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By Tadashi YAMAZAKI

(Communicated by Y. Ihara)

Introduction

This is a continuation or supplement to our previous work [Y].
There we proved basic properties of Jacobi forms for the Siegel modular
group and defined an action of the Hecke algebra for the Siegel modular
group on the space of Jacobi forms. In particular we obtained explicit
formulas for the action of some of the generators of the Hecke algebra
on the Eisenstein series. This gave a generalization of the Maass rela-
tion ([M]) for the Siegel-Eisenstein series. In this paper we shall calculate
the action of the remaining generators on the Eisenstein series. Thus
we get all the relations among the Fourier coefficients of the Siegel-
Eisenstein series which can be formulated in terms of Jacobi forms and
the Hecke algebra (§5 Theorem 5.2). In the course of the calculation
we find that the action of the Hecke algebra on the Eisenstein series
has a close connection with the Siegel operator (§4 Theorem 4.1). This
explains the strange nature of the Euler factor which appeared in [Y]
(see the proof of Theorem 5.2).

Notation. Let Z, Q, R and C denote the ring of integers, the field
of rational numbers, the field of real numbers and the field of complex
numbers, respectively. For any commutative ring A, M, .(A) denotes
the set of m by n matrices with entries in A and M,,(A) denotes M,, ,.(A).
The identy and zero elements of M,(A) are denoted by 1, and 0,, re-
spectively. For any matrix X we denote by ‘X the transpose of X. If
X, ---, X, are square matrices, diag[X,, ---, X,] denotes the matrix with
X, --+, X, in the diagonal blocks and 0 in all the other blocks.

The symbol e(x) denotes ¢*** and e™(x) denotes e(mz).

For a finite set S, we denote by #(S) the cardinality of S.
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1. Jacobi forms

The basiec facts and definitions from the theory of Jacobi forms can
be found in [Y]. We also refer to [M], [Zi] for more generalities. To
fix our notation we briefly summarize those items that we shall need
in the following.

The Siegel upper half plane H, of degree m is the set of n by n
symmetric complex matrices with positive definite imaginary parts. The
letters = and 2z will always be reserved for variables in H, and C" re-
spectively. Let G, I'., S. be the real symplectic group, the Siegel
modular group, the group of similitudes, respectively; namely we define

G.=Sp(n, R)={M¢€ M,,(R); ‘MJ , M=J,},
I'.=Spn, 2)=G,NM,.(Z),
S,={M¢e M,,(R); ‘MJ,M=yvJ, for some v>0},

in which JF[—({” (1)] Let M be in S, If ‘MJ,M=uvJ, we write

v=y(M). We make the direct product SI=S,XR*"XR into a group in
the following way. For ¢,=[M, X, x;] in S; (=1, 2) we define

1) 019 =[M M, vi* X\ Mo+ X,, vi'ki+ k2407 X0 X,

where v,=v(M,). Similarly we define subgroups G;=G,XR*"XR and
I'T=I,X2Z"XZ of S;.
Let k& and m be non-negative integers. Take an element g=[M, X, «]

in S; and decompose M and X into nXn blocks [g 3] and n-vectors

(4, p), respectively. For any (r,2) in H,XC* we put ¢g(r,?2)=(Mz,

v(z+Ar+p)(ec+d)™), in which Mr=(ar+b)(cc+d)™" and v=v(M). Also
for any function ¢(z,2) on H,XC" we define

(2) (@le,m9) (7, 2)
=e™(k+ At A+ 222+ A p— (2+Ac+p) (ct+d) et +Ar +p))
X det(ct+d) *p(g(z, 2)).

A holomorphic function ¢ on H,XC" is called a Jacobi form of
weight k and index m if it satisfies the functional equation ¢|,.g=¢
for all g in I'). When n=1, we impose a regularity condition at infinity.
A basic example of Jacobi form is the Eisenstein series:
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(3) Ek,m: Z llk,mgy

aeri,o\ri
in which 1 denotes the constant one function and

mo={g€I; 1img=1}
={[M, (A, p),c]€5; MET,, 21=0},

Fa={[2 Ve o=0.).

