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Meromorphic transformation to Birkhoff standard form

in dimension three
Dedicated to Professor Tosihusa Kimura on occasion of his sixtieth birthday

By Werner BALSER

0. Introduction

Consider an arbitrary meromorphic differential equation of dimension
nXn and Poincaré rank r=0:

0.1) 2o’ = A(2)x, A(z)::z'ki0 A% Ay#0 or r=0;

the power series being convergent for |z|>a, say, with some a>0.
We say that (0.1) is meromorphically equivalent to another equation

(0.2) 2y =B(2)y,

iff there exists a meromorphic transformation, i.e. an nXn matrix T(z),
analytic and invertible for |z| sufficiently large and so that T<*'(z) has
at most a pole at z=o0, for which

(0.3) B(2)=T(2)[Alz) T(z) —2T"(2)].

It follows from (0.3) that (for some natural number #)
B(z)==2" i B.z7*, B,#0 or #=0,

and the series converges, say, for |z|>a, 4=0.

Generally, both @ and 7 will be different from a, resp. ». However, in
case of analytic equivalence (i.e. if we can find a T(z), analytic at z=oc0
and T(co) invertible, so that (0.2) holds), then clearly #=7 follows.

In 1913, G. D. Birkhoff [6] claimed that every equation (0.1) is
analytically equivalent to a polynomial equation, i.e. an equation (0.2)
with B(z) being a matrix of polynomials in z. The proof he gave was
only valid for such equations whose monodromy matrix can be diago-
nalized, and by counterexamples (in dimension 2X2) he was proven false
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in the general case (see [1] for references).

If we allow meromorphic transformations (instead of analytic ones),
then it immediately follows from Birkhoff’s results that indeed every
equation (0.1) is meromorphically equivalent to a polynomial equation,
however, the Poincaré rank of this equation might be larger than the
original one, which means that the polynomial equation may contain too
many parameters in order to be a ‘“‘good” representative for the equa-
tions within a certain equivalence class. Hence the problem arises to
meromorphically transform (0.1) into a polynomsial equation (0.2) having
a minimal Poincaré rank v, (i.e. r, is the minimal Poincaré rank of all
equations which are meromorphically equivalent to (0.1). Every such
equation shall be called a Birkhoff standard form for (0.1). Since we
may very well assume that (0.1) already has minimal Poincaré rank,
this problem is the same as saying that we wish to meromorphically
transform (0.1) into a polynomial equation (0.2) without increasing the
Poincaré rank.

In 1963, H. L. Turrittin [9] succeeded in showing that such a trans-
formation exists provided A, (in (0.1)) has n distinct etgenvalues, and in
[6], W. B. Jurkat announced that he could show the same under some-
what more general assumptions. The general case, however, is still an
open problem. Only for dimension n=2, W. B. Jurkat, D. A. Lutz, and
A. Peyerimhoff [7] were able to show that every equation (0.1) is mero-
morphically equivalent to a Birkhoff standard form.

In this article, the author shows that meromorphic equivalence to
Birkhoff standard form also holds true for »=38. So far, the techniques
used in the proof do not generalize to larger values of n.

1. A factorization of formal meromorphic transformations

A formal series of the form
(1.1) T(z):ki Twe™  Tw#0, T@nxn,

will be called a formal meromorphic transformation, if det T'(z) is not
the zero series (so that T7!(z) again is a formal meromorphic transfor-
mation). Obviously, T(z) is a meromorphic transformation (as defined in
the introduction) iff the series converges for sufficiently large |2|, and
we use the word proper meromorphic transformation to distinguish the
convergent case from the formal one. If T'(z) is a (formal) power series
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in 27 beginning with an invertible matrix for its constant term, we call
T(z) a (formal) analytic transformation, and if the constant term equals
the identity matrix, we speak of a (formal) Birkhoff transformation.

The following Lemma is an analogue to the factorization of a con-
stant invertible matrix into a product of a lower and an upper triangular
matrix. For a convergent transformation, its proof was communicated
to the author by Y. Sibuya in a seminar held at USC, Los Angeles. The
same proof holds for a formal transformation and is included here for
the sake of completeness:

LEMMA 1. Let T(2) be an arbitrary formal analytic transformation
(of type mXmn), and let k; be integers (j=1, ---,m) so that

(1.2) ki <k.<--- <k,
Then there exists a permutation matriz R so that
(1.3) T(2)R=L(2)U(2),

with U(2)=[u,.(2)] being a formal analytic transformation so that, as
z—oo (formally):

(1.4) U(2) =1+ 0(z7Y), w0, 1<v<n,
(1.5) (2)=00%"571), 1sp<lv=mn,

and L(z)=[l,.(2)] being a lower triangular matrixz with ones along the
diagonal, and for 1<p<v<mn, the entry l,.(2) being a polynomial in 27*
of degree mot larger than k,—k,.

