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Extension groups for modular Hecke algebras

By Marc CABANES

(Communicated by Y. Matsumoto)

Introduction.

Hecke algebras were introduced as a fundamental tool in the charac-
ter theory of Chevalley groups: they are used to deal with characters
involved in induced representations from a Borel subgroup up to the full
group. Their standard presentation by generators and relations has a
formal analogue where, roughly speaking, the cardinality q=p* of the
root subgroups is considered as an indeterminate. Specializations where
g=0 (“0-Hecke algebras”) were studied by P.N. Norton ([4]): they have
a commutative semi-simple quotient and one may find an explicit decom-
position into principal indecomposable ideals. At the same time, Sawada
introduced ([5]) the algebra 4, :=End,; Ind$k, an analogue where the
Borel subgroup is replaced by a Sylow p-subgroup U and k is of charac-
teristic p. A decomposition of 4, gives rise to a remarkable bijection
between simple modules for 4, and for kG, leading to a good descrip-
tion of the indecomposable summands of the induced module Ind§k.

In the present paper we study the extension groups Ext (S, S') for
all simple 4 ,-modules S,S’. Since simple .4 ,-modules are one-dimen-
sional, this amounts to a study of representations of dimension 2 (see 4.).
We use a presentation (2.) of 4, which is very similar to the one dis-
covered by Yokonuma ([8]) in the case of Chevalley groups. Another
ingredient is a decomposition (3.) of the radical J(4{,) that leads to a
clear dichotomy for Ext' groups (Theorem 16). Some internal conse-
quences for modular and 0-Hecke algebras are given (5. 6.). But the
main applications of this work are for kG-modules, as it was the case
in Sawada’s work. This will be published later®.

1) “A criterion for complete reducibility and some applications”, Actes du colloque sur
les représentations des groupes finis (Luminy 1988), to appear in Astérisque (1989).
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Notation.

Through the whole paper we fix p a prime, k an algebraically closed
field of characteristic p, G a finite group with a split BN-pair of charac-
teristic p.

The subgroup B of G satisfles B=UX T=N;(U) where U is a Sylow
p-subgroup of G, T is an abelian p’-group. We denote by W=N/T the
Weyl group of G, R its set of generators, @ the (non crystallographic)
root system of basis 4 and same Weyl group: we denote by a—r,€R
the associated indexation. Refering to the Coxeter graph of W, we say
r and s in R are connected if, and only if, they do not commute. We
denote this by r—s. If I and J are subsets of R, we denote their
boolean sum (I\J)U (J\I) by I+.J.

If € ®, we denote by X, the associated root subgroup. If Xc4
corresponds to SC R, one gets the parabolic subgroup Ps:=BWsB=UgX L,
where Lg=T. {(X,; a € ®;» is the “Levi subgroup”. One denotes Gs=
(X,; a€®Ps>. Then the split BN-pair of G endows Gs and Lg with split
BN-pairs of rank |S| by intersection.

We use the standard notations for k-algebras and modules. If A is
a k-algebra, A’ a subalgebra, M an A-module, one denotes by Res, M
the restriction of M to A’. The (Jacobson) radical of A is denoted by
J(A). If S is a subset of A, one denotes by {S) the two-sided ideal
generated by S. If a,b€ A, one denotes [a,b]:=ab—ba. One defines
[4, A]:={a, b]; a,be A).

1. Modular Hecke algebras.

We denote by 4,(G) (or simply 4{,) the endomorphism algebra of
the induced kG-module Indfk=kGQ.sk, where k stands for the one
dimensional trivial kU-module. A k-basis is indexed by N : (a,)..~ defined
by an(1®1)=ﬂ%‘ég-(n®1) where C is a representative system of U/UN
nUn™' (see [3] 7).

If r€ R, one may choose (r) € r NG,, we assume it is the case through
the whole paper. We denote T,.=TNG,. We also denote T7:={t(r)t Y (r)7}
te T>C T, (see [6] §1). Then the law of 4, obeys the following rules
(see [3] Theorems 5 and 7(b)):

(L) Ay =y, Wheﬁ Imn)=l(n')+1(n),
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0= —] T,|"t§‘_T, a, when [((r)n)<l(n),

where [(n) is defined as the length in W of the corresponding class mod. 7.
This implies at once that <a, t€ T) is a semi-simple subalgebra
isomorphic to kT, we denote it by ¥7. One also gets

F1. Y, is generated as a k-algebra by kT and the a,’s for r€R.