For k>n-+2 the series in the right hand side of (3) converges absolutely
and uniformly on any compact subset of H,XC" and defines a non-zero
Jacobi form of weight & and index m.

Let 4,=S,NM,,(Z). We shall define an action of the Hecke algebra
(., 4,) of the Siegel modular group on the space of Jacobi forms.
Take an element M in 4, and decompose the double coset I',MI’, into
left cosets;

rMI=Ur.M.

For a Jacobi form ¢ of weight k¥ and index m, we define

(4) (Plk,m(FnMFn):;golk,m[Miy 0, O]

Then ol .([.MI",) is a Jacobi form of weight k¥ and index my(M). We
remark that here we do not use any normalization factors. It makes
easy to relate the Hecke algebra and the Siegel @-operators (see §4).

2. Double coset decompositions

In this section we determine double coset decompositions of the
generators of the Hecke algebra 4 (I',, 4,) of the Siegel modular group.
Let p be a prime number. We know that the p-part of the Hecke
algebra is generated by the following elements,

(1) T.p)=I,diag[1,, pL.1 .
and
(2) T’i,n—i(pz) :Fﬂ dlag [1iv pln—i’ pzliy pln—i]pn (O g'bg’n).
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T.p)= U Tini(p’)

0<ign
and for 0<i1<j<n
3) d0;;=diag[1;, p1,_;, p’L._;].

ProPOSITION 2.1. We have the following decomposition of T,(p?:;

(4) T,.(p2)= U u Fn,oaij(x)Fn’

0<igijgn [2]

wm which
Cp2ol
6“-(:1}):[2) 0: gu]

and
m:dlag‘ [Oi, X2y On_j], a;m:‘xzz € le—i(z)'

For any x, y of the above form we say that they are equivalent and
write [x]=[y] if and only if there exists a matrizx u i GL(n, Z)N
(0:;GL(n, Z2)0;;") such that UplnUn=1Y., modp, where u,€ M, (Z) is the
(2, 2)-entry of u when we decompose it into blocks of type (i,7—1, n—7).
And i the right hand side of (4) we take a union over the set of equiv-
alence classes [x].

REMARK. If (4, 5)%(0,n), then the condition [x]=[y] is equivalent
to say that there exists u,, in M;_;(Z) such that w,%.,‘u.=1y., modp.

Proor. It is obvious that we can take matrices of the form ¢,;(x),
with x=diag[0;, s, 0,_;] and xn,=‘®,€ M, ;(Z) as representatives of
I o\T.(p°)/I".. Moreover if 0;;(x) and d,(y) determine the same double
coset, then t=Fk and j=I[. Let x=diag[0,, %, 0,_;] and y=diag[0;, ¥z, 0._,].
We assume that d,;(x) € I',,0:;(y)[".. Then there exist w, u in GL(n, Z)
and symmetric integral matrices s, b such that

0;(x) =diag [w, ‘w‘l][(l): in]ﬁi,-(y)[(l): gn] diag[u™, ‘ul.

Therefore we have w=0;'ud;; and x=w(y+s0;;+p’*0;'b)'u. Since d;,;x=px
and 0,;y=py, it follows that « is in GL(n, Z)N (6;;GL(n, Z)0;") and x=
u(y+p7'0:,80,;+pb)'u. It is easy to see that the last two conditions are
equivalent to say that there exists w in GL(n, Z)N (6;,GL(n, Z)0;") such



Jacobi forms 377

that Uste'uz=yrmodp. Conversely if there exists such a matrix u
then, following the above argument in the reverse order, we get d;(x) €
Fn,oaij(y)rn~ Q.E.D.

For an integral matrix A, we define rank,(4) to be the rank of
A modp over the finite prime field F,. Let A be in T,(p?). Then A is
in T, . .(p") if and only if rank,(A)=«. Therefore we get the following

COROLLARY 2.2. For any 0<a<n, we have

Ta,n—a (pZ) = U U F’L'Oaij(x)F”'
0<ii<n [x]
a=i+n—:+rankp(x)
n which the union s taken over the set of equivalence classes satisfying
a=1+mn—7j-+rank,(x).

