J. Fac. Sei. Univ. Tokyo
Sect. TIA, Math.
36 (1989), 211-232.

Radial solutions for Au-+|x||ulp-lu=0
on the unit ball in R"

Dedicated to Professor Hiroshi Fujita on his 60th birthday

By Ken’ichi NAGASAKI

§1. Introduction

We are concerned with the radial, i.e. spherically symmetric, solu-
tions of the nonlinear boundary value problem in the unit ball 2=
{z||z]<1} in R™

(P) du+|z|ul*'u=0 in 2, =0 on 9%,

where n>2, >0 and p>1.
The radial solution w=wu(r) of (P), where r=|z|, can be obtained
by solving the following ordinary differential equation:

(r Y + Yyl 'u=0  for r€ (0,1),

(RP) #'(0)=0 and u(1)=0.

The equation of the form (RP) with [=0 has been known as the
Lane-Emden equation in astrophysics from the beginning of this century,
where u represents the density of stars. In 1973, Henon [4] proposed
the equation with [#0 to describe the spherical stellar structure and
studied its stability through numerical computation. Moreover the case
n>3, I=0 and p=(n+2)/(n—2) is relevant to Yamabe’s problem in dif-
ferential geometry.

We will review briefly some results obtained up to now for the case
l=0. First the problem (P) with »>3 has a positive solution for p¢
(1, (m+2)/(n—2)), and, to the contrary, has no nontrivial solution for
pE[(n+2)/(n—2), ) ([12]). Next, the positive solution of (P) is unique.
In fact any positive solution of (P) must be radial when [=0. Further
the positive solution of (RP) is unique in this case ([4]).

As for our problem [>0 with »>8, Ni [9] showed the existence of
a positive radial solution of (P) for p€ (1, (n+2+2l)/(n—2)), applying the
mountain pass lemma, but did not get the uniqueness. On the contrary,
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when £ is an annulus {x|0<a<|x|<b} instead of the ball, the unique
existence of a positive radial solution of (P) with =0 has been establish-
ed for pe (1, (m+2)/(n—2)] in the case n>3 and for p€ (1, o) in the
case n=2 by Ni[10]. Later his result was improved as follows. Namely,
in such an 2, for each k€ N, the problem (P) with /€ R and p€ (1, o)
has at most one radial solution w=wu(r) which has exactly (k—1) zeros
in (@, b) and whose derivative at r=a is positive ([11]). There the Sturm’s
comparison and separation theorem were made use of.

Our main aim of this paper is to study similar problems to Ni-
Nussbaum’s in [11] and determine the structure of radial solutions for
(P) when 2 is the unit ball. The results read as follows.

THEOREM 1. When n>3 and p€ (1, (n+2+21)/(n—2)), for each k€ N
there exists a umique radial solution w=wu(r) of (P), such that u(0) is
positive and w(r) has exactly (k—1) zeros in (0,1).

When pe[(n+2+21)/(n—2), o), there exists no radial solution of (P)
except for the trivial one.

THEOREM 2. When n=2, for each k=N there exists a unique radial
solution u=wu(r) of (P), such that w(0) s positive and wu(r) has exactly
(k—1) zeros in (0,1).

Our proof will be accomplished by refining the phase plane analysis
developed in Chandrasekhar [2] and Joseph-Lundgren [6]. However, we
shall make a delicate use of the particular nonlinearity of the equation
(RP).

Here it should be noted that Gidas-Ni-Nirenberg’s theorem cannot
be applied to the problem (P) when [>0. Hence the existence or non-
existence of nonradial solutions of (P), is open even for positive ones.
To our knowledge the same question for sign-changing nonradial solu-
tions is also open even for [=0. However, we are able to derive from
Rellich’s identity the stronger nonexistence result than the latter half
of Theorem 1.

- THEOREM 3. If p€[(n+242l)/(n—2), o), there exists no solution of
(P) other than the trivial one.

Concluding this section, we note that our method applies to the
following nonlinear eigenvalue problem in the unit ball 2 in R™:

(P,) du+2|z'e*=0 in £, u=0 on 04,
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where n>2, 1>0 and 1>0. Actually, for n>2 and =0, Joseph-Lundgren
[6] found that the number of radial solutions of (P;) varies curiously
according to the value 2 and n. Following their idea, we show

THEOREM A. (1) When n>10+4l, there is a unique radial solution
of (P,) for 2€ (0, m—2)(I+2)), and there ts mo radial solution for A€
[(n—2)(1+2), o).

