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Some remarks on the asymptotic existence theorem

for meromorphic differential equations
Dedicated to Professor Tosihusa Kimura on the occasion of his sixtieth birthday

By Donald G. BABBITT and V. S. VARADARAJANY

0. In the local theory of linear meromorphic differential equations with
an irregular singularity a fundamental role is played by the theorem
that asserts that formal solutions of such equations are asymptotic, over
sufficiently small sectors, to analytic solutions. It was Poincaré who first
proved a germinal version of this result [Po], thereby discovering the
analytic significance of the formal solutions to these equations that had
been obtained earlier by Fabry [Fa]. Poincaré’s work was eventually
generalized and refined by Trijitzinsky [Tr], Malmquist [Malm], Hukuhara
[Hu], and Turrittin [Tu] (see Majima [Maj] for a very nice historical
account). This theorem is also closely related to the theorem that asserts
that any formal reduction of a system of linear meromorphic differential
equations can be lifted to an analytic reduction on sufficiently small
sectors (cf. [Si], [W]).

A main ingredient of the proofs of these results is a remarkable
and far-reaching asymptotic existence theorem concerning certain nonlinear
ordinary differential equations, which in turn is a consequence of a result
that asserts the existence of flat solutions to a class of such equations.
The requirement of flatness introduces essential complications in the proof
along conventional lines of the existence of solutions; these are overcome
with the help of some unusual and beautiful variants of the standard
arguments.

There are several places in the literature where this latter problem
is treated in some detail ([Iw], [W][Ra-Si]). Nevertheless, in view of
the beauty and importance of this result, it appears to us a worthwhile
exercise to present an exposition of the proof which, although it is con-
structed along lines similar to those in [W] and [Ra-Si], differs from them
in certain places. We also treat the parametric case with a view to
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making applications to the asymptotics of isoformal families of differen-
tial equations. We are very grateful to Professor Sibuya for pointing
out an error in our original exposition and for several extremely helpful
discussions.

1. We begin with some preliminary notation and remarks. A sector in
the complex plane C is a subset of C*=C\(0) of the form

{z=re : a<O<B} p<a<p<L2r+¢.

Sectors are proper subsets of C*; the angle of the sector is then A—a.
For any subset A of C and any >0 we write A, for the subset of A
of all points in it that are at a distance <¢ from the origin. If 4 and
B are subsets of C* we write AcB to mean Cl(A)c B. If I' is a sector,
an open subset 2 of I' is said to be asymptotic to I' (@~1I") if for any
sector "<, there exists a ¢>0 such that I';C £ (see Figure 1 below):

Figure 1.

For instance, if I'(n) is a sequence of subsectors of /" whose union is I”
and d(n) is a sequence of positive numbers that converge to 0, the set

2= L”JF(")M)

is an open subset of I” that is asymptotic to I'. Let I’ be a sector in
C*. We consider analytic functions defined on open sets 2c /[’ that are
asymptotic to I”, two such functions being regarded equivalent if they
coincide on an open subset of I" that is asymptotic to I". The equivalence
classes are the germs, but we shall allow ourselves as usual to abuse
the notation and work with the functions rather than the germs. Let
a be such an analytic function. Let us write

F=C[[=1z""].
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If a= 3 ¢c,2'€ S, we say that a is asymptotic to a in I' (or Q) a~ea(l),
if for any sector I’<l" and any integer N>0,

alz)= X ¢z’ +0(z[¥*)  (z€1, 2—0).
r<N

The element « is then uniquely determined by @ and is denoted by a?.
In this case, we have, for any integer r>0,

(d/dz) a~(d|dz) a ().

The set of all germs of such ¢ is thus a differential C-algebra, which
we denote by A(/"). The map a—a” is a homomorphism from A(I") to
. If I'=C*, then A(I")=%,,, a"=a; if ['+C*, then the classical theorem
of Borel-Ritt asserts that the homomorphism a—a” maps A(I") onto <.
The kernel of this map is the ideal that consists of the so-called germs
of flat functions in I’, namely, germs of functions a such that

a~0(I).

