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Condition of partial hyperbolicity modulo a linear

subvariety for operators with constant coefficients

By Eun Gu LEE and Akira KANEKO

1. Introduction

In [12] J. Leray proposed to solve the Cauchy problem for the
initial hyperplane xz,=0 with the Cauchy data which are holomorphic
with respect to the variables parallel to some analytic subvariety S of
the initial hyperplane. He solved this problem in the Gevrey class as-
suming the following two conditions; 1) the characteristic roots are real
when the variables dual to S are fixed to 0; 2) the characteristic roots
are distinct. Later Hamada-Leray-Wagschal [2] extended the result to
the case of operators of constant multiplicity. Limiting the problem to
the case of operators with constant coefficients, one of the authors dis-
cussed in [4] that condition 1) is not sufficient whereas condition 2) is
more than necessary, and proposed a new sharper sufficient condition
when S is a hyperplane. We generalized this condition to the case of
general linear subvariety and showed that it is sufficient for the solva-
bility of Cauchy problem for the hyperfunction Cauchy data which con-
tain variables parallel to S as holomorphic parameters [4,11]. In this
article, we show that it is also necessary for the solvability of Cauchy
problem and establish theorems corresponding to distribution solutions.
Finally, we give the micro-local variants of these.

After the first version of our manuscript was submitted, Prof. T.
Oaku kindly remarked us that our operator is an example of micro-
hyperbolic system in the sense of Kashiwara-Schapira [8] when it is
considered together with 6,.. Thus we should say that the sufficiency
part of our work is already known even in the micro-local level. We
expect, however, that our simple direct proof has some meaning though
the stress of our work is rather on the necessity part.

The authors are much obliged to Prof. Jongsik KIM and Prof. Dohan
KIM of Seoul National University who arranged them the opportunity
of this cooperative work.
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2. Hyperfunction Cauchy data

Let P(D) be an m-th order linear partial differential operator with
constant coefficients. Let p,(D) be its principal part. Assume that xz,=0
is non-characteristic with respect to P. We employ the following nota-
tion for the separation of the independent variables; x=(x;, /) = (x,, 2", x’")
with a”=(x,, - -+, Z4y1), "= (Tsyo, - -+, ¢,) and similar one for the com-
plexification z=x+4/—1y or for the dual variables {=&++"—15. We
put

QA:{x//e Rk; Ix”|<A}’ UA:{z”,e Cn—k—l; |z/l/|<A}’
TX:{xleRy 0<x1<A}7 TZ:{x1€ R; —A<xl<0}’
T,=T%U T5U{0).

We let BO(R2,xU,) denote the space of hyperfunctions on 2,xU,
containing 2z”/€U, as holomorphic parameters. BO(T,x2,xU,) ete.
denote similar spaces in the variables (x;, 2”,2”). For the notions in
the theory of hyperfunctions which are not explained here, we refer to
[7].

In this section we give the following somewhat semiglobal result:

THEOREM 1. The following are equivalent:
a) Given A>0, there exist positive constants a, B<A such that for
any data u;(x”, 2”") € BORLXU,) the unilateral boundary value problem

=u;(a”, 2"), on RgXUs j=0,---,m—1
+0 !
Zl—>

P(D)u:O on T;XQBXUB,
1) { (2
0x,
always admits a hyperfunction solution wu(x, x”,2"") € BO(T: X 25X Uy).

b) There ewxist positive constants b, ¢ such that for any >0 we
can find C,>0 such that

ImC1g_5ICII'—b‘ImC”|_CIC”/I_Cz
if LeC" and P(C)=0.

Proor. The proof of sufficiency of the condition b) can be shown
in a way similar to the case k=1 given in [4] (where the natation was
such that z”=uz,); we can employ Bony-Schapira’s method of sweeping
out and construct the defining functions of the solution in the complex
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domain. The detailed calculation on the behavior of the characteristic
hyperplanes needed for this will be given in [11]. For another proof, we
can construct the solution via the partial Fourier-Laplace transform.
See the proof of Theorem 2 below for the case of distribution solutions.
The same construction is rediscussed in a more general situation in
Theorem 4. Therefore we here focus our attention to the proof of
necessity of the condition b).

