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§1. Introduction.

There is a lot of literature for convection problem. In certain cases,
so called trivial regular solutions can be found. Therefore the bifurcation
problem is studied. For the Bénard problem, see Rabinowitz [18], Fife [5],
Tudovich [6]. See also Velte [15] for the convection problem in tubular
domain. Joseph [9] studied the stability problem and obtained a unigqueness
result for steady convective flow in a bounded region. The condition is
given under the form of relation between the Rayleigh number and the
Reynolds number.

In this paper, we discuss the existence of weak solutions of equations
which describe the motion of fluid of natural convection (Boussinesq approx-
imation), and the interior regularity. Let £ be a bounded domain in R®.
We consider the following system of differential equations:

1
(- Vu=— ;Vp—l—duu—}- Bg6,
(1-1) divu=0, in Q
(w-N)8=r46,

where w-V=33_,u;0/0x;, Here wu=(u,, us, us) is the fluid velosity, p is the
pressure, 6 is the temperature, g is the gravitational vector function, and
o (density), v (kinematic viscosity), B (coefficient of volume expansion), &
(thermal conductivity) are positive constants.

The boundary conditions are as follows. Let 02 (the boundary of Q)
be divided into two parts I';, I', such that

aQ:FIUFQ, lergzg.

’U/:O, 026; on Fl:

—o 99 _
u=0, on — O on [,

(1-2)
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where € is a given function on I';, m is the outer normal vector to 0Q2. If
we can find a function 6, defined on 2, of class CXQ)NCY2), satisfying
6,=& on I', and (9/0n)8,=0 on I',, then we can transform the equations
(1-1), (1-2) for u and §=60—60, and we obtain the following:

(u-V)u:—%vm—mmﬁgﬁmgao, in 2,
divu=0, in 2,
(1-3) (w, VNG =rkd§ — (0 V)0, + £ 46,, in 2,
u=0, §=0, on Iy,
=0, gﬁ =0, on I,.

After studying this auxiliary equation, we shall show the existence
of a weak solution of the problem (1-1), (1-2) under certain conditions,
and the interior regularity of the solution. Uniqueness of the weak solu-
tion of the system (1-8) is also studied.

We state the notations and the results in § 2, preliminary lemmas in
§3, proof of Theorem 1 (existence) in §4, proof of Theorem 2 (interior
regularity) in §5, proof of a uniqueness result in §6.

The author would like to express her sincere gratitude to Professor H.
Fujita for unceasing encouragement and many interesting discussions.

§2. Notations and results.
2 stands for a bounded domain in R® and its boundary is of class C2
CONDITION (H). The boundary 02 of 2 is divided as follows:
oQ=rvur, I NIr.=9,
measure of I",#0,

and the intersection N7} is a Cl-curve.

The functions considered in this paper are all real valued. L?(2) and
the Sobolev space Wij(2) are defined as usual. We also denote H™(2)=
W3(2). Whether the elements of the spaces are scalar or vector functions
is understood from the contexts unless stated explicitly.

We define the inner product and the norm of L* Q) as follows:

(u, v) = ng w@vyde,  lul=~w 0,
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for vector L2(Q) functions w= (1, s, Us), v=(vy, Vs, Vs),

0,2)=\ b@r@ds,  101=VE,0),
for scalar L*2) functions 6, .

Now we define the solenoidal function spaces as follows:

D,={vector function ¢=C=(2)|supp ¢C 2, dive=0 in 2},
H=completion of D, under the L*(Q)-norm,
V=completion of D, under the H'(£)-norm.

It is well known that V=H)Q)NH, where H{(2) is the completion of
Co(2) under the HY(2) norm (see, e.g., [14]). We define another basic
function spaces as follows:

D,={scalar function goeC“’(.@) | ¢=0 in a neighborhood of I},
W=completion of D, under the H'(£2)-norm.

We recall the completion of D, under the L*(2)-norm coincides exactly
with L¥ Q).

Now let us define two trilinear forms B(u,v,w) and b(u,8,7) as fol-
lows =

B(u, v, w)=((u-V)v, w)

:S > u,-(x)agi—(x)wi(x)dx, w,v,weH(Q2),
Q.5 X j
b(u,0,7t) =((u-V)8,1)
_S 06(x) .
=\ Ju,@)—F——rc@)dz, ucsV, 6,rH(Q).
2 j ax,-

First, we study the auxiliary problem :
Find €V and §& W satisfying

{ v(Yu, Yv)+ B(u, u, v) — (898, v) — (B9, v)=0,  for all v in V,
(2-1) . N
k(V4,V7)+b(u, d,t)+b(u, b, v)+£(NV6, Vr)=0, for all  in W,

where v, £, B are given positive constants, g, 6, are given functions.

DEFINITION. The pair of functions {u,§} is called a weak solution of
(1-8) if (u, d) belongs to VX W and satisfies (2-1).

Now we define the weak solution of (1-1), (1-2).

DEFINITION. The pair of functions {u, 8} is called a weak solution of
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(1-1), (1-2) if there exists a function 6, in C'(2) such that u€V, 6—6, W,
6,=& on I';, (3/on)8,=0 on Iy, and, {u,d} (F=6—6,) is a weak solution of
(1-3).