ProoF. (Induction with respect to n). For n=1, the Lemma is
trivially correct. For n=2, block

T(z) | t:(2)
t(2) | t(2)

T(z)R=

(with B to be determined later),

Liz) | 0
L(z)= ,
I7z) | 1
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U(z) | w(2)

ui(2) | u(2)

(where the first diagonal block always is of type (n—1)X (n—1)).
Then (1.3) holds iff

(1.6) T(z)=L(z)U(2),

(1.7) ti(2) = L(2)ua(2),

(1.8) () =13 (2)U(2) +ui(e),
(1.9) t(2) =13 (2)us(2) +u(2).

Permuting columns of T(z) (i.e. selecting R), one can ensure that 7'(z)
is a formal analytic transformation and (using the induction hypothesis)
admits a factorization (1.6), with L(z), U(2) having the required forms.
Defining u,(2) by (1.7), we certainly have that the components of w,(2)
are formal power series in 27!, and this is all that is required for
those positions of U(z). Next, let

t3(2) U (2) =1E(2) + 01 (2)

where [f(2)=[l.(2), -+, lan1(2)] is a row-vector of polynomials in 2z7*
which are the truncation of the corresponding positions of tf(2)U'(2) (so

that their degree is as required), and 47 (2)=[W..(2), - -, %n(2)] is a
row-vector of formal power series in z7!, so that

Uny(2) =0(2FFn71), 1Sp<n—1.

If we define ulf(z)=ul(2)U(z), then (1.8) holds, and it can be verified
that (1.5) holds, with v=n. Finally, define u(2) by (1.9), then u(z) cer-
tainly is a formal power series in 27!, and (1.3) holds (formally). If the
constant term of u(z) would vanish, then (1.3) would imply that det T'(c0) =0,
which is a contradiction, hence (1.4) holds for yv=mn. This completes the
proof.

We use Lemma 1 to generalize a result, stated without proof by
T. Kimura [8] for a proper meromorphic transformation, to the case of
a formal one:

LEMMA 2. Let an arbitrary formal wmeromorphic transformation
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T(z) be given. Then there exists a diagonal matrix
(1.10) K=diagl[k,, - - -, k.]

of integer diagonal entries k;, so that

(1.11) T(2)=P(2)T.(2)2",

where P(z) is a matriz of polynomials h z with constant (non-zero)
determinant, and T,(z) is a formal analytic transformation.

ProorF. Every formal meromorphic transformation 7'(z) can be fae-
tored in various ways as T(2)=F(z)T.(z) with a proper meromorphic
transformation F(z) and a formal analytic transformation T,(z) (for ex-
ample, apply a Proposition in [6], p. 52 to the transpose of 7'(z)). From
G. D. Birkhoff [4] (applied to the transpose of F'(z)) we obtain the exist-
ence of K=diag[k,, - -, k.] with integers k;, so that

F(2)=P(2)2*T.(2)

with a proper analytic transformation 7,(z) and a matrix P(z) of entire
functions (in 2) with det P(z)#0 everywhere. Since F'(z) only has a pole
at z=co, we find that the entries of P(z) must be polynomials, hence
det P(z) is a polynomial without roots, and consequently a constant.
Therefore

T(2) =P(2)2“T.(z)

with a formal analytic transformation T,(z) (=T.(2)T.(2)). Without loss
in generality, we may assume (1.10) (otherwise replace P(z), K, T.(z) by
P(z)R, R'KR, R'T.(z), resp., with a permutation matrix R). Applying
Lemma 1 to T.(2) and observing that 2XL(2)2z7* is a matrix of polynomials
in z with constant non-zero determinant, while 2*U(2)2z"¥ is a formal
analytic transformation, we obtain (1.11) with P(z)2*L(2)z ¥=P(z2),
ZXU(z)z”*R™" in place of T,(z), and RKR™ in place of K.

