aTj @) ’ a‘t'j
aFa#t_(T) = —0444,54(C) +s [ Pe,ell 2cace)y@e.c (@) 0Gir.; (x)dz,
T; aw or;
Blns — (At 0+ 08 — (40 ($50+ 22EE)  (125a),
or; T
Do 1A+ R+ 09) —(40)($5c+ 22 (1242)
67414—: arqﬂ'
’wl(C)
wu(C). 0
(5.33) (%(0)) o+ " 0,(0)
T; 15i,752¢ 2(8)
0 "2,(C)
<c sup aGT: max (”¢k,(“b‘(a(o)v ||¢k,cl|b°°(9(c>)||¢k,c|lblm(;)))-
se0®| 0t; | 1sksq

By Lemma 5.3, Lemma 5.4 and Proposition 3.2, we have

%(@D:O (1<k<2q).

lim sup (sup
3-0 £€(0,8),1TI<8 \z€Q(0)
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Then by (5.2) and (5.33), we have

wl(l)z. 0
OEc oy

li . T K =0.
cl—r»f)lcem,a),urlsa oT + @a A

Therefore the Jacobian matrix %—I;ﬁ(T) is approximated by the non-

singular matrix

[0
Wq . 0

_ o, (cf. (IL.5)).

Therefore by the inverse function theorem with (5.32), there exist con-
stants d,>0 and §,>0 such that the equation (5.30) has a unique solution
|T,| <0, for any (€ (0,0,). Thus we get a solution v, of (1.1); by putting

ve(w) = A¢(x) + ‘D(Tlg,c(x) + q)(TZg’C(w)_

Moreover, by the procedure of the construction, it is easy to see that
(2.3) and (2.4) hold.
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