(2) When ne€ (2,10+41), there exists a positive value 2, such that
(P,) has at least one radial solution for A€ (0, 4] and no solution for
A€ (A4, o). Moreover, there exists a positive sequence {A;}3, which has
the following properties:

1° {A;_1} and {A;} converge monotonically to (n—2)(I+2) respectively

from above and from below,

2° there are exactly j solutions of (P,) for 2=2;, 25 solutions for

A€ (A1, Aoj_1) and (25+1) solutions for A€ (A, Asjys),

and

3° there are infinitely many solutions of (P,) for A=(n—2)(I+2).

(3) When n=2, there exists a positive number A* such that (P;) has
two solutions for A€ (0, %), one solution jfor A=2A* and mo solution for
A€ (A*, o).

The organization of this paper is as follows. In Section 2 we intro-
duce the phase plane analysis and give the proof of Theorems 1 and 2.
In Section 3 we establish Theorem 3 with the aid of Rellich’s identity.
In Appendix we deal with the problem (P,) and prove Theorem A.

§2. Proof of Theorems 1 and 2: Phase plane analysis
For the moment, we consider the initial value problem:

(Tn_lu/)/_{_rl+n—llull’—lu=0 fOI‘ 7'6 (Ov 1)’

(IVP) u(0)=A and u'(0)=0,

for A>0, instead of the boundary value problem (RP). We may assume
that A is positive without loss of generality, because the differential
equation in (IVP) is odd with respect to u.

First, we introduce the change of variables:

(2.1) u(r)=Av(s) and r=BRBs,

where B is determined in the following manner:
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[Case I] when p€ ((n+1)/(n—2), ), we put
B={(n—2—1)c A"}  with =(2+1)/(p—1),
[Case II] when p=(n+1)/(n—2), we put
B=A0PICH,
[Case III] when p€ (1, (n+1)/(n—2)), we put
B={(t+2—mn)t A},

According to the cases I, II and III, the equation in (IVP) is trans-
formed respectively into the equations

(2.2); (s " +(n—7—2)rs* | Tw=0,
(2.2)1 (") 48t v|P v =0,

and

(2.2) 11t (") + (c+2—n)rst* P lw =0,

while the initial conditions in (IVP) are transformed into
(2.8) v(0)=1 and 2/(0)=0.

The boundary condition w%(1)=0 corresponds to the condition
(2.4) v(B™)=0.

Next, we make another change of variables due to R. Emden
(Chandrasekhar [2, p.90] e.g.):

(2.5) w(t)=sv(s) and s=¢,

which transforms the equations (2.2);, (2.2);; and (2.2)); respectively into
the equations

(2.6); w’+(m—2c 2w+ (n—7—2)r(|w|**—1)w=0,
(2.6)51 w’ —(n—2)w' +|w|*'w=0

and

(2.6)m w’+(n—2c—-2)w'+ (r+2—n)r(|lw|*'+1)w=0.

The initial conditions (2.8) are transformed into
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(2.7) lim e *w(t)=1 and lim e *{e~"*w(t)}’=0.

t—>—o0 t—>—0c0

To show the unique existence of a classical solution w=w(t) of (2.6)
with (2.7), we prepare the following

LEMMA 2.1. Let real numbers a, B and e be given with the relations
(2.8) a>pB, a>et and >0,
and let f=f(t) be a C'-function on R satisfying
(2.9) L (@) <Leiltl®

for some positive ¢, when |t| is small enough.
Then the differential equation

(2.10) ¢ —(a+pB)¢ +aBo+flp)=0
with the conditions

(2.11) lim ep(t)=1 and lim e *{e~*o(t)}=0

t——o0 t—>—oo

has a unique classical solution ¢p=¢(t) for sufficiently small t.
ProOF. Put ¢(t)=e *'¢(t)—1, then we obtain from (2.10) the equation
(2.10) ¢+ (a—p)g +e7f(e*(¢+1))=0
and from (2.11) the conditions
(2.11) lim ¢(t)=lim e™'¢/(t)=0.

t—+—oco t—>—co
Under the assumptions (2.8) and (2.9), the equation (2.10) with
(2.11)" turns out to be equivalent to the integral equation

(2.12) O(t)=— St_we‘ﬁ‘“’deSime”ﬁ”f(e"”(éb(v) +1))d.

We take a Banach space X={¢=¢(t)|¢ € C(—oo, —T1], lim ¢(t)=0}

with a supremum norm |||, where 7>0 is a constant chosen later. We
take an operator @ on X such that for ¢€ X, @(¢) is defined with the
right-hand side of (2.12).