3. Actions of the Hecke operators

In this section, using the double coset decompositions in the previous
section, we calculate the action of the Hecke algebra on the Eisenstein
series.

We start with an elementary lemma.

LEMMA 3.1. Let p be a prime number. For any A in Z" and 0<5<n,
we define

W GO= _, = elp a').
ket

Then we have G¢(A)=1 and for 1<j<n

(__1):'p[:‘/2]([1‘/2]+1)gw(,n_1Y 2[]/2]) H N (pa__l) Ax0 modp

G=| . . e
5(4) plUMGEY g (n ) I (p*—1) 2=0 mod p,

a<j,a:odd

where g,(n, j)= 1H (pr~i*te—1)(p°—1)"Y, and for a real number w

<a<j

[x] denotes the largest integer satisfying the inequality [r]<w.

PrROOF. The case j=0 is trivial, so let us assume that 1<j5<mn.
First consider the case where p is odd. Then any symmetric matrix
z modp of rank j is equivalent under GL(n, F,) to

w,=diag[1;, 0,_;]
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or

z,=diag[1, 1, 7,0, ],  with (L>=—1,
D

*
where (——) denotes the quadratic residue symbol modulo p. For =0, 1
p
we write x;=diag[y;, 0._,1. Then the orthogonal group O(x;,) for z; is
given by

0w)={[§* falecrm By fugpt e O

We note that the order of O(y,) is given by ([S])

2pti=D Yyt H (p*—1) if j=odd,

a=1

@ #owh= Zpi(j-2)14(pj’2 ( 1>”2 )m I (pte—1) if j=even.

By using the orthogonal group, we find that
GiA=2 2 e(16x;'€'4[p)

i=0,1 §€GL(n,1'))[0(z;)

= > (0w > e(tEaiep).

i=0,1

If 2=0 mod p, then
G3 ()= =E $(GL(n, F,))(#(O(x:))) "

Since #(0(x,))=p""""#(0(y.)) - $(GL(n—j, F,)), we get the desired formula.
When 220 mod p, we have
G0 = T p"H(GLIn—1 F)#O0@)* ¥ eluniplp)

£ € Z"modp
#%x0 modp

Now we introduce the usual Gaussian sum g(e):pfe(eaz/p)=<%>g(l).

a=0

Then the sum in the right hand side becomes as follows

> elpxipp)=—1+ ¥ e(pxip/p)

r£€Z"modp #€Z"modp

4%0 modp
=—1+4(=1)p"7g(1).
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We note that g(1)2=<_71>p. This completes the proof for the case

when p>2. Now let us assume that p=2. We remark that in this

case any non-singular symmetric matrix is equivalent to 1, or [(1)’” é"‘]

The orders of the orthogonal and symplectic groups over the finite prime
field are given by ([H-K], [C])

[(n—-1)/2]

(3) #(On(Fp)) :pn(n—l)lz—[(n—1)/2]([(n—1)/2]+1) H (pZa___l)
and
4) #(Sp(n, F)=p* 1;(p*~1),

respectively. We can argue in a similar way as in the case p>2. So
we omit the detail. QE.D.

Since G7(4) takes the same value for all 20, by abuse of notation,
we denote it by G%(1).

Now we determine the action of the Hecke algebra on the Eisenstein
series. To simplify notation, we put for Mc S, and 2€ Q"

(5) 3k, m; M, )=1|,..[1,., (2, 0), 0][M, 0, 0].

For 0<i<j<n and x=diag[0;, &3, 0,_;] with x,="x,,€ M;_/(Z), we set
I(03;(2) = 1w ) (035(a) 7 15,00:5()).

Also for 0<1<j<n and 0<a<n, we put

K= X 2 > Ik, 1;0,5(x) M, 2),
rank[;(]z)=a MEr®;;N\I'y 262"

where the summation is taken over a set of representatives of the
equivalence classes defined in Proposition 2.1.