We also need to consider asymptotic expansions when parameters are
present. Fix an integer d>1 and let 4 denote, with or without suffixes,
a polydisc in C* centered at the origin of C% these polydises will be the
domains of variations of our parameters. We write (), for the ring of
germs of analytic functions defined around the origin of C¢ 9,(4) for the
subring of analytic functions that are defined on 4, and define O, as
the subring of (),[[2]][#”'] consisting of those Laurent series in z whose
coefficients are defined on some common polydise:

Ou= U Ol TN

Let I" be a sector in C*. An open subset 2 of C¢x[ is said to be
asymptotic to I' if for any sector /<l there is 4=4(I"") and 6=0(I"")>0
such that 4(I")xI';c8; we write 2~I". For instance, if I'/=1"(n)um,
where I'(n) and d(n) are as in the previous example and 4, are polydiscs
that shrink to (0), then,

is an open set asymptotic to I'. We now consider germs of analytic

functions defined on open sets £ asymptotic to /', germs being equiva-
lence classes for the obvious notion of equivalence: f defined on £’ is
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equivalent to f defined on 2 if there is an 2” asymptotic to " on which
f=f. If f is defined on 2, f is said to have an asymptotic expansion
if there is a formal power series /€ (;; with the following property:
for any sector I”<I' there are 4(I")cd and 6=06(/")>0 for which
A"y x 't 2 such that for any integer N>0 we have

fla:2)= Z&a,u)zf+0(lzl“’“)) (ze I, 2—0)
r<
the O being uniform in 1€ 4(I""). We denote this by
f~fR),

the element f* being uniquely determined by f. We write A,(/") for
the differential algebra of (the germs of) such f. When there are no
parameters, i.e., when d=0, A,(I") reduces to the algebra A(I"). The map
f—f" is a homomorphism, and for any differential operator

D=3/32,)™® - .- (8/02,)™“(d/dz)",
we have,
Df~DfNI).

The Borel-Ritt theorem remains true in the parametric setting, and we
formulate it in the following sharp form: if I" is a sector #C¥*, and
o= a,2" € Oy, then, for any 4'c4 and a>0, we can find f defined and

reZ

analytic on 4’XI', such that f~¢(4'xI",). Indeed, let us define the
numbers t, as follows: ¢, is 0 when a,=0 and ¢,=(sup|a,(2)|)”" other-
A€ 4’

wise. If @>0, and 0<B<1 is so small that cos(Barg z)>1/2 for all z€ I,
then the function
f(A:2)= 3 an(2)(1—exp(—t,a™"27F))2"

m

is analytic on 4’XI", and f~¢(d'XI",) (see [W], pp.41-42; the O-esti-
mates for the differences between f and the initial segments of ¢ are
actually uniform on all of 4'X[1,).

The extension of the notion of order (in 2) to the rings A,(I") is
immediate; if f€ A,(I") and f~fI"), then the order of f is the order
of f*, namely, the smallest of the numbers » such that a,+0.

2. We fix a sector I” in the z-plane, an integer m>1, and consider a
system of n ordinary differential equations in w={(u,, - - -, 4,) of the form
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(1) 2"Ududz=0u;+fi(z: Uy, - - -, Un) (1<i<n),
where the following conditions are satisfied:

(a) the 4, are units of O,

(b) the f; are polynomials in u,, - - -, u, with coefficients in A;(I")

(e) the coefficients of the f; have order >0; and those of the
terms of degree (in the u;) <1 are of order >0.

We say that v=(v,, ---,v,), v;€ O, is a formal solution to (1) if it
satisfies

(1) 2" duldz=0w,+ Mz vy, - -, V) (1<i<n),

where f? is the polynomial in v, ---,v, whose coefficients are the ele-
ments of (9,, that are the asymptotic expansions of the corresponding
coefficients of the f.