We shall derive two estimates concerning @ on a closed subset K=
{gb:gb(t)]llgbﬂgl} of X. In what follows, C stands for a generic positive
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constant and 7T is a constant chosen large enough.
For ¢ € K, we have
-T
0)1 <[ er-orde[’_ewrceurmady<cor.

Further, because of the mean value theorem, we have for ¢, € K
and ¢, € K,
T

104) ~0(g) | <[ ev-osde|’ emCemlgi—gullerdn<Co=lgi—gil.

If T is chosen again so that Ce™*?<1, the operator @ becomes a
contraction on K. Hence there exists a fixed point ¢*=¢*(t) of @ which
is unique in K.

Extending the function ¢*=¢*(t) for ¢>—T as a solution of (2.10)’,
we obtain a classical solution of (2.10) with (2.11)".

The uniqueness of the fixed point of @ in X remains still to be
proved, however it can be easily checked by the fact that every solution
of (2.10)" with (2.11)" belongs to K for appropriately large T.

Lemma 2.1 with a=t and f=t+2—n in all cases I, II, and III
yields the unique existence of a solution w=w(t) of (2.6) with (2.7).

For the solution w=w(t), we put z(t)=w'(t) and trace the orbit
O={(w(t), 2(t))|t>—oco} in (w, z)-plane. We deal with the case I in the
first place. From (2.6); we have an autonomous system

(2.18) Tjt—(%: >=<_ (n—Z—r)T(l’wl”_lz—l)w— (n—2—21)z ) )

which has just three singular points 0(0,0) and S.(=+1,0).
We examine here the behavior of the orbit of (2.13) near singular
points, which plays an essential role in later arguments.

PROPOSITION 2.2. (1) The orbit O tends to O along and below the
line z=7w (w>0) as t——oco. Moreover there exists no other orbit which
tends to O in the right half-plane {(w, z)|lw>0} as t——oo.

(2) There exists exactly one orbit which tends to O in the right
half-plane as t—-+oo. This orbit tends to O along z=(r+2—n)w.

Proor. From (2.6); and (2.7), we have

lim w(t)=lim {2(t)—tw(t)}=0,

t—>—0o0 t—>—co
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noting that for ¢ large enough,

w(t) >0
and

2(t) —Tw(t)= —e"‘”‘z"”gt (h—2—7)re™ 27| w|*wdy <0,

The former part of (1) follows easily from these relations.
The linearized system of (2.13) at O can be expressed as

(2.14) _(;i_t<]}:>:<(n—(2)—r)t —(%—;—27)XZ>.

Since the eigenvalues of the matrix in (2.14) are ¢ and 42—,
where >0 and t4+2—n<0, there exists exactly two orbit which tends
to O as t——oco: one along z=tw from the right and the other along
the same line from the left ([3] Chap. 15). This shows the latter part
of (1).

The assertion (2) is proved in a similar manner.

PROPOSITION 2.3. When pe ((n+2+2l)/(n—2), ), every orbit of
(2.13) near the singular points S, mnecessarily approaches S. as t— +oo.

In contrast, when p€ ((n+1)/(n—2), (m+2+2l)/(n—2)), every orbit of
(2.13) mear S, approaches S, as t——oo.

ProOF. The linearized system of (2.13) at S, can be expressed as

(2.15) %<Z>:<_(n—zgr)(l+2) —(n—lz—zf)XZ)

Let g (=1, 2) denote the eigenvalues of the matrix in (2.15), then
we have

mpe=m—2—7)(1+2)>0 and p+p.=2t+2—n0>(<)0

according to p<(>)n+24+2l)/(n—2) respectively. Hence, for pe€
(n4+2+42l)/(n—2), o0), the real parts of g (¢=1,2) are both negative,
and for p€ ((n+1)/(n—2), (n+242l)/(n—2)), they are both positive. At
this point the assertion is obvious ([2] Chap. 15).

In the preceding proof we have not cared about whether the eigen-
values p; (i=1,2) are real or imaginary because it does not give any
effect on our later analysis.
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PROPOSITION 2.4. The orbit O never meets with itself.
It has mo closed orbit, hence mo limit cycle if p€ (1, ) and p+
(n+2+420)/(n—2).

Proor. The first assertion is due to the general property of an orbit
of autonomous system.

The existence of any closed orbit is excluded by Bendixon’s theorem,
because

az+a

—{—n-2—-7)(|lw|"'—-1)w—(n—2—-27)2}=—(n—2—27) %0
ow 02

for p#(n+2+210)/(n—2).