PROPOSITION 3.2. As a function on H,XC", K% is a linear combina-
tion of the Eisenstein series E,.(c, p2) and E, z(c, 2).

Proor. We put
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and
I'(0:(x)),=1"(0:;(x))U.
Then it is easy to show that the set

I:ln s ] §— 8 8 g 8 ="8€ M;_;,._;(Z) modp
0, 1.}’ 0 sy 3::, '’ Sp='sp€ M,_;(Z) mod p*

is a complete system of representatives for I"(d;(x))\J"(d;;(x)).. If we

replace M by [(1) ‘; ]M, with s is of the above form, then each term in

n

the summation is multiplied by the factor
e(P*20;5'805;"'2) = e (2 A38us' A+ D 23855 4s),

where we write A1=(2;, 4, ;) with A, € Z', ,€ Z~" and A4,€ Z"9. There-
fore if we sum over the set of representatives, we get

22515 ey — | PV if A€ pZi
2. e(P*20;5's0.;'2) '—[0 otherwise.

Since p(Ay, Ay, PA,)05 = (D1, 4, 4;), we have

K(z, 2) = pkErimi (=) (it e .
€I,
rank[x(]z)=a 10N

. 1. p‘lx]
S CH A ) ()

where we put L;=(pZ)' X Z*X Z"7. Now we define a subgroup 7I(d;;)
of I',, by

F(a,.,.):{[g db]en,,o; 0€0,GLn, 255},

For any w in GL(n, Z), diag[u,'w™"] is in I'(;(x)), if and only if
Uoslor U =T, mod p and u€ GL(n, Z)No,;GL(n, Z)o7;*. And if w is in
0,GL(n, Z)o7;', then it stabilizes the lattice L;. Therefore the summation
over the set of equivalence classes [x] and the set of representatives of
I'(0:;(x)).\J"(d;;) turns into a summation over x modulo p. The value of
this sum is given by Lemma 3.1 (See the remark after the lemma.).
Hence we obtain
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(6) Kfi(c, 2)
:p—k(Zn—i—j)+(n—j)(n—i+1)

smodp Mel'(8: )\TI
rank (z)=a i\ n

. J1 p'x
Xxez;',.j<k’ m; [0 ]M, 2)(7, Pz)

1
:p—k(Zn—i—j)+(n—j)(n—i+1) (Gf;-i(()) _Gl];-i(l))

Mel (NI,

X 2 gk, 1, M, (e, p2)+G (1) ¥ ¥ ik 1; M, A)(r, pz)}.

IGL]' MGF(aij)\rn A€L;

We put d;,=diag[1; pl,_.] and define a subgroup I'(3;) of I',, by
F(ﬁ,-):{[g db]em,o . a€3,GLn, Z)6;1}.

Then the two sums in the right hand side of (6) are equal to
[I(6;): I"(0:5)] 3 ik, 1; M, 2)(z, p2)

Mer@)\r, €L,

and

[70):I6:)] 2 2 J(k, 1; M, 2)(z, p2),

MerGy\I, A€l

i

respectively. The sum of this type was treated in [Y]. We have
2, Ik, 1; M, 4)(z, p2)

Mer@ NI, A€L;

= 2 > 23k 1M, 2)(r, pe)

LcZzZ" .Mel, \I', 2€L
Z"L=(Z[p)} moNn

=g,n—179) > % ik 1M, 2, pz)

Mel, \I', 2€Z

+p" g (n—1,5-1) ¥ X2 ik ;5 M, (e 2)

MEr'n.D\rn €z

:gp(n_l’ j)Ek,l(ri pz) +pn_jgp(n_1y j_l)Ek,PZ(z-7 z)‘

381

Hence K% is a linear combination of E,(r, pz) and E, ;:(z, 2). Q.E.D.

THEOREM 3.3. Let p be a prime number. Then for any 0<a<n,

Eirli1Ten o0 (z, 2) 18 a linear combination of E,.(c, pz) and E, :(z,2).