THEOREM 2.1. Suppose the angle of I' 1s <m/m, and the system (1)

has a formal solution v=(v,, - - -, v,), with ord(v;)>0, 1<i<n. Then, we
can find w;,€ Ay(I") such that

(a) u=(uy, ---, u,) satisfies (1)

(b)  w~vil).

Proor. Let v=(v,, ---,v,), ord(v;)>0, be a formal solution to (1).

Choose 4 and functions w,; analytic on 4XI ', (for some a, 0<a<<1) so
that v, € Oy (4)[[2]][z7"] and

wi~v;(4 X I

for all ¢. Let 2 (~I') be the intersection with 4x [, of the domain
where the coefficients of the f; are all defined. Then for all %,

2"V dw;/dz—0,(A)w, — Az wy, -, w,)~0().

We then seek a solution to (1) in the form w;=w;+a; a; being defined
on a domain £’'cQ asymptotic to I" and ~0(I"). The equations for the
a; become

(2) 2"da;/dz=0:a;+g:(A:2:ay, -+, a,) (1<i<n),

where the g; are polynomials in a,, ---, a, with coefficients g;, (constant
term), g, ; (coefficient of a;), and g;, (coefficient of monomials in the a’s
with multi-index p=(g, ---, #.,) where |g|=pm;,+ -+ +#,>2). The coef-
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ficients are analytic on £ and satisfy
(3) 9:,0~0(I"), ord(g:,;)>0 (1<3,7<n), ord(g:.) =0 (j¢|>2).

We write
¢i(2) = — (1/m)d:(4)
and rewrite (2) as

(4)  djdz(a; exp(—ei(d)z™™))=exp(—c:i(A)z™™) 2™ 'g:(A:2:ay, -+, @)
so that we can go over to the equivalent integral equation
(5a) ai(4 : 2) =Fk:(4) exp(c:(2)(z™™))

+, e TN L a)de
for suitable “initial values” k;(4) and “boundary conditions”
(5b) a;~0(I"),
the C;(z) being paths in /" that end at the point z.

The technique of proving this theorem is essentially the usual one
of formulating the solution as the fixed point of a suitable (non linear)
integral operator in a Banach space of analytic functions. However, the
flatness condition (5b) creates substantial complications because it cannot
be formulated in a single Banach space. We shall now proceed to explain
how these difficulties are overcome.

For any open set 6 contained in the unit dise in C not containing
0 but with 0€ Cl(d), any polydise 4cC? and any real number k>0, let
B,(4%x0) be the Banach space of functions g that are defined and holo-
morphic on 4X6 and satisfy

lglle= sup [2]™g(2:2)|<co.
2€0,2€4

The B, form a filtration of Banach algebras:

B.cB, (r=k>=0),
g€ B, h€ B,== gh€ Bi,., llghllcs. <9l [P]..
The first step of the proof of the existence of flat solutions a; to (4)

is to show that for each IVcI' and k>0, the right side of (5a) defines
a contraction operator in a sufficiently small ball in the Banach space
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B.(4'xI""(6)) where 0<d<a and [”(d) is an open subset of /" that is
asymptotic to I, provided the k() are sufficiently small. The fixed
points of this operator will then give solutions to (4). The second step,
which is the key to the entire proof from now on, is Lemma 2.4 which
asserts that any solution in B,(4'XI"(d)), for a fixzed k>0, is automat-
ically flat (cf. [Ra-Si], Theorem 2.3.1). This not only implies the flatness
of the special fixed point solutions constructed above but shows further
that any solution in B.(4'XI"(0)), when 0 is suffictently small, satisfies
the special conditions guaranteeing the existence of fixed points. This is
a strong uniqueness statement for the solutions of (4) (cf. [Ra-Si], Theorem
2.1.1, (ii)) that allows one to extend this solution by successively enlarg-
ing the sector I so that the fixed points of the contraction operators
associated to I wvary coherently. This extension process finally leads
to a solution defined on a region that is asymptotic to I.