These propositions suggest that the behavior of ) is quite different
in the cases p>(n+2+420)/(n—2) and p<(n+2+2l)/(n—2). Actually we
have the following lemmas which describe three types of its behavior.

LEMMA 2.5. When p€ ((n+2+420)/(n—2), oo), the orbit ) never meets
the z-axis. It approaches S, as t—+oo. (cf. Figure 1.)

. dz _dw dz dz .
ROOF. Observing i dt dw P’ dw we obtain from (2.13) tha

(2.16) zgf_vz—(n—z—zr)z—(n-2-r)r(|w|r-1—1)w,
or
’ dz _ _n—2-2cf  (n—2—7)r -1
(2.16) dw p {z “m—a—zn " 1)”’}
= - 22225 ().

Let K and _[ denote the curve z=g(w) and the line z=tw in (w, z)-
plane respectively, then divide the phase plane into four domains 9);
(7=1, 2,3, 4), where

D, :2>0 and z>g(w),
D, : 2>0 and z2<g(w),
D, : 2<0 and z>g(w),
D, 1 2<0 and z<g(w).
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From Proposition 2.2, the orbit © leaves O along and below [ at
t=—oco and goes right and upwards in &), Crossing the curve X

z z
Q}, - ’:E ,,’,.E
SN NO
:'K ' 9 \\
/’ g)l ‘I ' \\\
/7 “I'x
Figure 1. Figure 2.

horizontally, © goes right and downwards in 9),.

At this point there are three possibilities concerning the behavior
of (), that is, an escape to infinity in 9),, an approach to S, and a ver-
tical cut of the w-axis. However, in the first possibility, z remains

finite, while w and consequently Ig—z‘ tend to infinity from (2.16)/, which
w

is a contradiction. In the second possibility, the assertion follows directly
from Proposition 2.3. Therefore we have only to trace ) after its ver-
tical entrance into 9,.

Going left and downwards in 9, © eventually meets the curve K
and crosses it horizontally into ¢),. Otherwise, w being finite and |z|

tending to infinity, %— converges to —(n—2—2z) from (2.16)’. This is
w

a contradiction. Now, () goes left and upwards in 9), but it neither
approaches O, nor crosses the z-axis. This will be shown below.

In fact, assume that (© approaches O, and hence along the line
2=(t+2—n)w by Proposition 2.2. Then, take a point P, in the domain
€ enclosed by © and trace the orbit O, starting from P, at t=0. 0,
remains in & for any ¢, but it could approach neither O from Proposi-
tion 2.2 (2), nor S, from Proposition 2.3 when ¢ tends to —oo. This
leads to a contradiction since (), has no limit cycle.

Next, assume that © crosses the z-axis at P,(0,;). Let us take a
point P40, &) with {,<<{;<0 and trace back the orbit starting from P,
at t=0, which yields the same contradiction.
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As a result @ must approach S, or cross the w-axis vertically at a
point in 0<w<1. Even in the latter case, a further trace of (© shows
that O eventually approaches S, without meeting the z-axis as ¢ tends
to infinity. ‘

REMARK 2.6. We can conclude that any solution w=wu(r) of (IVP)
with p€ ((m+2+421)/(n—2), o) is positive for »€ (0, ). Moreover, we
have

u(r)=0(r"7) as r— oo,

LEMMA 2.7. When p=(n+2+2l)/(n—2), @ Jorms a ring which starts
Srom O along the line z=<zw (w>0) and terminates at O along the line
z=—tw (w>0). (cf. Figure 2.)

Proor. In this case the equation (2.16) is reduced to

2.17) zé%z — (|| —L)w.

Integrating (2.17) and taking into account that (z, w) on (O approaches

(0,0) as t—>—oo, we derive the equation of the curve formed by O,
namely

2
2.18 o ——|w|t —w? )=0.
( ) z +r<p+1 |w) w)
The assertion follows obviously from (2.18).

REMARK 2.8. We obtain from (2.18),

(2.19) @=rw<1—iwrl>”z,
di p+1
where w and zz% are assumed to be positive.
Owing to the condition (2.7), integration of (2.19) yields
2 [ 2(p+1)—ere
2.20 1——2 jw)pi= i
220 T = e )

Converting the relation (2.20) into that of w(r) through (2.1) and
(2.5), we finally obtain the solution of (IVP) with p=(n+242[)/(n—2):
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wu(r)=A(L+4Drtt?)2e-d,
where D=A?"/{(n—2)(n-+1)}.