2. The standard presentation.

In order to construct certain representations of ¥, (see 4), we need
a presentation. We use the relations first introduced by Yokonuma ([8]),
slightly adapted to avoid reference to Chevalley groups.

Let us recall we already chose for every r € R a representative in
G..

DerFINITION 1. If 7,s€ R and rs is of order m, let t.,€ G defined by
--(s)(r)=--- (r)(s)t,, with m terms on the left and m+1 on the right.

LEMMA 2. ¢.€T.NT..

Proor. Standard, see for instance [6] p. 141.
The presentation of 4, is the following (compare [8] Théoréme 3):

PROPOSITION 8. Y, 1is generated by the generators {a, te T}U
{a., .7 € R} subject to the relations:
(YO0) =0,
(Y1) Ay = Q(ryArye(ry =1
(Y2)  aty=—|T.[" 2 aa,
teT,
(

Y3.) @t - =0, Gy -

Proor. The proof is standard, we restate the main ideas for the
convenience of the reader.

Denote by A the algebra defined above. The law (L) implies 4,
is a quotient. So let us check dim, A<|N|. Consider the monoid of
subsets of A with multiplication AA’={aa’;ac A, '€ A’}. If we W
has reduced expression w=r,--- 7 let A,:={a,, - a,ya; te T}. By
Y1, this is A, --- A,. It only depends on w: use Y3 and Iwahori-
Matsumoto “word lemma” ([2] § 1 Proposition 5). Then Y2 implies the
k-span of UW A, is an ideal, hence equals A. Each A, has cardinality

<| T} so dimy A< N|.
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REMARK. It is indeed possible to choose the representatives (r) so
that all the ¢,’s are 1. This is clear for (untwisted) Chevalley groups
(see [8]). This is also proved in general by Tits to be a consequence of
a formal analogue of Chevalley’s commutator formula ([7] Proposition
2.9). We thank Professor Tits for having pointed this to us. The com-
mutator formula (P1 in [7]) might be included in the axioms of split
BN-pairs since the notion is devised mainly to study Chevalley groups
and their twisted analogues (who clearly satisfy it), moreover those are
the only split BN-pairs thanks to Fong-Seitz classification.

However, Lemma 2 will be enough for our purpose.

3. The radical.

The irreducible representations of J{, were classified by Sawada
(see [8]). They are given by the following (see also 6.):

DErFINITION. If yx & Mor(T, k*) one denotes R(x):={reR; x(T,)=1}.
An “admissible pair” is any pair (x, J) with JCR(x).

PROPOSITION 4. (Sawada) The irreducible representations of H, are
one-dimensional. They are under the following form. If (x J) is an
admassible pair, there is a unique morphism

¢(X' J) : L4[k — k*!

such that Yte T, ¢(x, J)(a,)=x(t) and, ¢(x, J)(@.) 18 —1 of red, 0 if
r€ R\J. :

If ICR, we consider the subalgebras corresponding to Levi subgroups
and G;. By the law in ¥, it is clear that @ ka,c @ ka, are

nENNG neNNLy

subalgebras isomorphic to K ,(G:) and Y(.(L;) respectively. Since the
irreducible representations of % ,(G) are one-dimensional, they remain
irreducible when restricted to any subalgebra, hence

F2. If ICJCR then J(I(.(G1) CI(IUGS) CT(ILW(Ls) CT(IL(G)).

The one-dimensionality of the irreducible representations of 4, also
implies that 4(,/J(%,) is isomorphic to some power of k, hence com-
mutative. So

F3. [H., AT (H,).
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We now give a generation property of J(%,).

THEOREM 5. If G ts a finite group with a split BN-pair of charac-
teristic p, the radical of the modular Hecke algebra is given by the
Sollowing : J(ﬂk) =[4H,, ﬂk]‘F(J(ﬂ{k(L,)), re R>:<9I((g{k(Grs)); r,s€ER

such that r—s or r=s).
The following corollary is an immediate consequence:

COROLLARY 6. If M is a H ,~module, then M is semi-simple if, and
only if, Vr,s€ R such that r—s or r=s the restriction Resy,c M 18
semi-simple.

PrOOF OF THE THEOREM. In view of F2 and F3, we just have to check
J(H) I, HJ+H<T(I(G); re Ry and  J(I) I (HW(G.)): r,s€R
such that r—s or r=s).

Let n: Hi—>I /([ H o I J+LT(I(L,)); r € R)) be the canonical sur-
jection. Then, by F1, =(4(,) is generated by the semisimple subalgebras
z(kT) and =(4,(G,)) for r ¢ R. On the other hand, =(4{,) is commutative.
So it is semi-simple (see for instance [1] §7), hence J(4(,)=[H . I .1+
I(HW(L); r€eR).