The paths C;(z) and the domains I(d) are chosen as follows. The
idea is to choose the paths so that the kernel exp(c;(d)(z™—C ™)) ™!
in (5a) is small on them. We shall suppose from now on that all sub-
sectors of I considered by us are symmetric, namely, symmetric with
respect to the bounding rays of I'. Let T(C*—C*) be the map z—t=2z"";
we write t=Tz2. T is then one-one on sectors in the z-plane of angles
<2x/m, in particular on I' whose angle is <z/m; TI" is then a sector
of angle <z in the t-plane. Let 0<d<1 and let 2(6) be the mid-point
of the arec of |2|=d within I and ¢(0)=T2(0). We form the domain
TI"+t(6) (which has no point in common with the domain |t|<d ™) and
define I'(6) by

['(6)=T T +t(9))
(see Figure 2 below):

TI'+4(5)
N
0 t-plane

Figure 2.

The bounding curves of I'(0) make zero angle with the bounding rays
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of I' at the origin and so I'(6) is asymptotic to I'. These definitions
apply to any sector //c I in place of I (and symmetric by agreement,
so that ¢(0) and z(6) remain the same).

We shall now describe the paths. If 1<i<n, we shall say that 3
is of type I if

(1) 37 €1, |7:|=1, such that Re(c;(0)y:™)>0.

We choose, once and for all, y; satisfying (I) for all 4 of type I and write
t;=Ty,. If ¢ is not of type I, we shall say it is of type II. It is easy
to see that

(IT) t is of type II & Re(c;(0)y ™) <0 for all yer.

Indeed, if ¢;(0)=pe** and y=re’?, Re(c;(0)y ™) =0&=cos(mf—¢)=0, and
this function takes values of both signs close to its zeros. So, in this
case, if I''cI’, there is a &=¢&(I"") with 0<&'<1 such that Re(c;(0)y ™) <
—& for all yeI” with |y|=1. If I''Cl' is an open sector, we write
I''«I' to indicate that I',cI', is symmetric with respect to /7, and is
large enough so that it contains all the 7; for 4 of type I, we shall from
now on consider only such sectors. Let now 2z be a variable point of
I'0). If 7 is of type I, the path C(z) is the one that corresponds, under
T, to the infinite line segment that comes from oo to t=Tz in the
direction —Ty,; if 1"« " and z€ I, this path lies in 77(6). If ¢ is of
type II, C;(z) is the path from z(é) to z that corresponds under T to the
line segment [t(d), t]; again these paths lie in [7(d) if z€ " and I"K[.
Let TC;(z)=Bi(t) (see Figure 3 below):

z-plane

Figure 3.

We choose a 4 sufficiently small so that we have the following:

(a) if 7 is of type I
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(I') Re(c:(A)ri™)=>uo>0 (1€ 4)

(b) for each sector I”«I" we choose 4'=4"(I""Ycd, ¢'=¢(I"), with
0<d’'<1, and &=¢&(I"") with 0<&’<1, such that Cl(4'xI'})cf, and for
any 7 of type II,

(IT') Re(e:(Q)y ™) <—=¢&lrI™  (rel”, 2ed).
(e) |ei(d)|=>uy>0 for all 2€ 4 and for all 3.
Regarding these paths we have the following easily established estimates:
(i) If 7 is of type I, Bi(t) is the path r:s——t+st; (c0>5>0), and
(rn lexp(—eci(A)(t—r7(s))) | <exp(—su,), te TI"(d), A€ 4,s>0;

moreover, the cosine of the angle between t and ¢, is bounded away
from —1, so that

(') |t+st;|>=plt| for some constant >0, and all t€ TI" and s>0.

(ii) Suppose ¢ is of type II. Let p be the midpoint of the line
segment [t(d), t] from ¢(6) to t. Then for t€[p, t],t€ TI'+1t(d), A€ L

(I [z]>(1/2)|¢], Rec;()(t—7) < —&t—7].
Moreover, for 7 €[t(d), p], A€ 4’, we have,

Re¢;(2)(t—7)=Re c;(2)(t—p) +Re ¢;(2) (0 —7)

(II"")  |7]=]t(0)|=(1/2)[¢| in the regime |t—t(d)|<(1/2)|t]

|z1=>1t(0) =1, [t —p|=(1/4)[t] in the regime [t—t(d)|=(1/2)|¢].
LEMMA 2.2. Fix 1, 1<i<n, and define

Jeat): 2= expledde—CmE="g(2: d.