REMARK 1.1. Obviously, in (1.11) one can always normalize the factors
P(z), T.(2) by requiring

either P( =1,
or T.(e) =L
In each case, it is easily seen that (given K) the factors P(z), T,(z) are
unique (subject to this normalization).
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2. Polynomial equations with normalized formal solutions

As pointed out in the introduction, every equation (0.1) is meromor-
phically equivalent to a polynomial equation (whose rank may be larger
than that of the original one). We are going to show that in addition
one may arrange a formal fundamental solution of the polynomial equa-
tion to have a particular form:

THEOREM 1. Ewery meromorphic differential equation (0.1) ts mero-
morphically equivalent to an equation (0.2) with

#
(2.1) B(z)=2"Y. B,z™%, By,#0 or =0,
k=0

so that B; has eigenvalues within a fized, but arbitrary system of rep-
resentatives modulo one, and so that (0.2) has a formal fumdamental
solution

(2.2) H(z)=F(2)2*G(z),

with a formal Birkhoff tramsformation Fy(z), a diagonal matriz K of
integer diagonal entries, and G(2) (the formal meromorphic invariant
of (0.1)) as described in [6], [2].

Proor. It is known that one always may find (0.2) with B(z) as in
(2.1), and eigenvalues of B; as stated, so that (0.2) is meromorphically
equivalent to (0.1) (compare, e.g., [6], p. 171). Every such equation (0.2)
has a formal fundamental solution

with G(z) as above, and a formal meromorphic transformation F(z) (see
[6], p. 32, or [2]). According to Lemma 2, resp. Remark 2.1,

F(2)=P(2)F\(z)2¥,
and the transformation y=P(z)§ takes (0.2) into
2§'=B(2)y, B(z)=P7'(2)[B(2)P(z) —2P'(z)].
This completes the proof.

For later use, we wish to show that, generally, there are several
equations (2.1), with eigenvalues of B, in the same system of represent-
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atives, having formal fundamental solutions (2.2) with the same G(z),
but with different K. For this reason, let a formal Birkhoff transfor-
mation F}(z) be given and try to find a diagonal matrix D=diag[d,, -- -, d,]
of integer diagonal entries, so that

(2.3) F,(2)=P(2)F,(2)27?,

with P(z) a matrix of polynomials in 2, having non-zero constant deter-
minant, and F,(z) another formal Birkhoff transformation. If we succeed
in finding P(z), F(z) as stated, then P(z) may be used as a transforma-
tion of (0.2) into an equation of the same kind, but with K=K—D in
place of K. The question of factoring F,(z) in the form (2.3) is closely
related to BHP-factorizations studied in [1], and we give some results
which we wish to apply later:

©

PROPOSITION 1. Let Fy(2)=[fi(2), - - -, f.(2)], filz)= L f¥¥27*, be an

k=0
arbitrary formal Birkhoff transformation (i.e. £ =e,, the j* unit vector).
For k-1, 15, let f*=0. For D=diag[d,, ---,d.], we can factor
Fy(z) as in (2.3) iff

(2.4) tr D= il d,=0,

and
f{°) e .f{d1+d), .. .f;o) .. 'fs,d"M)

(2.5) det p(Fy)=det | 20
f.§_d). .. 'fidl) | . ,fil—d). .. 'fi,d")

with

(2.6) d=—min{d,, ---, d,}.

Note that in (2.5), the entries f{* are m-vectors, hence the determinant
is well-defined.

Proor. Make a change of variable z=w™' and apply [1], Theorem 1,
to S(w)=F,(z), observing that the convergence of the expansion of S(w)
is not made use of in the proof.
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PROPOSITION 2. Let Fy(2)=[f;(2)] be an arbitrary Birkhoff trans-
Sformation. Let I, I, be such that

IIUI2:{1!"'vn}, IlnIZ':@!

and assume that for every p, 1<p<t (with arbitrarily fixed natural )
and arbitrary je€ I, k€I, we have

detD(Fb) :0’ D:diag [dlv ] dn]r
Jor
r iof v=Fk,

(2.7) d,=¢ —p¢ if v=7,
0 of v#7, k; 1Z5v<n.

Then for every je I, ke,

Sa(2)=0(z""7) (z—>o0, formally).

Proor. Make a change of variable z=w™' and apply [1], Proposition
1, to S(w)=F,(2) (again observing that convergence of S(w) is not really
required).