In view of the above, there just remains to check [Y(,, 9(.]C
(I(H(GL): 7, sE€ Rr—sorr=s), or equivalently that A :=.9(,/<J(H(G..)):
r,S€R r—s or r=s) is commutative. By F1, A is generated by the
images of the a,s and the a(,’s. The a,’s commute. By F3, if r,s¢ R,
then [, @] € J(H(G,,)), so the images commute when r—s. If r—/—s
then [a,, aw]=(a, —1)awaq by Y3, but i, € T, It isclear by Proposi-
tion 4 that any irreducible representation ¢(y, J) of 4(.(G,) kills (a,, —1)a,,
thus the images of a, and a,, commute. Let us take te T and r¢€R,
then, by Y1, [a(,, a,]=a,a.,(a,,—1) where t'=[¢, (r)]€ T.. Again a,(a, —1)
is in the radical of 4 ,(G,), so the images of a, and a,, commute. This
finishes the proof of the theorem.

The following is stated for future reference. It is a refinement in
a particular case.

PROPOSITION 7. If M is an Y{,-module with all composition factors
isomorphic, then M is semi-simple if, and only if, Vre R, Resy ¢ M 1is
semi-simple.

Proor. The “only if” part is clear by F2. We assume Vr € R, Res syanM
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is semi-simple. Then each of these restrictions is a sum of isomorphic lines
since a Jordan-Hélder sequence for 4{, remains Jordan-Hoélder when
restricted. So 4 ,(G,) acts by scalar matrices on M. On the other hand
kT is commutative semi-simple. Hence, by F1, there is a decomposition
of M as a sum of 4 ,-stable lines. This proves the proposition.

4. Extension groups.

In order to compute all groups Extj (S, §’) for S, S’ simple (1-dimen-
sional) 4{,-modules, we study 2-dimensional 4 ,-modules. Thus we have
to find almost all subsets of Mat,(k) satisfying the relations of Proposi-
tion 3. A preliminary lemma rules the case when G is of rank 1.

LEMMA 8. Let (3, J), (¥, J’) be two admaissible pairs for G. Let r€ R
and denote e=¢(x, J)(a), =41, J)(ar,). Let A€k. Then

dt "—> y (l(,) —>
0 () 0 ¢

defines a morphism from 9{,(L,) to Mat,(k) if, and only if, either 2A=0,
or 2+#0 and one of the following is satisfied:

i) (e,€)=(0,0), ¥=x" and r¢ R(x),

ii) (e,¢)=(0, —=1) or (—1,0), and ¥’ =1.

In particular (¢, ¢)#=(—1, —1) of 1+0.

ProOF. The map defined above is a morphism if, and only if, the
matrices satisfy relations Y0-1-2 of Proposition 3. YO is clear. The
pairs being admissible, the diagonal elements satisfy Y1-2. So Y1-2
amount to the equalities y'=x" and e+¢=—(Resr yx, 1) (usual scalar
product). Case (¢, ¢/)=(0,0) is then clear. Case (¢ ¢)=(—1, —1) is
impossible since the secalar product is 0 or 1. In case (¢ ¢')=(0, —1),
we have r€R(y/), so y'"=y' since T/CT, (see 1.). Then the condition

is equivalent to ¥'=y. This completes the proof.

LEMMA 9. If

¢ : I —> Mat,(k),

b <¢(90, I)(r) (k) >
0 P, J) ()

18 ‘@ morphism and w,v€I\J or u,veJ\I, then ¢(aw)=¢(au,).
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Proor. If ¢+#%, then Lemma 8 implies ¢p(aw)=0¢u(a.)=0, so
dlaw) =¢(a,). Let us assume o=y. If u,ve J\ICR(y), we have x(t..)=1,

daw)=(§ #%)) and glaw)=(§ #%)).  Then ¥3. gives

(=)' Plaw,)=(—1)"""¢(a.,). The same if u,veI\J.

In the next three sections we take two admissible pairs (¢, I) and
(x.J), and study the possible extensions corresponding to the associated
simple modules. The decomposition J(H ) =[H, HJ+<{J(H(L.); r€ R
will give rise to two cases of non split extensions.