Fix any sector "I, let 4" and ¢ be associated to I’ as above, and let
k>0 be any real number. Then for any sector I''«I' and IV, and
any 0 with 0<0<d, J;, defines a bounded operator on the Banach space
B.(4'x(I""0)NT)), and the norm of this operator is uniformly bounded
when 0 and I'y vary but I and k are fixed.

ProoF. The point is that the paths C;(z) stay within 7”(6) N/, when
2e€I"(0) NI, as may be seen by going over to the ¢-plane. Write = T¥¢,
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t;=Ty; (¢ of type I), h(2:7)=g(2:{). We must show that

[, ., exple(E—e)h(2: eide| <K-|t[" sup(|h(2:7) || )

where the sup is over 2¢ 4, t€ T(I"(6)NTI",), and K denotes a constant
independent of 4, 7", and h. This comes to proving that

(%) I:Limexp(Re () (t—7))| e[ M de <K - |t 4",
If 7 is of type I we use (I”) and (I’”) to obtain the estimate
Lim exp(Re ¢,(2)(t— 7))l | mdr < (BHug?) - |£| 4™,
These estimates show also that the integral defining J.,g is uniformly
convergent, so that the holomorphy of J;,g is clear. If ¢ is of type II,

we are integrating over a finite segment and the holomorphy is obvious,
but the proof of (x) is more delicate. We now split I as

§ =S +j L+,
[t(3),t] [t(8),p] [p,t]

: Here (II”) is applicable, and so,

I,

It—pl
r<zom|hm [ 7 exp(—g'a)dn <2t
0

I, with |t—%(6)|<(1/2)|t]| Here, we use (II"’) to get

[t—t(d)]

n<zeme e [ exp(—gra)dn <2 1

I, with |t—t(6)|>(1/2)|t|| Here again we use (II’) to get

n<exp(~g1t)- (" exp(—gida < 1/€)supne -1t @
0 y>0
Let us now introduce the Banach spaces
B.(I"", Iy, ) =B (4" X (I"(0)NT"))" (k>0)

where the n-fold product has the sup norm. Let A=(4.).cic, Where the
A; are bounded analytic functions on 4’ with A;=0 whenever ¢ is of
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type I. We put []All:supg,uplA,-(l)l. We now define a non linear
. i €4’

operator
P'= Pi,a,A

on B,([",I'},0) (0<d<d’) given by

(6) Pb=B=(B, -+ i),  for b=(by -, bu),
where (remembering that the B.(4’X(I(0)NI",) are algebras)
(7a) Bi(A:2)=(J.,,b¥)(2: 2) + Ai(2)exp(c:(4) (2" —2(0) ™)
(7b) b¥(2:0)=0:2:C:by(2:0), -+ -, ba(2:0)).

Observe that if 4 is of type II, then for any >0, |A;(2)exp(c;(A) (7™ —2(8) ™)) |
is majorized on 4'X1"(d) by

|21 4]+ sup {|¢]™ exp(Re(ei(2)(t—(0)))}
<lzI- 4]l sup {|z+¢(d) ["e™¢""}
<lz["-|lA]l-07"M7;
here we use the estimates
[t(0)|=0"">1,  [r+t(d)[<[E(B)|(1+]z]),
and M/ is defined by
M= sup {(1+a)"'"e™"}.
So, if we write
(8a) €544 2)=A;(A)exp(ci(4)(z~™—2(0)™™),
then ¢, lies in every B,(4'xI"(d)) and satisfies
(8b) lesall . <MI|AlG™"  (r>0).

This estimate and Lemma 2.2 make it clear that P;,, maps B.(["”, I, d)
into itself for any ¢ (0<0<d’) and I'y (CI” and «I).