Assume that u; have compact support in 2”. Then a solution u has
compact support in x” by Holmgren’s uniqueness theorem. Also, it fol-
lows from Sato’ Fundamental theorem that w contains x, as a real
analytic parameter. Hence the restriction u|, .., 0<a’<a is well defined
as a hyperfunction in 2’. Therefore we can define the mapping

(BIK IROU))" — (BILIROU)"
W w

fudist {(%) “

where K, L are a suitable pair of compact sets in R* such that K<L,
and we are denoting by B[K ]@@(UA) the space of hyperfunctions with
support in KXU, and containing 2’”€ U, as holomorphic parameters.

As is well-known B[K ]®@(UA) is a Fréchet space and in view of the
Paley-Wiener theorem its seminorms are given by

m—1
} , a'<a,
;:1=a’

=0

vllk.a,.= sup [9(C”, 2" )e~ "= HxIm | AT A, e>0,
2" <A’
where (", 2”) denotes the partial Fourier-Laplace transform of
v(a”, 2" € BIKIQOWU,) with respect to z”. We denote by I-Ne.5 .
corresponding seminorms for B[LIRO(Us).

The above mapping is continuous in view of the closed graph theo-
rem. In fact, we can easily find out that our Cauchy problem always
admits an O(E)’@@(Uﬁ-yalued solution, depending continuously on the
data, for some polydisc LcCC*. Because we have a continuous inclusion
BILIROU ) =—OLYROUs) for LD L, our mapping obviously has a closed

graph. Therefore for any ¢>0, B'<B, there exist positive constants
A’<A, ¢ and C, such that

(2.2) ’g (6%1) u

J

m—1
<C, Z% 1%sllx,a,cre
£

zy=a’||L,B’ e
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Now set the initial value (uy, ---, %n_y) to (0, ---,0,6(z")e"*"). By the
uniqueness of the solution of the Cauchy problem for the equation after
the partial Fourier-Laplace transform with respect to 2”7, we may assume
that the solution for these data has the form wu(x)=v(x, x”, {")e*"%",
where v(x;, ", {”’) is the solution of

P(D,, D", " w(®, 2", ") =0,
[ (i)lv :0, j:O, , m— 2 ( 0 >’"‘l’v
0x,

0x,
Denote by Y(x,)v the canonical extension of » at the boundary x,=0
for the sake of simplicity. By the Leibniz rule and by the definition
of the boundary values, we have

=d(x").

zl—>+0 zl~>+0

(2.3) P(D,, D", ") (Y (0 —2) Y (@) v (@, 27, {™))
=(—1)"pu(N )6 (x1)0(2")
+7'm20 mz PJ Dll C”,)(Dm k—1— ’6(a’—x1) ’;vlzﬁa’)

(
=(=9)"p (N )6(2)8 (") +fo (@1, 27, "),

where P;(D’) denotes the coefficient of D7~/ in P(D). In particular,
P,D)=p.(N) with N=(1,0, ---,0). If (£, ") satisfies P, ¢”, (") =0,
then we obtain by taking Fourier-Laplace transform in (2.3)

(2.4) (—0)"pm(N) +Fu (G, €7, ") =
where

falln €7, 0"

. m—1 m—k—1 LN\
:ie_m/cl E E Pj(c/)C;u—k—l—:Dllc,U(a/, CI/, CIII).
k=0

i=0

It follows that

e 4 fur (G, €7, C) SO+ 1G] +1E7))

m=1 A\
Z‘)Di,v(al’ C//’ C/Il) .
i=

Hence
1 ia' V4 M\ piz"L" p—elC”|—H, (Im{”)
(2.5 S lea’(c y C ’ C )6 4 L
) e, (LT 3 1
{z"|<B’

m—1 A
éc;;: ” (a/axl)Ju|z]=a’ “L,B',=°
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By (2.2) the right-hand side is estimated by

m—1
<C-C, Zo ll%sllxe,ar,er
o
=C-C.[lo(x")e™" || x,ar e
=C-C, sup |e~="¥lgi""|
treck
[z"1<4’
<Cle?v,
Therefore, assuming that Lc{|z”|<r} we have

1
(L+1&]+1e D™

Assume here that (=({, (", (") satisfies P({)=0. We have |{|<
C(1+|¢"|+1¢"|) for some C>0 by the assumption of non-characteristic
property. Therefore it follows from (2.4) that there exist positive con-
stants b, ¢, C such that for any >0,

lfa(Cly g7, L") eI =rimu =B it —erimly < (gA! 1L

—Im & =e|C"[+b|Im " | +¢|C”|+Clog(1+({|) +1log C..
This obviously implies the condition b). Q.E.D.