LEMMA 2.9. When p€ ((n+l)/(n—2), m+2+20)/(n—2)), the orbit O
leaves spirally away from O as t increases, crossing the negative and
the positive part of the z-awxis alternately. (cf. Figure 3.)

Proor. We define g(w), X, L and 9, (j=1,2,3,4) by the same as
before, and further 97 by

Di=D,N{(w, 2)| w>0}.

Similarly in the proof of Lemma 2.5, the orbit (), starting from O,
goes through 9i and 9)i until it crosses the w-axis vertically. In 9,
© goes left and downwards.

Assume that © enters into 9)#, then we shall see that it necessarily
leaves 9)i and enters into 9)} again. Actually, if not so, it would tend
to O along z=(c+2—mn)w or cross the w-axis at a point in O<w<1.
However the first case is impossible from the same reasoning as in
Lemma 2.5. Noting that S, is not an attractor at t=+oco from Propo-
sition 2.3 and that © has no limit eycle, we also eliminate the possibil-
ity of the second case.

9D,

.
I
(e
v
'
s
’
/
’

D,

Figure 3. Figure 4.

Next, assume that © escapes to infinity in 9}, then w remains finite
and ((il_z converges to 2r4+2—n from (2.16)’. This is a contradiction.
w
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Hence ) meets the negative part of the z-axis and enters into 9.

A similar argument shows that, crossing K horizontally and then
the negative part of the w-axis, () enters into 9);i and meets the posi-
tive part of the z-axis.

In view of Proposition 2.4 the assertion is obvious at this point.

Hereafter we shall trace the orbit ) in the cases II and III.

LEMMA 2.10. When p=(n+1)/(n—2), the orbit O behaves the same
as in Lemma 2.9. (cf. Figure 4.)

ProOF. From (2.6);;, we have

(2.21) g—;:nz_z {z—niz |w|"‘1w}znz_2{z—gl(w)}
and
(2.22) 2(t) —cwl(t) =2(t) — (n—2)w(t) = —S |w|"wdy.

As before, defining the curve K, the line . and the domains 9);
(7=1,2,8,4) with g,(w) in place of g(w), we begin to trace (.

The orbit O starts from O along and below _ according to (2.22).
It goes out of 9), crossing K. Now, the trace of @ will be carried out
more easily than in Lemma 2.9, since there are no domains such as 9;
and 9);. Hence we shall not repeat here.

LEMMA 2.11. When p€ (1, (n+1)/(n—2)), the orbit O behaves the same
as in Lemma 2.9.

The proof of Lemma 2.11 will be done in the same manner. So we
shall omit it here.

Now we are in the position to see how the trace of the orbit of O
tells us about the radial solution of (P), that is, to complete

Proor oF THEOREM 1. In terms of the changes of variables (2.1)
and (2.5), the zeros of w=wu(r) corresponds to that of w=w(t). There-
fore, if the orbit @ never meets the z-axis at a finite ¢, the solution of
u=u(r) of (IVP) never vanishes. This fact, together with Lemmas 2.5
and 2.7, proves the second part of the assertion.

On the other hand, in the cases that O goes across the z-axis at
t=t*, the solution u=wu(r) of (IVP) with A determined by the relation
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B=¢™" vanishes at r=1. Here it will be worthwhile to remark that
there is a one-to-one correspondence between the points on the orbit O
and the real numbers ¢ through the condition (2.7).

Take the points P, (k=1,2,8, ---) at which the orbit © crosses the
z-axis just k times after starting from O at t= —oo, and determine the
number ¢, which corresponds to P,. Next, choose the value A, of A by
the relation B=¢ % and put A=A, in the problem (IVP). Then the
above argument guarantees that the solution wu,=wu,(r) of (IVP) with A,
has just (k—1) zeros in (0,1). This yields the existence of a desired
radial solution of (P). Meanwhile, the uniqueness of such a solution is
reduced to that of the orbit ), which has already been proved.

With the same procedure Theorem 2 will be proved, so we shall
only examine the behavior of the orbit O.

PrOOF OF THEOREM 2. For the initial problem (IVP) we introduce
the change of variables:

u(r)=Av(s) and r={c2PA'"?}VitBs with =(+2)/(p—1).
Successively we make another change of variables:
w(t)=s(s) and s=e".