If b=(b))1cicn € B(I"", I'y, 5), then A—b;(2:2(0)) are bounded analytic
functions of 2 on 4. We now note that the fixed point equation

(9a) P,,.b=b
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is equivalent to the differential equation

(9b) d/dz(b; exp(—eci(2)2z™™)) =exp(—ci(A)z ™)z ™ g(A:2: b, - -+, b,)
together with the “initial conditions”

(9¢) bi(2:2(0)=A4:(2) (¢ of type II).

Indeed, (9b) and (9¢c) follow from (9a) by differentiation. Conversely, if
(9b) and (9c) are satisfied by b, we can integrate both sides of (9a) over
the paths C;(z), which is permissible by Lemma 2.2. If ¢ is of type II,
this gives, in view of (9b),

(10a) bi=(J,,b¥) +€:,5,4-
If 7 is of type I, we get

(10b) b,=(J;,sb¥),
since, for these indices,

(11) lcinol bi(4: €) exp(c:(2) (2" —{™™)) =0,

the point { going to 0 along the path C;(z). The relations (10) are the
same as the equation (8).

LEMMA 23. Fix I'"«I', k>1. Then we can find d;, 01, of that satisfy
0<0,<0’, 0<0,<1 and 0<0[<1, and have the following property:. for
any 0 with 0<d<é}, any A with |A||<oio*, and any I''&I and cI”,
P'=P/}, , defines a contraction operator on the closed ball of radius 6
centered at the origin of the Banach space B,(I", I, 9).

Proor. Let L/>1 be an upper bound for the norms of the operators
Jis 1<i<n, 0<d<0d on the Banach spaces B,([",I,0), I''«I" and CI".
Then, with b*=(b¥, ---, b¥), we have, in B[, I, ),

I1P'Bll < Lillo*|l+ M| Al - 67
|P'b—PB|[< LE| 5% — b
Let a,(0) (resp. B(d)) be the maximum of the norms of g;, (resp. g.;) in

B(4'xI"(0)) (resp. By(4'xI"(d))), and y the maximum of sup|g;,.| over
4'XI'}. Then,

(12) au(d) —> 0, B©B) —> 0 (6 —> 0).
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It is then easy to see that there is a constant N>1 with the property:
if ||5].<1, ||b']l.<1, then

16* | <ai(0) +nB(0) [|B ]l +7 NI b5,
6% —b"*[|, <{nB(0) + 7N max (|| 5]

16" [[)}1b— 0[]
So, if 0<0<1, 0<o<1, ||b],<6, |b'].<0, and | A| <od*, then

[ P'B||: < Li{o(0) +nB(0)0 + y NO*} + o Mj,
[P'b—P'b |, < Li{nB(0) +y N6} || b — b’ .

Take 0/=(4N(1+7)Li)™* and let o, and 6/ be such that

He(0) +mpB(0)} <04  for 0<dl,
oM <6}/4 for o<aj.

The assertions of the lemma are now clear with these choices. <

LEMMA 2.4. Let k>0,0 (0<0<0d') be arbitrary and let us assume
that b€ B,(I", Iy, 0) satisfy the system of differential equation (4). Then
b 1s flat, viz.,

beB(I",T,38)  for all r>O0.

Proor. By our earlier remarks b satisfies the relations (9a)-(9c¢).
We write ¢g=min(1, k) and prove by induction on »>1 that 5€ B, (I, I'}, 0)
for all »>1. Suppose that b€ B,,=B,(4'X(I"(®)NI")) for all = and some
r>1. We have

b¥(2:0)=g:0(2:8)+ ls;ggi,,-(l :0)b;(2:¢)
+ |m222gi,#(2 R4 XV R LI WO ER QT

¢ being (¢(1), ---, p(n)). Since g,,~0(I"), the first term on the right is
certainly in B, Further, as ord(g;,) >0, g:;€ B, for all 5 so that the
second term is also in B,,,. Finally, each term in the last summation
is in B,, where s=r-|¢|>2r>r+1, hence in B.,,. Hence b} € B,
for all 2. Lemma 2.3.2 now shows that J; b} € B,,1,, for all 2. On the
other hand, for any 7 of type II, the estimates (8) derived earlier show
that ¢;,4 lies in B, This shows that b€ B.,,, for all 7. ¢

REMARK. This lemma is true even when k=0 [Ra-Si], although the
above method does not seem to work. We do not however need this
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extended form of the lemma.