Similarly, for the boundary value problem to x,<<0, we can deduce
the necessary condition

Im& <Zell'|+b/Im " | +¢]"|+C, it P({)=0

for some constants b, ¢>0.
These two conditions are obviously equivalent to the following ones
(with different constants b, ¢) for the principal part:

(2.6) FIm&<bIml"[+elC]  if pa(C)=0.
Hence by the homogeneity, these are also equivalent to
2.1 Im | <b|ImE” | +¢| | if p.(£)=0,

and hence to

Im | <e|C’| +b[Im " |+¢|¢”|+C.  if P(£)=0.

Thus we obtain

COROLLARY. FKEach of the conditions (2.6), (2.7) s mecessary and
sufficient for the Cauchy problem
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P(D)u=0

(28) <_§_>’u‘ :uj(m//’ z///)’ ]:0, cee,m—1
axl #=0

to admit a solution u€ BO(T,X2sXUy) for any u;€ BOR4XU.,), where
a, B are constants determined from A and P(D).

3. Distribution Cauchy data

We shall now prove the theorem corresponding to distribution solu-
tions.

THEOREM 2. The following are equivalent :
a) Given A>0, there exist positive constants a, B<A such that the
Cauchy problem

P(D)u=0
(3.1) <i>] % :u,-(ac”, 2"
xl z1—>+0
where each u;(x”,2"”), 7=0, ---, m—1, is a distribution defined on 2, XU,

and holomorphic in 2" cU,, always admits a distribution solution
u(xy, &7, 2"") which is defined on T, X2z X Us and holomorphic in 2" € Us.
b) There exist positive constants b, ¢, C such that

—Im& b ImE” | +¢|C"|+Clog(1+|C'|)+C
if CeC" and P(C)=0.

Proor. 1) sufficient condition.

First fix a compact set Kcf2, and consider the data of the form
u;(x”, 2" =v,;(x")e*""" with v;€ &(K) and fixed constants (/. Then we
obtain the Cauchy problem

P(Dy, D", C")v(xy, 5", ") =0
(3.2) < a2y,

+0 :vf(x”)' j=0’ Tt m_l'
xy—

0y

By Holmgren’s uniqueness theorem, the solution of (3.2) should have
compact support when x, is bounded. Therefore we can study the
Cauchy problem by taking the partial Fourier-Laplace transform 9(x,, {”, {'")
of v with respect to x”. Then we obtain a Cauchy problem for ordinary
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differential equations
P(D,, £", "o (2,, €7, ) =0
{(6 )v —0,"), =0, .-, m—1.
0,

z1—>+0
Let " et e C** ! be fixed constants. Then for each [=0, ---,m—1
there exists a solution of the Cauchy problem

P(D, (", ") fi=0
a J

{ ok

Furthermore, if P(¢;, £”, (") =0,

[fz(fﬂh C”, C”’)l
<2™(C(1+[C"|+ 1)+ 1) exp{(b|Im {"| +¢|C"| 4 Clog(1+|L'|) +C).}.

(Cf. [3, Lemma 127.7].) Then the solution of (3.3) is given by

(3.3)

(3.4)

:5]'[, j 0, sy, m—1.

11—>+0

(35) (w1, ¢, 87) = % (") L7, ).

We use the Paley-Wiener theorem to estimate 9,(”). It follows that
the function 9 defined by (3.5) has the estimate for x,<b'/b,

|9(2s, £, "))
SC’(l—i—[C”|+|C”/|)N+m+cec|4m"’1'eb'”mc”“”x(lmz")
SC’(I—I—|C”|+|C”’])N+m+ce”'¢"'”’1'eHKbl(ImC")

where K, is the b/-neighborhood of K. Hence it follows that there
exists a solution v€ 9’ with compact support K, in z”.