Accordingly, (IVP) is transformed into

(2.23) w’ —2tw +(|w|P 7+ 1) w=0
with
(2.24) lim e™w(t)=1 and lim e *{e"w(t)}'=0.

t——oco t——oco

The unique existence of the solution w=w(t) of (2.23) with (2.24)
follows from Lemma 2.1. Consequently, we obtain the function z=z(t)
and the orbit O as before.

Noting that the equivalent autonomous system to (2.23):

;—tc:):(—r2(|w|p-1z+1)w+2zz)

has only a singular point O(0, 0) which is an attractor at t=—oo, we
get to the conclusion that the orbit O behaves the same as in the case
III for n>3.
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§3. Proof of Theorem 3: A conclusion from Rellich’s identity
Symmetry of positive solutions for the boundary value problem:

(3.1) du+flr,u)=0 in Q={z|r=|c|<L}cCR",

(3.2) u=0 on 92,

where f(r,u) is of class C*([0, 1]XR), has been investigated by Gidas-Ni-
Nirenberg [4]. There it is shown that any positive C*(£2)-solution w=1u(r)
of (3.1) with (3.2) is radial provided that f is decreasing in », which is
not the case for (P). Hence it is open whether the solutions, especially
the positive ones, of (P) are necessarily radial or not.

Nevertheless, we have a stronger nonexistence result than the second
part of Theorem 1. To show this, we prepare the following identity,
which follows directly from Rellich’s one.

LEMMA 3.1. Let u be a C*Q)-solution of the problem
(3.3) du+ x| f(u) =0 n 2,
(3.4) u=0 on 99,

where f is of class C*'(R) and [>0. Then we have

(3.5) %LQ g—z’rdngg{(n-}-l)F(u) - ngzuf(u)}[xlldx,

where v denotes the outward unit normal on 92 and F(t):St f(s)ds.

PrOOF. For % in C*), we have

(3.6) Auki‘x,, a_u): .’ki:l[x,, 0 <6u au)—lx 9 6u>2].

=" N\ow,/ oz, \ox; 0w,/ 2 oz, \ox;

Integrating (3.6) in 2, we can derive the Rellich’s identity [13]

(8.7 S Au}foc,, in)dng (oc-Vu)”dS—lj |Vul*dS+
Q@ k=1 L Yl 2 Jao

""2§ \Vu|*de.
2 Q

When u is a solution of (3.3) and (3.4), we have

(3.8) SgAu i x,,(aa—ui)dx: ——SD kzi)l x,,locllgz—kF(u)dx: (n+l)SD F(u)|x|'dx,

k=1 2T,
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(3.9) Sm (- Vu)”dS——é—Sm |Vu|”dS=—é—Sw % |2ds
and
(3.10) L \Vu|ds = — Sgududx :Sgu F(u)|o|'de.

Substituting (3.8), (3.9) and (3.10) into (3.7), we obtain the identity
(3.5).

The identity (3.5) plays a key role in the proof of Theorem 3. In
fact, in the case f(t)=|t|*"*, (3.5) reads as

1 2dx:<’n+l _i—_2>§ x| || dw,
/Ja

(3.11) _j ou
20 p+1 2

oy

2

where u is a C%®solution of (P).

n+l m—2
+1 2

Therefore, the identity (8.11) holds if and only if

.

which implies that % vanishes identically in 2.

For pe€ ((m+2+42l)/(n—2), ), the value is negative.

2
i’ll dxzs ]! |+ dz =0,
oy Q

For p=(n+2+2l)/(n—2), the value nj__i _n;Z is equal to zero,
p
which means from (3.11) that
(3.12) L )

oy
Now consider the linear elliptic problem
dv+|u|"'v=0 1in £, v=0 on 09.
If a solution v of the above problem satisfies the condition

w =7 on 992,
oy
then v vanishes identically in £. This fact holds by Calderén’s unique-

ness theorem and the unique continuation theorem for elliptic equations



226 Ken’ichi NAGASAKI

of second order. (A proof can be found in Mizohata [7], for example.)
Hence u vanishes identically even for p=(n+2+2l)/(n—2).

Appendix. Proof of Theorem A

In this Appendix, we will give a proof of Theorem A by Joseph-
Lundgren’s method. However, we shall study the existence of the solu-
tion orbit () and its asymptotic behavior around the critical point in
detail.

As for radial solutions w=wu(r), where r=|z|, the problem (P;) can
be reduced to the ordinary differential equation

(r*~/) 4 Arttr"ler =0 for r€ (0, 1),

(RPZ) u/(o) =0 and u(l) =0.

We first deal with the case n>2. The case n=2 will be treated
later.