4.1. A first case.

Case 1 for the pair ((¢, I), (3, J)) is when
(1) o=y, INJ+&, J\I+@ and YreI\J, Vse J\I, r—s.
We consider a morphism
¢ I — Mat,(k),

<¢(X: I)(h) Oiz(h) >
0 Gt J)(h) )

h+—>
Then:

PROPOSITION 10. Choose r€I\J, s€ J\I and A, € k. Then there is
exactly one ¢ as above satisfying ¢un(a.,) =21 and @yua,)=p.

Proor. Let us check first existence. We define ¢ on generators
and check the relations Y0-3. If te T, let ¢(a,)=y(t),. If ue R\(I+J),
let ¢n(a.,)=0, so that ¢(aw)=0 or —I,. If uel\J, let ¢p(a.)=2, so

that glaw)=¢lac)=("g §) I weJ\L let glau)=gla)=() _f)

Then each restriction to 4 ,(L,) is a morphism by Lemma 8, so Y0-2
are satisfied. Let us check Y3,, for u,v€ R. If ¢(a,) or ¢(a,,) is scalar, or

if () =}(ac,), then Resy, o ¢ is diagonalizable similar to (9”(%6 ) WO J)),

so Y3 is satisfied. There remains the case when weI\J,v€J\I. Then
u—v by (1). But ¢(a.)¢(a.,)=0, so we have 0 on both sides of Y3.
We show uniqueness. Let ¢ satisfy the hypotheses of the proposi-
tion. Then ¢,(kT)=0 since the corresponding 2-dimensional representa-
tion of kT is semi-simple with isomorphic composition factors (x=¢).
If ve R\(I+J), let us check ¢y(a,,)=0. We cannot have both v—r and
v—s, since this would provide a cycle v—r—s—v». Suppose v—/—7r and
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apply Y3,.. We have t,€ T,Ckery since r€ R(y) (Lemma 2), so
[¢(aw), ¢(ai)]=0. On the other hand ¢(x, I)(aw)=¢(x J)(aw), hence
¢(aw,)=0. There remains to check that if ve I\J, ¢(a.)=¢(ay). If
v€I\J (resp. v€ J\I) then ¢(a,) =¢(a.) (resp. ¢(a.,)=¢(a,)) by Lemma
9.

4.2. A second case.
Case 2 for the pair ((o, I), (3, J)) is when

(2) there is r€ R\ R(p) such that ¢=y", {s€ R; s—r}DI+J and
(lrs|=3=s¢ INJ).

We consider a morphism

¢ :j{k — Matz(k),
L <¢(90, I)(h) Ora(h) >
— .
0 d(x, J)(h)
Then:

PRrOPOSITION 11. Suppose I=J. Let R’ be the set of elements s€ R\ R(y)
such that ¢o=y* and there is no v€ I such that |sv|=3. Then if (A).cr
18 a family of elements of k, there exists exactly one ¢ such that VtE T,
du(a)=0 and Vs€ R/, ¢p(ay)=2,.

PROPOSITION 12. Suppose |I+J|=1 and ¢+y. Let R" :={s€ R\ R(y);
o=y and s—(I+J)}. Then, if (4,).cz 18 a family of elements of k, there
exists exactly one ¢ such that Vs€ R”, ¢dpu(a)=A2,.

PrOPOSITION 13. Suppose |I+J|=1 and ¢=yx. Keep R” as above.
Then, if (A)werrvuss, 18 & family of elements of k, there exists exactly one
¢ such that Vt€ T, ¢p(a,)=0 and Ys€ R" U (I+J), ¢u(dy)=2,.

ProOPOSITION 14. Suppose |I+J|>1 and ¢+y. There is a unique r
satisfying (2). If A€k, there is exactly one ¢ such that ¢y(a,)=21 and
Vte T, ¢n(a,)=0.

ProprosITION 15. Suppose |I+J|>1 and ¢=y%. There is a unique r
satisfying (2). Choose s€ I+J. If 2, n€k, there is exactly one ¢ such
that (plg(a/(,-))zl CL’nd ¢12(a(5)):ﬂ.

Proor or ProposiTION 11. Existence: if v€ R\R/, let ¢y(a,)=0.
Then YO0-2 are easy to check by Lemma 8. Let us check Y3,, for all
u,vER. If ¢(a.) or ¢lay)=0, or if ¢(a.)=¢(@.)=—1I, it is clear. In
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the remaining cases one may assume v€ R/, then gb(a(v,):(g f)> and

Plaw)=—1, or <?) '3‘) The second case is trivial: both sides of Y3 are

0. In the first case u€ ICR(x) NR(¢p), so ¢(t,)=L. If u—/—v, Y3, is
a commutation, it is satisfled. If w—v then |uv|>3 and there is zero
on both sides of Y3,..