3. Three-dimensional equations

In what follows, we restrict to equations (0.1) with n=38. In order
to prove our main result (Theorem 2), we wish to distinguish five different
cases, depending upon the structure of the formal meromorphic invariant
G(2) of (0.1):

It can be seen from [6], or [2], that

(3.1) G(2)=2"Ue*",

with constant matrices J and U, and a diagonal matrix Q(2). If we order
the diagonal elements of Q(z) in an appropriate way (which one can
always do according to the general theory developped in [6], [2]), then
J, U, and Q(z) are of one of the following forms:

Case 1. Q(z) =diag[a:1(2), ¢:(2), q.(2)],

J=diag[41, 45, 43],
U=1I,
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with polynomials g¢;(2) in the variable z (which may or may not be dis-
tinet) with ¢;(0)=0, and complex constants 2 satisfying

0< Reli<1, 1Z558.
Case II. Q(2) as above, with g.(2)=gq,(z),

Z 0 0
J=| 0 2 0 |

0 1 X
U=I,

with complex constants 2 satisfying
0< ReZi1, 152,
Case III. Q(z) as above, with ¢.(2)=q.(z)=q.(2),

Z 0 0
J=11 2 0|

o 1 7
U=I,

with a complex constant A’ satisfying
0<Rel<1.
Case IV. Q(2)=diag[q:(2), g:(2), qa(2¢")],
J=diag[4], 2, 4+1/2]

1 0 O
U={ 0 1 1|
0 1 -1

with ¢,(2) a polynomial in 2, ¢.(z) a polynomial in 2%, but not in 2, both
satisfying ¢;(0)=0, and 2/, 2; complex constants satisfying

0< Re<1,
0< Re<1/2.

Case V. Q(z)=diagq(2), q(2¢™), q(ze*)],
J=diag[¥, ¥ +1/3, ¥ +2/3],
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1 1 1
U=|1 ¢ €|
1 & ¢

with ¢(z) a polynomial in 2%, but not in 2, satisfying ¢(0)=0, 2 a com-
plex constant satisfying

0<ReX<1/3,

and
s:eZn:i/!i.

Although we will, in the proof of Theorem 2, use different arguments
for all five cases, the main difference in the arguments stems from the
fact that in Cases I-III, the matrix Q(z) consists of polynomials in z,
while in the remaining cases it contains polynomials in a root of z. It
is for this reason that we sometimes will refer to Cases I-III as the
cases without roots, and to Cases IV, V as the cases including roots.

We are now ready to state

THEOREM 2. Ewvery meromorphic differential equation (0.1), with
n=3, is meromorphically equivalent to an equation (0.2), with B(z) (given
by (0.3)) a polynomial in z of degree v, where r, is the minimum of
the Poincaré rank of all equations being meromorphically equivalent to
(0.1). Im other words, every equation (0.1) with n=38 is meromorphically
equivalent to one wn Birkhoff standard form.

REMARK 3.1. One can easily see that the minimal Poincaré rank r,
is equal to the Poincaré rank of the formal meromorphic mormal form
of (0.1), i.e. of the equation

2% =B(2)%,
with
B(2)=2G'(2)G7 (),

and one can see that 7, is, in fact, the smallest natural number larger
than or equal to the (rational) degree of the elements in Q(z).
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4. Proof of the main theorem for cases without roots

Consider a fixed, but arbitrary, equation (0.1) such that its formal
meromorphic invariant G(z2) is as in Case I, II or III. According to
Theorem 1, (0.1) is meromorphically equivalent to an equation (0.2), B(2)
as in (2.1), having a formal fundamental solution as in (2.2), and the
eigenvalues of B; having real parts in the half-open interval [0, 1).
Defining

(4.1) B(z) =2[2*G(2)/[#*G(2)]™
=K+2Q'(2)Q7'(2) +25J2 "

(note that in every case considered here, @(z) and J commute), we see
that (0.2) is formally Birkhoff equivalent to

2i'=B(2),

hence 7# equals the Poincaré rank of B(z). In Case I, it is immediately
clear from (4.1) that #=r, hence the proof is completed. In Case II,
we have 7=r, iff

(4.2) ey — ko < 0.

Suppose that (3.4) is violated. Applying Proposition 2, with I,={1, 2},
I,={3}, we may find a natural number g and j€I, k€I, so that
detp(F,) 0, with D as in (2.7), except for cases where Fi(z)=[fi(2)] is
such that

(4.3) S1a(2) =fu(2) =0.