Proor. It follows from the definition that

Ek,l [ k,1Ta,n—a (pz)

= > . > > e MM, p~3(2, 0) M’ M, 0]
MeT \Ta,n—alp®) M'E€l, \I', 2ez"
= ) S gk, 1; M, 2).

Mel NTq,n—ald®) 262"
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In view of the double coset decomposition of T, ,_.(p* given in Corollary
2.2, we get

EialeaTan-o(D?
= X 2 2 > dk, 15 04;(x) M, 2)

0<i<j<n (=] Mel(5, .(z))\TI'", A€Z™
a=i+n—j+rank,(s) i\

= 2 2 Ki
0<igj<n 0<p<n
a=it+n—j+p

Thus the claim follows from Proposition 3.2. Q.E.D.

For a general a, the explicit formula for E,,|; 7., .—.(p?) is rather
complicated, but in the next section we will show that it has an intimate
connection with the Siegel ®-operator. Here we just state the cases
which we need later.

COROLLARY 3.4. We have

(1) (ErilenToq(p%) (7, 2) =p " E (7, p2),
(ii) (Beale Thna(D%)(z, 2)
n—1 1
___p—(n+1)k<p -1 p2k_pk+_p;1p““)Ek'1(r, PZ)
p—1 p—1

+p_"k+n(pk_1+1)Ek,p2(T, z).

These formulas can be easily extracted from the proofs of Propo-
sition 3.2 and Theorem 3.3.

4. Commutativity with the Siegel operators

Just as the case of the Siegel modular forms, we can define the
Siegel @-operator for the Jacobi forms. Let ¢ be a Jacobi form of degree
n. Let r=diag[7/,it]€e H, with /€ H,_, and let z=(?',2,)€C", with
2’eC*'. Then the limit

(1) lim ¢(z, 2)

t—>4oo0
exists and is independent of z,. Hence we get a function ¢|® on H, ;X
C™'. Moreover ¢|® is a Jacobi form of degree n—1 with the same
weight and index as ¢. This can be shown exactly in the same way
as in the case of the Siegel modular form so we omit the proof (See [F]
Chap. 1.).



Jacobi forms 383

Also it is easy to show that the Eisenstein series behaves nicely
under the @-operator, namely E{",|@=E{"." (for the proof, see [F] or

[Zi]).
It is known that in the case of the Siegel modular form there exists
an algebra homomorphism, depending on the weight £,

(2) UL, 4,) —> Ty, 4,2)

T s T*

which commutes with the Siegel ®-operator [Zh]. The homomorphism
is given as follows ([F] Chap. 4): Let I',MI", be an element in 9{(I",, 4,)
and decompose it into left I',-cosets

rMr,=yr.M.

We may assume that M; is the form Mi:[‘%i g] where D; is an upper
triangular matrix. We set

_[A¥ 0 _[B* =« _[DF « _[A¥ B¥\|-
Ai_[* a,»]’ B"_[* * ]’ Di—[O di]’ M?—[O D; ]

where A}, B¥, Df are in M,_,(Z). Finally we put
(I ML )*=¥ di*T,_M?.

Then the right hand side is a well-defined element in H(I",_., 4._1).
The explicit formulas are given in [K]. From our very definition (§1
(4)) of the action of the Hecke algebra on Jacobi forms, it follows that

(3) (@D enT*=(¢]1.nT)|P

for a Jacobi form ¢ of weight k¥ and index m and for any element T
in H(I.,, 4,).

Let p be a prime number. Let 4,,={M¢c 4,;v(M)=p" for some
integer a}, and let 9((I",, 4.,,) be the p-part of the Hecke algebra. By
an iteration we get a homomorphism

I, day) —> Yy, 41,y),

T > T*(ﬂ—l)

We consider the images of the generators T,.,.(p%, ---, T,.(p?) for
A, 4,,) and put
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(4) (To.n(®%), Tinoa(p®), -+ ) Topo(@))** 7V =(Toa(p?), Tho(0*) A%,
where A is a 2% (n+1) matrix depending on p and k.