Uniqueness. Let ¢ be a morphism as in Proposition 11, and let us
check that ¢(a,,)=0 when ve R\R'. If ¢p(a.)+#0, then Lemma 8
implies v€ R\ R(y) and ¢=y" (case ii) does not occur since I=J). So, if
v¢ R’ there is some s€ I with |vs|=3. Then in Y3,, there is ¢(a.,)=

(8 9[’”(3 (”’)> on the left and 0 on the right. This completes the proof
of Proposition 11.

OTHER PrOOFS. Existence. Take everywhere ¢,(kT)=0. For Propo-
sitions 12-13, take ¢.(a,) =0 where non specified by the statement. For
Proposition 14, take ¢,(a,) =0 if v£r. For Proposition 15, when v€ I+J
take ¢yy(a,) =g if v and s are both in I\J or J\I, —p otherwise; when
ve I+JU{r}, take ¢p(a,)=0.

Uniqueness is proved much as for Propositions 10 and 11, using
Lemmas 8-9 and Y3.

The uniqueness of r in Propositions 14-15 comes from acyelicity: if
r,r’ satisfy (2) and s, s’ are in I+J, (2) implies r—s—r'—s'—r.

4.3. Extension groups.
We now can prove our main result

THEOREM 16. Let 4 ,:=End,cInd$k be the modular Hecke algebra
wn characteristic p of a finite group with a split BN-pair of the same
characteristic, let ¢(p, I) and ¢(x, J) be two irreducible representations
of Y. (see Proposition 4). The group

Extl,(@(x 7). ¢lo. T))

is non zero if, and only if, one of the following is satisfied:

(1) o=y INJ+G, J\I+D, and YreI\J, Vsc J\I, r—s,

(2) there is r€ R\ R(x) such that o=y, {s€ R; s—r}DI+J (boolean sum)
and (|rs|=3==s¢ INJ),

the first case corresponding to mnon-split extensions that are split when
restricted to each Y ,(L,) for r€ R. The dimension of Exty, (0. J), dlo, I))
1s given by the following: it is 1 when |I+J|>1 (this includes case (1)).
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In case (2) with I=J it is |{sE R\R(y); ¢=x' and YveI |sv|#3}]. In
case (2) with |I+J|=1, it s |{s€ R\R()); ¢=x" and s—(I+J)}|.

Proor. The dimensions are easy to derive from Propositions 10-15.
They are clearly non zero.

Let us take ¢(y, J) and ¢(¢, I) two irreducible representations of 4(,,
and assume

9[1 : j[k — Matz(k),
<¢(90, I)(h) $ra(h) >
0 ¢t J)(h)

is a morphism such that ¢(J(4(,))+0. Using the decomposition J ()=
(IHWL)); r€ RY+[I4 K] of Theorem 5, one of the following must
happen:
(1) ¥YreR, ¢(J(I(L,)=0, and ¢([H ., H.])#0.
(2') There exists r€ R such that ¢(J(H.(L,)))+0.

To complete the proof of the theorem it suffices to show that 1/
implies 1 and 2’ implies 2.

Case 1’. Since Yre R, ¢([H(L,), H(L,)]))=0, we have Vre R, t€ T,
¢([awy, a])=0. So there are r,s€ R such that ¢([e., a.])#0. Then
dlae), la,,) are semi-simple non scalar, so case i) of Lemma 8 does not
occur: {r,s}cI+J. Moreover, case ii) must occur for r or s: otherwise
D@y =¢12(@(sy)) =0 contradiets non ecommutation. Thus ¢=yx. For the
same reason, Lemma 9 implies » and s are not both in I\J or J\I.
Assume re€I\J and s€ J\I, then I\J and J\I are non empty. There
remains to check YueI\J, u—s. Lemma 9 implies ¢(a.,)=¢(a.,). Since
IN\JCR(), x(t,)=1. If we had u—/—s, Y3,, would say [¢(a.), ¢(a)]=
[¢(aw), $(a.)]=0, a contradiction.

h+—

Case 2/. We have ¢,(a,,)#0 and case i) of Lemma 8 is satisfied
since case ii) is semi-simple. So r€ R\R(y) and ¢=y". If s€I+J, let

us check s—r. We have gb(a(,)):(g ¢'12(g“>)> and ¢(am):(g Sblzial(a))) or

<_% ‘[’12(8”“’)))- So ¢lawm)dlaw) or ¢law)dlae,) is zero while the other is
—¢(aw)#0, so Y3,, implies r—s.