If we can find such a D, then we may transform (0.2), by means of a
polynomial transformation with constant determinant, to a new equation
having the same properties as (0.2), but with K—D in place of K. Ob-
viously, the difference k,—k, for the new equation will be smaller, either
by the amount of g (if j=1) or even 2¢ (if 7=2). Hence a series of
such steps either leads to an equation (0.2) for which (4.2) holds, or to
one with (4.3). In the latter case, we apply Proposition 2 with I,={2},
I,={1, 8}, and in quite the same manner as before, we see that finitely
many steps either lead to an equation (0.2) with (4.2), or to one with
(4.3) and

(4.4) ful(2)(=/x(2)) =0.
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Suppose now that (4.3) and (4.4) hold. Applying the constant transfor-
mation y=R7,

0 1 O
R=l1 0 0|
0 0 1

and replacing H(z)=F}(z)2*G(z) by

H(2) =R 'H(2) R=F,(2)2*G(2),
F\(2)=R™'F,(2)R,

K=R'KR,
G(z)=R7'G(z)R

we find that F,(2) and G(z) (hence ﬁ'(z)) are lower triangular matrices.
Consequently, B(z)=R'B(z)R= [5,,,( )] is also lower triangular, and the
j* diagonal element hj;(2)=F,;(2)2*d;;(z) of H(z) is a (fundamental) solu-
tlon of

2571/‘:511(2)@ (1=1,12,3).

Since b;;(z) is a polynomial in z, it is easily seen that this implies f,;(z)=1,
and b;;(0)=k;+4! (j=1,2, 3) with

diag [4], 24, A]=Rdiag[A}, 2}, A R.

SinceAB(o):B’, is lower triangular, b,;(0) are its eigenvalues, and since
both b;;(0) and A/ have real parts in [0, 1), we conclude k;=0 (j=1,2, 3).
This in turn implies (4.2), hence completes the proof in Case II.

In Case III, we have (compare [6], [2]) that F,(z) converges. Hence
T(2)=F}(z)2* is a proper meromorphic transformation that takes (0.2) into
an equation having G(z) as a fundamental solation, and this equation
clearly is in Birkhoff standard form. Hence the proof of Theorem 2 in
Cases I, II, III is completed.

REMARK 4.1. It may be seen from the proof that, in Cases I, II,
III, one can always find an equation (0.2) in Birkhoff standard form
(equivalent to (0.1)), so that the real parts of the eigenvalues of the
matrix B,=B(0) ly in the half-open interval [0, 1) (or in any other system
of representatives modulo 1).
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5. Proof of the main theorem for cases including roots

Consider a fixed, but arbitrary, equation (0.1) such that its formal
meromorphic invariant is as in Case IV or V. According to [1], Theorem
2, every equation (0.1) can be analytically transformed into Birkhoff
standard form, except for equations being analytically equivalent to a
block-triangular equation. Hence we may assume without loss in gener-
ality

51) am=("" 0( D)

An(?) Ax(z

with diagonal blocks of dimensions one, resp. two, or vice versa. From
[6]. Section 13, or [3], we obtain that then Q(z) has to split into two
parts (of dimensions 1 resp. 2) which must each be “closed under analytic
continuation”. This implies that such an equation cannot belong to Case
V (i.e. every equation in Case V is analytically equivalent to an equation
in Birkhoff standard form). Consequently, we are in Case IV, and we
may assume that the diagonal blocks A,(z) are polynomials in z of degree
not larger than », j=1, 2; this is obvious for the scalar block and follows
for the two-dimensional one using that, according to [7], every two-
dimensional equation is meromorphically equivalent to one in Birkhoff
standard form. Moreover, we may arrange that the real parts of the
eigenvalues of A,(0) are large in comparison with the real parts of eigen-
values of A,(o0); if this does not hold, apply the transformation

(5'2) x:dlag [zNIsv I3—s]y

with s being the size of A,(z) (i.e. s=1 or s=2), and N being a suffi-
ciently large natural number. From [3] we conclude the existence of a
formal fundamental solution

H(z)=F(2)2%e%",

where either Q(2) =diag[q:(2), ¢u(2), g:(2¢*")] or Q(2) =diag [¢:(2), q:(2¢™), ¢:(2)]
(with ¢i(2), g.(2) as described in Section 3, Case IV), a constant matrix
L and a formal meromorphic transformation F(z) which both are lower
triangularly blocked (in the block structure of A(z)), and so that

(5.3) H(ze*)=H(2)e"L.
Since Q(ze*)=R'Q(z)R with
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1 00 010
R=1 0 0 1] or R=({1 0 0 |,
010 0 0 1

we conclude from (5.3) that ¢**fR™' and Q(z) commute, i.e. ¢“fR™* is a
diagonal matrix. This implies that L is diagonally blocked (in the block
structure of A(z)). In the same way as in [3], Section 5, one can now
construct an equation (0.2) in Birkhoff standard form, being meromor-
phically equivalent to (0.1) (observe that in [3], formula (5.1), one need
not require E, ;;(0) to have non-zero determinant, but can still ensure
convergence of the integrals at {=0 by choosing N in (5.2) sufficiently
large). This completes the proof in Cases IV and V.
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