Thus we obtained the solution v(x;, 2”7, {’"")e**"*" for our special Cauchy
data. Since the correspondence {v;(x")e™"*"}i—>v(x,, 7, £'")e*""" given above
is continuous in the obvious meaning, the solution for general data
{u;(x”, 2""")} with support in K in z” can be obtained if we notice that
distributions of the form Y v.(x”)e"*"%, v,€E(K), are dense in the space
OU,, &'(K)). To prove the existence of solution for the data with no
restriction on their supports, it suffices to choose K such that Int(K)>4..
(If required, we can patch up as usual these local solutions with compact
support in £” along the initial surface to construct a more global solution
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on a neighborhood of {0} xXQ2,XU,.)
2) necessary condition.
As in the proof of Theorem 1 we obtain a well-defined mapping

ENK)ROT))" — (E(LIQOT)"
w w

s — {(%) w

These are DFS spaces. Hence by the closed graph theorem the mapping
is continuous. Therefore the image of the bounded set {(0, - - -, 0, d(x”)e"*"*");
|£”"|<C} is mapped to a bounded set. By Paley-Wiener’s theorem, a
bounded set of &/(K)&O(U,) is characterized by the boundedness of a
seminorm

m—1
} ,  a'<a.
zy=a’) j=0

”’Z)HK’A,,(N): gsufk W(C”, z/l/)(l_'_|C//|)—N6—HK(ImC~)|’ A>A.
e

12" [< A’

Therefore, by the similarity transform it follows that there exists a
constant >0 such that for some B’>B, C>0 depending on A’, N we
have

1 e~ tIML =B/ 1L~/ Imly < (T pAIL"! if P({)=0
(L4 + ("D 1+ 1E" )Y = ’ )

Hence

—Im & <b|Im&”|+¢|¢"”|+Clog(1+]¢'|)+C

for some constants b, ¢, C>0.
The proof is complete.

As usual (cf. [3], proof of Theorem 12.3.1) we can omit the term
Clog(1+|¢’|) from the above condition employing Seidenberg-Tarski’s
theorem. Further, in view of an argument similar to the case of hy-

perbolic operator employing the relation irj:constant times the coeffi-
i=1
cient of (', it is also equivalent to each of
FIm b Im |+l 4+C if P(£)=0.

Hence the condition implies the solvability of the Cauchy problem (i.e.
to both sides) just as in the case of hyperfunction solutions.
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4. Localization and micro-localization

The result of Section 2 can be localized to the level of germs as
follows:

THEOREM 3. The following are equivalent:
a) The Cauchy problem with hyperfunction data containing holo-
morphic parameters 2'";

(4.1) — (&, 2", 7=0,---,m—1
21=0

P(D)u=0
)

always admits a local hyperfunction solution u(z, x”,2").
b) There exist positive constants b, ¢ such that

Im&|<b[Im¢”[+c[C”]  if pa(C)=0.

In view of the discussion in 2, what remains to prove is that the
assumption a) of local existence implies a fixed size of domain for the
solutions depending only on the domain of the data. This can be shown
in a usual way, employing the Baire category argument: Assume that

for every data {u;j€ (B[K 1®OWU,))™, there exists a solution ue€
c~(TF, .‘B[L]@@(UI;)) as above, where a, B may depend on {u;}. (However,
L can be chosen independently of {u;} in view of Holmgren’s uniqueness
theorem.) Thus we obtain a well-defined continuous mapping

(4.2) (BIKIROWU.)" —> lim C*(T, BILIBOUS)).

e,B|0

By Grothendieck’s theorem (which is a variant of Baire’s category the-
orem; cf. [1], p. 16, Theorem A), we conclude that the image of (4.2) is

contained in the Fréchet space C™(T,, .CB[L]@@(UB)) for some a, B. Note
that we have a canonical imbedding

(4.3) C™(T#, BILIROWU,)) > BO(T+ x R* X Uy).
In faet, for 0<e<a’<a, we have a canonical mapping
Yreran(@)C™( T, BILIROUs)) = Blle, a/1x LIQOUs)

defined e.g. via the duality concerning the part (x,, /) of the variables.
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This is obviously patched to the mapping (4.3). From this it is also
obvious that the imbedded image has support in TH+X LXxUs. Thus we
have reached the situation as treated in Theorem 1.