REMARK. In case (1), I\J or J\I has a single element: if r,r' € I\J
and s, s’¢ J\I then r—s—r'—s'—r, a cycle.
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The reader may have noticed that our convention for ¢(y, J) is
opposite to the classical one: in [56], our ¢(y, J) would be denoted by
¢(R()\J, ). An argument for our convention is that conditions (1) and
(2) would then become more complicated.

5. Blocks.

We now derive from Theorem 16 some lemmas leading to the deter-
mination of the blocks of 4.

Let us recall that W acts on Mor(T, k*) by x(ntn™')=x*(t)=(w™-x)(t)
when n€wée N/T. Let (x, J) be an admissible pair for G.

LEMMA 17. If o€ W-y, then ¢(o, &) is mm the block of ¢(x, &).

LEMMA 18. If we have r€ R\R(y) and s€ J with r—s, then (¢, I):=
(", {s€d; s—/—r}) is admissible and ¢(p, I) s tn the block of ¢(x, J).

- LEMMA 19. If we have r€ R(y)\J and s€J such that r—s, then
&(x, J+{r, s}) is in the block of ¢(x, J).

Proors. In 17, one may assume ¢=yx" for r€ R. Then, if r€ R(y),
Y =x=¢ and it is trivial. If r€ R\R(x), then Theorem 16 (2) applies.

In 18, ICR(¢): if s—/—r,r normalizes T, by the action of W on
roots, so y'(T,)=yx(T, which is 1 if se JCR(x). Then Theorem 16 (2)
applies.

In 19, Theorem 16 (1) applies.

Concerning the action of W on Mor(T, k*), we know that if »¢ R(y)
then y"=y. So, if R(y)=R, y is W-fixed; it is even extendible to a unique
% € Mor(N, k*) such that Vre& Rj{((r))=1: a presentation of N is given by
TU{(r); r € R} subject to relations defining T, the action of (r) on T by
conjugation, the square of (r) (in 7,), and ---(r)(s)t,,= ---(s)(r) as in
Definition 1 with t,,€ T, N T,Cker y.

DEFINITION 20. M,:={y; R(x)=R}CMor(T, k*), M’ .=Mor(T, k*)\ M,.
If y € Mor(T, k*),lete,:=|T|" X x(t a,. Ifxe M,letb?:=|T|" Y 1(nYa,,
teT nEN
by :=(=1)"| T 3 %(n~Y)a,, by:=e,—bf —by, where w,€ W is the element
new,

of maximal length.o If XeM'|W (=the set of W-orbits in M), let
bx::Z €y.

XEX
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THEOREM 21. Let H,:=End,; Ind§k be the modular Hecke algebra
wn characteristic p of a finite group G with trreducible split BN-pair
of the same characteristic and rank >2.

i) There are 2(T : TNGg)+| W|™? EW(T:[T, w]) blocks in 9, given by
we

the following primitive idempotents in the center Z(Y(,):
{bx; X€ M|WIU{b?; x € M} U{by; x € Mo}U {by; 2 € Mo}

ii) If (x, J) is an admissible pair, the corresponding representation ¢(x, J)
is in the block corresponding to: by if R(x)#R and y€ X, b? if R(x)=R
and I=3,b% if R(x)=R and I=R,b, if R(x)=R and R+I+ .

iii) If |R|=1, the number of blocks is %(|T|+(T: T')4+(T: T,), the last

set ©n the union above being empty. The blocks corresponding to the b2’s
and the bf¥ for y€ M, are simple. The blocks corresponding to the by’s
are uniserial of length two. 9, is then wuniserial with indecomposable
modules of dimensions 1 and 2.

iv) If |R|>2, the simple blocks correspond to the b?’s and the by’s. The
other uniserial blocks correspond to the by’s for y€ M, when |R|=2, their

length 1s %] w|—-1.

ProoOF. The ¢,’s are clearly idempotents of kT and, if n€ N, e,a,=
@nln., by (L). So the by’s are central idempotents. On the other hand,
if R(x)=R, (L) implies e,b%=0b%¢,=b?, e,b=0bFe,=b% e,b;=bje,=bj,
ab?=b%0,=0, a,bf=bfa,=—bF for all re¢R. So b?,0b% b, are central
idempotents. The images by an irreducible representation ¢(p, I) are as
follows:

(o, I)(bx)=1 if, and only if, p€ XC M,

oo, I)(b%)=1 if, and only if, o=y and I=(,
oo, I)(b7) =1 if, and only if, p=y and I=R,
dle, I)(b4) =1 if, and only if, o=y and F+I+R.