THEOREM 4.1. Let p be a prime number. Then the action of the
Hecke algebra (., 4,,) on the Eisenstein series is given by the follow-
wng formula

(5) Eyalia(Ty,.(0%), Thuaa(p), - ; T,.o(0%))(z. 2)
= (E,(z, D7), E, 2(c. 2) [p()h ~uk+2 p*

where A% is given in (4).

Proor. By Theorem 3.3, we know that E, |, 1T, (0% (c,2) is a
linear combination of E|,(z, pz) and E, (c,z). Hence there is a 2Xx (n+1)
matrix B! such that

Eyalia(Ton(0), Trua(D®), - -+, Tho(0?)(7, 2)
= (Eia(c, p2), K, 2(t, 2))B;.

Applying the Siegel @-operator n—1 times, we get
o (To,l(pz), Tl,o(pz))A:‘.) (T, 21) = (Ey 1, D21), E, 2(tn, z:)) B,

where ¢, is the (1.1) component of ¢z and z, is the first component of z.
By Corollary 3.4, we have

(Ey1l11Th,0(0%) (tu, 2.) =D *E) 1(t1, D21)
and
(Ek,llk,lTo,l(pz))(Tll, zl) = (p_ZkH_p_k)Ek,l(Tu, pzl) + (p_k+l+1)Ek,p2(Tlly zl)-
Therefore we obtain
(Ey(tu, Dz,), E, 2(ty, zl))B,'i
-k —2k+2__ -k
=(E}, (tn, D21, E, 2(ty, zl))[po pp—k+1 _*_q ]Aﬁ

Comparing the Fourier expansions, it is easy to see that E, (r,;, pz)) and
E, ,2(tu, 2:) are linearly independent over C ([E-Z]), hence we have

—k —2k+2 __ o=k
B=|H" Pl |as
Q.E.D.
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5. Maass relation

We expand the Siegel-Eisenstein series E{"*"(z/) of degree n+1 into
the Fourier-Jacobi series

Er ()= 3 ey n(t, 2)e(mt),

o<m
t
where r’:[z i] is a general element of H,,,, The Fourier-Jacobi co-

efficients ¢,,, and the Eisenstein series E ., are related by the following

THEOREM 5.1 ([B]). For any m>0, we have
bin(t,2)= 32 opa(md™®) X p(a)Eimae(t, da'z),

a2|m,d>0 ald,a>0

in which p is the Mobius function and o, (a)= Y d*™.
dla,d>0

Now we can state our main theorem.

THEOREM 5.2 (Maass relation). The Fourier-Jacobi coefficients e .(t, 2)
of the Siegel-Eisenstein series satisfy the following relations.
(M1) For an element T in the Hecke algebra (I, 4,) for I', such that
T** 1 =0, we have

ek'mlk,mT: 0.

(M2) Let T be an element in H(I',, 4,) such that T**V=Ti(m), where
T\(m) € YL (I'y, 4,)) is given by

T.im)= Y [ diag[a,d]l.

ad=m,ald

Then we have

ek,m=ek,1lk,lT-

Proor. We know that ¢, ., is an image of ¢,, by a certain element
in Y((I",, 4,) (Theorem 5.7 [Y]). Hence (M1) follows immediately from
Theorem 4.1 and the commutativity of the Hecke algebra. For (M2) we
remark that if we apply the homomorphism x(n—1) to

1_ H (1+pk_i)_lTn(p)p_'+ Tovn(pz)p(l—n)k-i'n('ni—l)—1—21:,

1<ign

we obtain
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1-Ti(p)p~*+ T, . (p*) ™

up to the normalization factors (see the remark at the end of section
one). Now (M2) is obvious form (M1) and the well known structure
theorem for the Hecke algebra of I, Q.E.D.

REMARK. When n=1 the relation (M1l) is vacant and (M2) is the
usual Maass relation for the Siegel-Eisenstein series of degree two ([M]).
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