In the above we assumed that the solution % depends on z, in a

differentiable way as a .‘B[L]@@(UB)—valued funetion. This is always true
for a solution in BO(T; X R*X Uy) supported by T+Xx LXU See Appen-
dix for an elementary proof of this fact.

Similar localization obviously holds for the unilateral boundary value
problem to +2,>0. The distribution analogue is also valid.

We can further localize the result with respect to the variables &:

THEOREM 4. Let 4cC S*' be an open subset. The following are equiv-
alent:
a) The hyperfunction boundary value problem

(4.4)

P(D)u=0
[ 0 =u,;(@”, 2"), =0, .-, m—1

(os)

18 locally solvable for the data w;(x”,2"") which contain 2"’ as holomor-
phic parameters and which satisfy

z3-+0

S.S.u;cR* ' X Addx".
b) For any compact subset L of 4 there exists b, ¢>0 such that
45) Im&G=—bIm{"[—c[l”| if pa(l)=0 and Re(”/|Re(”|€ L.
The same condition corresponds to the solvability of the boundary value

problem to the side x,<<0 for the data satisfying S.S.u;cR*'X(—4)dz".

Proor. 1) sufficient condition: This is proved in [11]. We give
here a second proof employing the Fourier transform. Choose the open

N
convex cones [, l=1, ..., N such that UI'’NS*'ed and 2,XU,X
=1
N
U’y NS 's88u; on 2,XU,. Then there exist F;(z’)cO(2.x2)N
=1

N
{|Im2"| <e} X U,) such that u;(x”, 2""")= 3 Fy;(x" +il"Q, 2’"), 5=0, - - -, m—1.
=1

Therefore, for fixed [ and I'cl’, it suffices to prove the condition a).
First consider the existence of a solution of the Cauchy problem
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=Fy(?), 7=0, .-, m—1,

Ge)

where F(2') € O((Q4+i) N {|Im2"| <e})@O(U,). By the flabbiness of hy-
perfunctions with holomorphic parameters there exists an extension
[fi(=", z”’)]Gﬂ?[QA]@)@(UA) of f(x”, 2"\=F;(x"+1l0,2"). Then decom-
pose it as

z;=0

{ P(D)F(z) =0,

Lfi(a”, 2" ) ]=[f15 W(", ['°)+[fi15 W(x", S*\T°)
where

Wi, I'°)= S W, o")do",

rengk-1
(4.6) W, »”)

(k—1)1 T (2", ")~
(_zn,\/:_l)k[x/rwl/+ ,‘/:i(mIIZ_ (x//w//)Z)/,\/1+x//2+ ,\/_—10]1;

is a variant of twisted Radon decomposition of §(x”) introduced in [6].
Then we can decompose as

Fi(#')=G,#)+H,{),
where
G;(7) € @"’((D"-I—il") N{|Imz"| <e'})®@(UA),
Hy(@') € O(Q4+4{|Imz"| <N ROU),

with some constants A’<A, &'<e, 6>0, and (O’ denotes the sheaf
evV+:20) and O is the sheaf of slowly increasing holomorphiec functions
introduced in [10]. Since this Cauchy problem with Cauchy data H;(z’)
is locally solvable by the Cauchy-Kowalevsky theorem, we can suppose
from the beginning that the Cauchy data F;,(z’) belongs to @‘”((D" +i') N
{{Im2" |<e’})®@(UA). First assume that these are of the form F;(z")e"*"""
with Fj(z") € O ((D*+i") N {|Imz"|<¢'}) and a fixed vector € C*1,
Consider the Cauchy problem

{ P(Dl, e, C’”)ﬁv(xu A C”’) =0,

(4.7) <£.>F =FL"),  §=0,---, m—1

zl—t+0
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Here F;c O~3(D*+1{|Im ¢"”| < 8}) satisfies the following conditions: i) for
any closed convex cone /’° containing /'° as a proper subcone we have
with some 0’>0

(4.8) |F, ()| <Ce Rl if Rel” € R™NI°,
and ii) in general for every ¢>0,
(4.9) |Fy(C)| <Cee.