The cases being disjoint, we have orthogonality. Their number is
clearly |Mor(T, k*)/W|4+2| M,|=|W|™ X (T:[T, w])+2(T: Tg) where Tr:=

wew

(T,; r€ R), this subgroup equals TNG; by [3] 114.

There remains to check primitivity, or equivalently that two arbitrary
irreducible representations are in the same block when they send the
same idempotent to 1 above.
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First case is for a representation ¢(x, J) with R(x)#R, let B be its
block. We must show that all representations ¢(¢, J) with o€ W-y are
in B. By Lemma 17, it is enough to check it is the case for some ¢(¢, &)
with o€ W-x. Let m be the smallest cardinality of sets I such that
some ¢(p,I) is in B, then m<|J|<R(y)<|R|. Assume m is not zero.
Among the ¢(p, I)’s in B with |I|=m, choose one such that the distance
d>1 of I to R\R(¢) in the Coxeter diagram is minimal. If d=1 there
isr€ R\ R(¢) and s € I such that s—r, then Lemma 18 says ¢(¢", {s€ I; s—r})
is in B, a contradiction with the minimality of m. So d>2, and there
are r,—7r,— --- —r, with r,€ R\R(p) and r,€ I. Then r,_,€ R(¢)\I and
Lemma 19 says ¢(o, I+{r,_,, rs}) is in B. But |I4+{r,_, rs}|=m and the
distance to R\ R(¢) is now d—1, a contradiction.

The second case is when ¢(y, J) satisfies R(x)=R and |J|=1. If B
denotes its block, we must show that any representation ¢(y, I) with
R+I+ is in B. If I has just one element, repeated application of
Lemma 19 allows to move it to the element of J along the Coxeter
graph. If |R|>|I|>1, Lemma 19 allows to assume there is a “gap” in
I:r—a—swithr+#sinIanda€ R\I. Then Exty, (¢(x, I), $(x, [+{a, 1, s}))+
0 by Theorem 16 (1), so ¢(x, [+{a,r,s}) is in B. We have decreased the
cardinality of I. Repeating this, we would get down to 1. The proof
of i) and ii) is now complete. Adaptations in the case |R|=1 are clear.

Concerning uniserial and simple blocks, one knows that ¢(x, J) is in
a uniserial (resp. simple) block if, and only if, wXI) dim Exty, (¢ (2, J), ¢le, I) <1

(resp. =0). So they are easily derived from Theorem 16. Lengths equal
dimensions, so they follow from dim ¢, #{,=|W| when y € M,. This finishes
the proof of the theorem.

REMARK. The computation of blocks can be made by giving explicitly

the principal indecomposable modules for % ,, as done in [4] for the O0-
Hecke algebra 9(.(G, B)=e,9(,. If (3, J) is admissible and § is the
extension of y to NN Lgy such that %(R(x))=1, let us denote a,,:=
i(mMa,. A slight adaptation of [4] would show that the p.i.m.

nENR () \J

corresponding to ¢(x, J) is
UX,J: @D k- Ay Xy, g

weXR\J\ Xy
where Xs:={we W; Vse S l(sw)>I(w)}. As in [4], a filtration is given by
taking elements of increasing lengths. The Cartan invariant ¢(¢(y, J), ¢(o, I))
is then proved to be |[{w € (Xrww\ X)) N(Xemu\ X)) x“=¢}|. This may
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also lead to the determination of blocks, but it is not clear whether one
can find the Ext' groups in the same fashion: one needs (two first terms
of) all filtrations of U, ,.

REMARK. The 0-Hecke algebra 4 ,(G, B) :=End,; Ind§k equals e, %[,
with e, as above (see [3] 9.4). Since ¢, is central, irreducible representa-
tions and Ext"s for 9{,(G, B) are easy to derive from what we know
about 4{,. Irreducible representations are the restrictions of ¢(1,I)’s
for ICR, and Exty, .5 ()(1, I), ¢(1, J)) is non zero if, and only if, I\J#J,
J\I+@ and VreI\J, VYs€ J\I,r—s. Then its dimension is 1. The
blocks would be easy to derive, thus providing another proof of [4] 5.2
(see also next section).

6. Concluding remark: generalized 0-Hecke algebras.

The arguments used in Sections 3. 4. 5. seem a bit more general and
might cover other examples of rings associated to a Coxeter system
acting on an algebra (replacing the group algebra k7). An instance in
arbitrary characteristic would be the “0-Hecke algebra” of [4], or the
specialized version where w=0 of the generic algebra of [8].