Similarly in §2, we consider the initial value problem

(IVP)) (r"~'u’) + Artt"le* =0,
u(0)=A and u'(0)=0,

for A>0.

Introducing the change of variables:
(A.1) u(r)=v(s)+A and r=R>5Bs,
where
(A.2) B={(n—2)(2+1)/2¢*}1"*®,
we transforms (IVP;) into the problem
(A.3) (s" W) +(241)(n—2)s*" e’ =0,
(A4) v(0)=v'(0)=0.

The boundary value condition %#(1)=0 corresponds to the condition
(A.5) v(B™)=—A.
Further we make another change of variables:

(A.6) v(s)=w(t)— 2+t and s=e,
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which transforms the problem (A.3), (A.4) into
(A7) w’'+n—=2)w'+ 2+1)(n—2)(e*—1)=0,
(A.8) lim {w(t)—(2+)t}=lm e {w'(t)—(2+1)}=0.

LEMMA A.l. The problem (A.T), (A.8) has a unique classical solution
w=w(t).

PROOF. Substituting y(t) =w(t) — (2+1)¢ into (A.7) and (A.8), we have
(A7) Y+ (m—2)y + (2+1) (n—2)e®+Mer =0,
(A.8) lim y(t)=lim e *y'(t)=0.

The problem (A.7)’, (A.8) can be transformed into an equivalent
integral equation
(A.9) y(t):—(2+l)(n—2)st e-<n—2>vd;7§” e HDEQHOdE,

o

The unique existence of a solution of the equation (A.9), hence of
the problem (A.7), (A.8), can be proved with the same procedure as in
the proof of Lemma 2.1, which will not be repeated here.

For the solution w=w(t), we put 2z(t)=w'(t) and define the orbit
O={(w(t), z(t))|t> —oo}. Consequently, O is the orbit of the autonomous
system

aw o A(0)-

whose singular point is only O(0,0). Now we are going to investigate
the properties of the orbit (J, some of which have been shown essen-
tially in [2] and [6].

( : )
—2+)(m—2)(e*—1)—(n—2)2/’

PROPOSITION A.2. There exists only one orbit of (A.10) that is asymp-
totic to the line m:2=2+41 from below as w——oco, Moreover, this orbit
18 identical with Q.

PRrROOF. Suppose that there exist two distinet orbits having such a
property. These orbits near w=—co can be expressed with z={;(w)
d

(i=1,2) because E_t“_’zz>o. Then we have from (A.7),
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(A.11) A _ 2 —2+)m-22=L  (i=12).
dw i

For y(w)=C(w)—&(w), we may assume yx(w,) >0 for some negative

w, without loss of generality and have from (A.11),

(A.12) D24 m—2)1—e)-X <0  at w=w,.
dw CICZ

Consequently we conclude from (A.12) that y=yx(w) is monotone
decreasing in (—oo, w,) and

(A.13) 0 <y (w,) <yx(w) for we (—oo, wy),

which contradicts the fact that both {;(w) (:=1,2) converge to 241 as
w tends to —oco. Thus we have obtained the uniqueness.

On the other hand, the condition (A.8) show that the orbit () is
asymptotic to the line m as w tends to —oo. Further, from (A.9) we
derive

t

(A.14) z(t)—(2+l)=——(2+l)(n—2)e“""2"5 e BEmOdE 0,

which shows that () stays below m.

PrOPOSITION A.3. The orbit (J starts asymptotic to the line m and
remains in a domain

E:24+)1—e")<2<2+1,
until it crosses the z-axis or approaches 0(0, 0).

PrOOF. Assume () meets the curve C:z=(2+1)(1—e”) at (w,, 2,) and
put

(A.15) 0(w) =C(w) —(2+1)(1—e"),

for Q:z={(w), then we have

(A.16) 0" (wo) = (2+1)¢*0>0.
The relation (A.16) means

(A.17) ow)<0 and SE ()= —m—2 20
dw
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for we€ (—oo, w,). From (A.17) we have
Cw) <C(wo) = (2+1) (1 —e™) <2+1

for wé€ (—oo, w,), which contradicts the asymptotic approach to the line
m.

Assume that () stays below the curve C for w near —oo, then we
are led to the same contradiction.

Next the behavior of () near the critical point O(0, 0) will be analyz-
ed. The linearized system of (A.10) at O is

(4.18) "dd7< Z >=<_ (2+l)0(n—2) - (nl— 2)>( Z )

where the eigenvalues

(A.19) piz-;—{Z—nix/(n—Z) m—10—40)}

of the matrix in (A.18) satisfy the relations
(A.20) ti+p-<0 and p,-p >0.