Let us fix {”. Then there exists a solution of the ordinary differential
equation.

P(Dl, C”, C”,)Uz(xh C”, C"l) =0

’Ul
x]

Also, if P, ¢”,¢")=0 and I'"°NS*'cd, we have, for any ¢>0,

lo (@, €7, 07| SC+1E" 4+ 1C" )™ exp(e|” |+ b Im | +¢|C"|+C. )y,
for Rel”eI"°,

=8, =0, ..., m—1.

:cl—>+0

and
[vi(zs, £, )| SC(1+ L7+ 1)) exp (|87 + |C" |+ 1),
for Rel” € R\\J"°.
Then the solution of (4.4) is given by

(4.10) F(x, ¢, 0" = gﬁj(C”)v,-(xn ¢, g).

If Re{”eI"° and |Im{”|<e” for some ¢”>0, then it follows from (4.9)
that for any ¢>0, 0<x,< T, the function F' defined by (4.10) has the
estimates

|F'(£L‘1, e, C”I)l
SCA41C7 418" )™ exp [elC”] + (€] €| +b|Im | +¢| ¢+ C.)x.]
<C'C, exp(e’|C”|+eT,|L"]).

Also, if Rel”€ R™\J"° and |Im{”|<¢”, then by (4.8) there exists positive
constants ¢/, Ty such that for 0<ux, <7,

Iﬁ(xb C", C///)I
<C(1+]8"+1¢"|)" exp(—0'|Re L] +c[Re o+ of Im |+ | |))
<C"C, exp(—¢|Rel”|+cTi[L"]).
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Therefore, for x,<T=min{T, T}, F(x, ¢"”, ") not only increases slowly
but also decreases exponentially outside I"’°. Hence it follows that for
2, < T, there exists the solution f(z,, 2”,("”) with defining function
Flz,, 2", ") e O~*(D*+il") in 2”. Thus we obtained the solution
flay, 27, L") e for our special Cauchy data. Note that @"’(D"-{—il1 N
{IIm2”|<¢'}) is a Fréchet space in the obvious manner, and the corre-
spondence {F;(z")e* "} ——> F'(2y, 2", {'")e*"*" given above is continuous.
Therefore the solution for general data F(z’) can be obtained.

2) necessary condition: First assume that S.S.u;cR**X["°dx” with a
convex cone I" and let w be a solution of (4.4) defined locally on x,>0.
Then by the watermelon theorem, there exists a convex open cone "</’
and a neighborhood U of 0€ R*! such that

SS.[u]C (UN {2 =0]) X {(+ (1 —0)dz,+0w'dz’)oo, o € "°, 0<O<1).

Therefore, if |z,| is sufficiently small, then dx’’-direction of S.S.u is con-
tained in [°. Further, by Sato’s Fundamental theorem, u contains z,
as a real analytic parameter.
Hence u can be represented by only one term F((x;, 2)+4["0, 2””’) where
"nim=0=r".

Now assume that u; is further of the form u;(x”, 2"”’)=v;(x")e*""" with
a fixed constant vector ("’ and v,€ OQ(D*\K) where K is a compact subset
of R*, and ( is the sheaf of rapidly decreasing holomorphic functions of
modified type introduced in [10] (its sections are exponentially decreasing
on some conical complex neighborhoods of points at infinity). Then by
the uniqueness of the Cauchy problem, there exists a compact subset L

such that KecL and (%yu EQ(D"\L)@)@(UB). Therefore we can
1 a’

1=

define the mapping

(OR i N {|Im2”| <e}) NO(D*NK ) QOU.)
— (O(R*+4I" N {|Im2"| <e'}) N O(D*\L)) RO (Us)
w W