Since we can always take A=0, Lemmas 2.3 and 2.4 show that there
are flat solutions to (4), namely solutions that lie in every B, (r>0).
We shall now prove that there are no solutions to (4) other than those
obtained as the fixed points of the Pi,, satisfying the conditions of
Lemma 2.3. More precisely, we have the following.

LEMMA 25. Fix IV, I, and k>0 as above. Let b~ be a solution to
(4) that lies in some B[, Iy, 0~) (0<6~<d'). Then we can find an
e~<min(0~, 6,) with the following property. For any 0<e~, IA=A(0)
such that || Al <ald*, the restriction of b~ to A’ X(I"(6)NI") lies in the
ball of radius 0} in the space B,(I",I',,0), and 1is therefore the unique
fizxed point of P} ae there.

ProoF. By the preceding lemma we know that 6~¢ B,.,(I", 1, 07).
This means the supremum of [[6~(2:2)|-|2|™ over 4’'X([’(6)NI) tends
to zero as 0—0, so that the restriction b, of 5~ to 4'X (I’(6)N 1) lies in
the ball of radius 6] in the space B,([”,I',0), if ¢ is small enough.
Moreover ||by(4:2(6))||=5~(2:2(0))|| <const. o**'<o(d* if o is small enough.
For any such 6 we now put A;(2)=b7(1:2(0)) if ¢ is of type II and 0 if
1is of type I. This defines a vector A=A(9) with ||A||<oid*. It is now
clear that b, is the unique fixed point of P}, ., in the ball of radius
0! in the space B.(I",I',0). L' 3

LEMMA 2.6. Suppose I'" is an open sector with I"'cI'"cl’ and b~
18 a solution to (4) defined and analytic on some 4" XI"(0'~). Then we
can find a solution 8"~ to (4) defined and analytic on 4” XI'"(3"~) for
some 4" 4’ and 0"~<d'~ such that b~ coincides with the restriction of
b~ to 4" xI'"("~).

PrROOF. By diminishing "7 (but still satisfying "< [I') we may as-
sume that »~ is defined on "N 4(6'~) where 4(¢'~) is the disc of radius
0’~ in the z-plane. We place ourselves in the setting of the previous
lemma, but with I"” and I in place of IV and I'; respectively. Then
if 0 is sufficiently small, the restriction of »~ to I'”(0)NI" is the fixed
point of a contraction operator P;,, associated to I"”(6)NI"”. Since this
fixed point is the restriction of the fixed point defined on 4” X1 () for
the same contraction operator, we are through. &

Theorem 2.1 is now an immediate consequence of the preceding
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lemmas. ¢

REMARKS 1. One of the main applications of Theorem 2.1 is to the
theory of asymptotics of isoformal families of differential equations

(%) duldz=A(Z: 2)u.

Here Theorem 2.1, in conjunction with the formal reduction theory of
isoformal families developed in [BV 2], allows us to prove that any
formal solution to (x) can be lifted, on sufficiently small sectors, to an
analytic solution. This will then imply that the map, that takes 1 to the
Stokes class of () determined by the given formal reduction, is analytic
in 4.

2. It will be clear to the reader from the proof of Theorem 2.1
that one can relax considerably the assumption that the f; in (2.1) are
polynomials in the u;,. We leave it to the reader to formulate and prove
such a generalization (see [W], [Ra-Si]).

3. The reader should also consult [Ra-Si] for the formulations and
proofs of the existence and uniqueness theorems in the context of the
Gevrey theory.
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