Consequently the real parts of p. are negative. Further, p. become
imaginary if and only if n<10+4/. Hence the following propositions
follow directly from the general theory of autonomous systems.

PRrROPOSITION A.4. Every orbit of (A.10) near O necessarily approaches
O as t—4oco. Moreover, it approaches O spirally if 2<n<10-+4l.

PROPOSITION A.5. Ewvery orbit of (A.10) never meets ttself and has
no limit cycle.

With these preparations, we are going to trace the orbit Q.

LEMMA A6. Let n>10+4l. The orbit () starts asymptotically to the
line m:2=2+41 and goes right and downwards in £. Eventually it ap-
proaches O in one direction as t—+oo. (cf. Figure 5.)

Proor. Owing to Propositions A.2 and A.3, we have to prove only
the last part.
Assume () meets the line n,:2=p,w at (w, 2, in &, then we have
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0= (@)} ey > s+ (n—2) + L EUEED)

w My
where {(w) is that in (A.15). Because of (A.21), (J never cuts the line
n, from the left to the right. Consequently, () stays in the domain:
(2+1)(1—e*)<z<min.(2+1, p,w) and approaches O in a certain limiting
direction there.

(A.21) =0,

We remark here that () approaches O along the line n,. However,
this fact will not be needed later.

LEMMA A7. Let 2<n<10+4l. The orbit (J starts asymptotically
to the line m:2=2+1, goes right and downwards in & and meets the
positive part of the z-axis. Further, crossing the w- and z-axis alter-
nately, it approaches O spirally as t—+oco. (cf. Figure 6.)

Proor. Going right and downwards in &, the orbit () never ap-
proaches O directly from Proposition A.4. Hence, it eventually meets
the positive part of the z-axis and enters into the domain & :w>0 and
2>0. Going right and downwards in &, it crosses the w-axis vertically
at a point (w*, 0), where w* is a certain positive number.

2z z
ny
\ 24l m I L
Q AN \‘\(’—\\Q
o[ w \g*)\ w w
| s
M \
\C 4
Figure 5. Figure 6.

A further trace of (J, which can be accomplished quite the same as
in Lemmas 2.5 and 29, will prove the assertion. However, we shall
skip it here.

Now we deal with the case n=2 briefly.
We make the changes of variables (A.1) and (A.6) again, where B
is taken to be (2e%)~Y"*? instead of {(n—2)(2+1)/2e4}"'"*®. Accordingly,
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the problem (IVP,) is transformed into the problem
(A.22) w” +e*=0,
(A.23) lim {w(t)— (240t} =lim e *{w’'(t)—(2+1)}=0.

t—>—co t—+—oo

With a slight modification of the proof of Lemma A.l, we get a
unique solution of the problem (A.22), (A.23). Hence we can define the
orbit (J as before.

LEMMA A.8. When n=2, the orbit () is expressed by the equation
(A.24) 2*42¢"=(241)%

Proor. From (A.22), we have
(A.22) d;‘i{z2+2eW}=o.

Since (w,2) on (J approaches (—oo,2+1) as ¢ tends to —oo, (A.24)
follows immediately from (A.22)’.

At this point, what is left to be shown is how Lemmas A.6, A.7
and A.8 lead to

Proor OF THEOREM A. First, we repeat the remark that there is
a one-to-one correspondence between the points on Q) and real numbers ¢
through the condition (A.8). Hence, for a point (w,, 2,) on (J, we can
determine a corresponding number ¢, Further A and 1 are chosen by
the relations

—A=w,—(2+0)t, and e'o=B7,

that is,

(A.25) A=—wy+ (2+1)t,,

(A.26.1) A=(n—2)(2+1)e™ in the case n>2,
and

(A.26.2) A=¢" in the case n=2.

The solution u=u(r) of (IVP,) with A and A1 above satisfies the
condition (A.5). Consequently it turns out to be a solution of (RP,).
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Conversely, for given A the number of solutions of (RP,) is equal to
the number of the common points of () and the line:w=w, where w,
is determined by (A.26).

Finally, part (1) of the assertion follows from Lemma A.6 because
w,<0 means 0<A<(n—2)(2+1) in (A.26.1). As a consequence of Lemma
A7, we have part (2) with 2*=(n—2)(241)e”", where w* is that in the

proof of Lemma A.7. Part (3) with i*= 1

5(2—}4)2 follows from Lemma
A8,
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