(F)e — {(i>F‘ }'_" L o<a<a.
621 zy=a’) j=0
If e Q(D*\K), then by Kawai’s theorem [6, Lemma 5.1.2], for any >0,
there exists a constant ¢, such that #(¢”) is holomorphic in D,=
{7 Im{"|<c,(|ReC”[+1)}  and  |A((")| <A, exp(7|C"”]+6Im "]+
Hy(Im{"”)) in D;, where >0 runs independently of 4.
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Now let us fix 6>0. Then (O(R*+i" N {|Im2"|<e}) OQ(D"\K))@)@(UA)
contains a Fréchet space corresponding to a fixed conical complex neigh-
borhood of D*\K and a fixed exponential decreasing type for elements
of O(D*™\K). In view of Bochner type theorem and Kawai’s theorem
mentioned above, its seminorms are represented by

||'U||I’ A= sup !’U(C” ///)e—nICl 81Tm¢r|— HK(Im;)l+ sup l,ﬁ(C// ///)e(a r;)\§|l

1<A IImC \<6
z

where ["ecl', A’<A, >0. The above mapping induces a continuous
mapping between two spaces of this type with larger L, I' and smaller
K, I'". By the closed graph theorem it is continuous.

Now set the initial value to (w, - -, Un_y) to (0, ---, 0, W(x"”, I'°)e*""").
As in the proof of Theorem 1, we obtain

1 ia iz"¢" ,—91¢”| =8| Im¢”| —H, (Im¢”
(4.11) sup et (L, €, L) e gm0l ImE | —H  AmL)
geo  1(141G]+[E)™ 1
{"€Ds
|2"|<B’
<CC, sup |W(L", I'°)e eI 1-ome|
{"eDg
|Z€!<A
+CC, sup. WL, I®)e i#rLrgmmitl|
Igrr%( |<a
éC;eA’IC !

Also, in view of Lemma 2.3 in [6], there exists positive constant C,
such that

WL, S=\I°)|<C, eXp(aum ¢ ——-IRel"] )
C,
if Rel”eI"°(I"°<I") and |Im C”ls ~IRe(”|. Therefore we obtain

(4.12) W (", r°)|=|1—W(c" SENT0) | =1—e,
if Re(”ecI"°, |1mc"|< lReC”l and [Rel”|>1.

Hence we can use W(C”, P°) as a substitute for 1 in this region, and
as in the proof of Theorem 1 it follows from (4.11) that there exist
positive constants b, ¢, C such that for any >0,

—Im & <7|C"[+b[Im [ +¢|C"'| +Clog(1+[¢]) +1log C,,
if P()=0, ("€ D, and Rel"e€I"".
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This obviously implies the condition b).

The distribution analogue of Theorem 4 is true. It suffices to replace
SS.u by WF,u and the inequality (4.5) by the one in Theorem 2 (but
now assumed only for Re(”/|[Re(”|€ Led). The proof is obvious. (Note
that W(x”, I'°)e 9’ with WF,W(x", I'°)c{0}xI'°. Therefore we can
prove it by the same method as for the hyperfunction data.)

Following suggestion of the referee, we shall give a true microlocal
version of the above theorem employing the notion of microfunctions
with holomorphic parameter. A germ of microfunction (represented by
a hyperfunction) f(x, 2") at (0, 0;&"dx") € REXC**71 x §¥2»*+~D~1 {g gaid
to contain 2z’ as holomorphic parameters if 9,.f=0 in the sense of micro-
function, i.e. if 8,.f is micro-analytic at this point. The following lemma
establishes the equivalence of this intuitive definition with the cohomol-
ogical one (.0, =H b pixcrt-1("'O,r.0). (See e.g. [14] for the latter
sheaf.)

LEMMA. We can always choose a hyperfunction representative for
fr e, g’ 2" € BOy,y such that f—g is micro-analytic at (0, 0; &”dx").