Let us take now K an algebraically closed field, A an algebra over
K and (W, R) a Coxeter system. We assume W acts on A by algebra
automorphisms: (a—w(a)) € Aut A. We assume there is a map

2:R— A

r — 2(r).

Let us define the algebra over K, denoted by 4{,(W), generated by

AU{[r], r € R} subject to:

(Y0) a-b=ab when a,b€ A,

(Y1) a-[r]=[r]-r(a),

(Y2) [rP=z(r)-[r],

(Y8,) [r]-[s]--- =[s]-[r]:-- (rs| terms on each side) for all , s€ R such
that rs is of finite order.

The last relation implies that if w=r, --- @, then [w]:=[r]---
[71w)] only depends on w. Let B be a basis of A over K. Using the
same idea as in [2] 23 p.55, one may prove that (b[w])ses.ew 1S a basis
of 9 (W) if, and only if, the following are satisfied:

(R) VYreR Yac A az(r)=z(r)r(a),
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(IV) Vr,s€ R and we W such that rw=ws and l(rw) >l(w), 2(r)=w(z(s)).

Assume R and GV are satisfied, then we have the following (com-
pare with [5] 3.5):

THEOREM 22. If W s finite and A 1s finite dimensional, the simple
Y 4(W)-modules remain simple when restricted to A. If moreover AlJ(A)
18 commutative, the simple 9 (W)-modules are in bijection with pairs
(x, I) where y€Mor(A, K) and ICR,(x):={r€R;, yx(z(r))+0}; one has
re R, (y)=x=r-y.

PrOOF. (see also [5]) Let V be a simple 4 ,(W)-module. Let 0+ScC
Res,V be a submodule of minimal dimension. Let we€ W of maximal
length such that [w]-S#0. Then [w]-S is A-stable by Y1, so it is simple
as A-module by minimality of dimension. It suffices to check [w]-S is
stable under H,(W). Let re R, if l(rw)>l(w) [r]-[w]-S=[rw]-S=0 by
maximality of [(w), if I(rw)<<l(w) [r]-[w]-S=z(r)-[w]-Sc[w]-S. This com-
pletes the proof of the first statement.

If AJJ(A) is commutative, each simple A-module is one-dimensional,
identified with some y € Mor(A, K). Moreover, if y is the restriction of
¢ € Mor(H4(W), K) then, by Y2, (¢([r]))’=¢([r])x(2(r)). So ¢([r]) is 0 or
x(2(r)), and necessarily 0 if »r€ R\ R4(y). Moreover, if r€ R,(¥), condition
(R) implies x=7-y.

Conversely, if x€Mor(4,K) and ICR.(y), there is one ¢¢
Mor(H 4(W), K) such that Res.p=1yx, ¢([r])=x(2(r)) if €I and ¢([r])=0
if r€ R\I: it suffices to check Y0-3 are satisfied. Y0-2 are clear. Y3,
is clear when |rs|is even or {r,s}ZI. If r,s€ ICR4(x) and |rs|is odd, then
r and s are conjugate by some we W,,,, so w fixes x and (9) implies
x(2(s)) =x(2(r)), hence Y3,, is satisfied in that case.

From this, it would be easy to derive analogues of Theorems 5, 16,
21 for this kind of general “0-Hecke algebra” J{,(W), when A/J(A) is
commutative. In Theorem 5, one has to add J(A) which is not necessarily
0. Non semi-simplicity of A causes also a slight change in Theorem 16.
The value of dim Extl ,w,(¢(x, J), ¢(p, I)) is the same as in Theorem 16
except in one case:

(8) I=J and Ext}(y, ¢)+0.

In case (3) one proves easily, using the defining relations Y1-3, that
dim Exty o (@t J), ¢lp, J))=dim Exty(x, ¢) +|{r € R\Ra(x); ¢=r-3, Vs€
J |sr|#3}|. The change on blocks is as follows. The group W permutes
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the blocks of A. Using (QR), one proves easily that if R.(x)=R and
Exti(x. ¢)#0, then R4(¢)=R. Then, the blocks of 4 ,(W) are obtained
as in Theorem 21, replacing Mor(T, k*) with the set of blocks of A and
M, with the set of blocks of irreducible representations y of A such that
R4(x)=R.

Some adaptations are also possible to study the two-dimensional
representations of 4 ,(W) when W is no longer finite. One must take
care of squares and triangles in the Coxeter diagram, since we used
repeatedly acyclicity in the discussions of 5. Cycles of larger size do
not seem to cause any change.
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