PROOF. The solution of 8.f=0 has S.8. in {”+i5””=0. Hence
without loss of generality we can take a representative g such that
0,.g is micro-analytic on, say, 2XUX 4"dx" X §*** -1 where 2xU is a
neighborhood of (0,0)€ R*XC*** and 4” is a neighborhood of &” in S§*'.
In view of the fact that 0, are operators with constant coefficients, we
can cut off the directional components of the S.S. of g to a closed neigh-
borhood ' 4" of &”’dx’, by first cutting the support and then convolut-
ing with the components of Kashiwara’s twisted Radon decomposition of
0. Since the replaced g also satisfies 9,,g=0, we find that without loss
of generality we can assume that S.S.gcQxUxI"x{0}. Hence it
further satisfies

ijg:gj(x//’ x", y///), j=k+2, ceem,

where g;(z”, z’”, y""’) are real analytic functions on 2 XU. They obviously

satisfy the compatibility condition
é’zg-’f:ézrq" j,l:k+2, "',n.
Hence the system of equations

9. h=yg,, j=k+2, ..., m,

J
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admits a real analytic solution i on a smaller neighborhood £'XU’. Now
g—h defines the same microfunction as f and is holomorphic in 2’ in the
sense of hyperfunction. Q.E.D.

COROLLARY TO THEOREM 4. The following are equivalent:

a) The microfunction boundary value problem (4.4) is solvable for
every germ at (0,&”dx") of microfunctions u; contarning 2"’ as holomor-
phic parameters.

b) There exists a neighborhood L of &’ such that (4.5) holds.

In fact, b)==a) follows from the corresponding part of Theorem 4,
because in view of the above Lemma the germs wu; can be represented
by hyperfunctions containing z’”/ as holomorphic parameters and satisfying
SS.u;cQxUxLdx".

a)==b) can be deduced as follows: Assume that the data u; are
hyperfunctions as in Theorem 4. Then (4.4) in the sense of microfunc-
tions means that we have

P(Dju=f(w, a".2")
()
0x,
where u, f are mild hyperfunctions and p-S.S.fN4dx"=. (Here p-S.S.
denotes the reduced singular spectrum of a mild hyperfunction. See
Kataoka [9] for the notion of mild hyperfunctions and their boundary
values.) v; are hyperfunctions whose S.S. do not contain components in
Adx”. Decomposing % by the S.S. we can assume without loss of general-
ity that p-S.S.u is contained in a small neighborhood of Ldxz”. In that
case the residue terms become real analytic. Hence we can omit them

by the Cauchy-Kowalevsky theorem. Thus also this part was reduced
to the corresponding assertion of Theorem 4.

:u,-(x", 2" +1},~(x”, 2",
y—>+0

Appendix.

We give an elementary proof of the differentiable dependence on x;
of the solution u(x,, x”, 2’"") € BO(T+ X R*x Us) with support contained in
TXLXUg as a .@[L]@)O(Ug)-valued function. Let W(z”, »"") denote
the component of a twisted Radon decomposition. (We can use (4.6)
though a simpler one suffices here.) Let I', denote the o-th orthant of
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Rk and let W(z/l, ]“'g) :S W(zl/’ (D”)dw”. Put Fu(xly zll’ zl/l) —

rensk-1
SkW(z”—x”, I u(xy, 2, 2"")dx”, where 2" denotes a set of complex
R

variables independent of 2”. By Sato’s fundamental theorem u contains
x, as real analytic parameter. Hence we can easily see that F,(z) is
holomorphic on a neighborhood of T'f X U%XUp, where U-cCC* is a domain
containing an infinitesimal wedge of the form R*41/",0 and the real set
RY\L, determined by the domain of definition of W (2", ). It obviously
satisfies

P(Dzl’ D.., D..)F,(x,, 2!, z”’) =0.

Thus by a precise version of Cauchy-Kowalevsky theorem (cf. [13], Lemma
9.1), F,(2) can be continued to a domain of the form

{zeC™ ||+ (1) _+ (2, —a) . <C[dis(z"”, C*\U%) +dis(2"”, C**\Us)],

where ¢, =max{t, 0}, {_=max{—¢0}. Thus F,(x,2",2"") becomes an
O(UL X Ug)-valued continuous function of z, for 0<x,<a. Recall that the
locally uniform econvergence of the defining functions F,(x,,2”,2"') in

Utx Uy implies the convergence of u(x,, ”, 2’”) in @[L]@@(UB). (See e.g.
[7], Theorem 4.3.4.) Thus we have shown the continuity of % in =z, as a

BILIRO(Us)-valued function. The differentiability is verified just simi-
larly.
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