It is well known that the eigenvalue problem
(VYu, Vv)=2(u, v), for any v in V

has a countable set of positive eigenvalues with finite multiplicities [10].
Let 4, be the first eigenvalue of this problem. We have

(2-2) lu) 1 Vul/vV2, for any » in V.
Under the assumption
measure of I",#0,

W is a closed subspace of L*Q) and the canonical injection of W into L*Q)
is compact ([4], p. 115). Therefore, the eigenvalue problem

(VO,V7)=p(, 1), for any = in W

has also a countable set of positive eigenvalues with finite multiplicities
[10]. Let g, be the first eigenvalue of this problem. It is well known

(2-3) o1 1Voll/+ g, for any @ in W.
A priori estimate. Let {u,fd} be a weak solution of (1-3). We have
v Vul?+ B(u, u, w)— (89, w)— (Bgfo, u) =0,
£l VG 12+b(u, 8, 6)+b(u, 6o, 6)+£(V0,, V) =0.
Note that B(u, u, u)=0, b(u,d,§)=0 (Lemma 4 in §3). We have
vl Vaul?= (898, u)+ (Bgbo, w) < Bllgll (111 + 161D el -

Therefore, using the inequalities (2-2), (2-3), we have

B ~
(2-4) IVull < VI lglla(ll6 1141160l

_B . 5 —
= o~ Aoty lg](I1VF1+ ~ g21166]1) -

Similarly,
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£IV812=—b(u, 6y, ) — £(T6,, V)
=b(u, b, 0,)—£(V8,, V)
< Nulsl Va6l + £ V0N IV
<ol Vul IVA 166l + £ VO IV,

where ¢, is the constant ¢,(6) defined in Lemma 6 (§3). So,
~
(2-5) Ivel = ?0 [6ollsll Vol + [ VEoll

Combining (2-4) with (2-5), we have

Be, B -
[Vull = NI llgllllBollsll Vaell + o I g1l 700 4+ v 21116611} .

Suppose

_ —__Bo
(2-6) T_wm/ll,ul lgllallfolls<1.

Then we have

(2-7) Vull < gl V80l 21 16511},

__B
vV A (1—7)

(2-9) 1900 S T (1980 7V 2 1661}

LEMMA 1. Suppose
(i) geL(9Q)
(ii) 6,=HY(2)

_ éco
(ii) T_u/m/llm [gllollBolls<1.

Then, there exists a weak solution {u,8d} of (1-3).

Our main results are the following:

THEOREM 1. Let 2 be a bounded domain in R° with C* boundary
satisfying the condition (H). If the function g(x) is in L=(2) and & 18
of class CXI}), then there exists a weak solution of (1-1), (1-2).

THEOREM 2. Let 2 be a bounded domain in R® with C* boundary
satisfying Condition (H). We suppose further NI is a C* curve, § is
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of class C=(I7), and g is of class C=(2). Then the weak solution of (1-1),
(1-2) is of class C=(2') for any subdomain Q' such that 2'CL.

REMARK. Suppose all the conditions of Lemma 1 are satisfied and
the inequality

(iv) H_“—%%{(% +2—r>||v00|| + «/L(% +r>||00n}<1

holds. Then the weak solution of (1-3) is unique.

§3. Preliminary lemmas.

In this section, we list up lemmas necessary for proving Lemma 1 and
Theorems.

LEMMA 2 (Sobolev). Let 2 be a bounded domain in R® with C' bound-
ary. The following imbeddings are hold.

(i) I 1_m_ 1 50), then WIQCLYQ).
»p 3 q

(i) If —}1;—%=0, then W) L*(2), for any a in [1, ).

(iii) If%—%<0, then WI(Q)CL=(2).

This is well known and the proof is omitted (cf. [1]).

LEMMA 3.
ol ZcllolVel™, eV or W,

where ¢ 18 a constant depending only on £.

PROOF. By Cauchy’s inequality, we have

1/2

S(p(oc)"dxé {S‘P(x)%lx}m {S(p(:v)"dx}

Desired inequality follows from Lemma 1, and the inequalities (2-2), (2-3).

LEMMA 4.

(i) B(u,v,w)=—B(u,w,v) for uV, v,weH Q).
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In particular,

B(u,v,v)=0, for ueV, veH' ().
(i) b(w,8,7)=—>b(u,r,0), for ucV, 8, reH (2).
b(u,8,0)=0, for usV, 6H(Q).

PROOF. (i) We use the integration by parts. Since u=0 on 02,

B(u, v, w)=((u-V)v, w)

Il

ngui(“)[ai%vi(x)}wi(x)dx

=— SQEvi(x)%%{u,-(w)wi(x)}dx

=— SQEvi(x){—a—i—j-uj(x)}wi(x)dx

- ngvi(m)uj(x) aixjwi(:c)dx .

Since divu=0, the first term of the right hand side vanishes, and the
required equality holds. The second equality follows by putting v=w. (i)
is proved in a similar way, and the proof is omitted.

LEMMA 5. There exists a constant cz depending only on 2 such that
|B(u, v, w)| < cpll VulI Vol IVwl,  for u,v,weV,
1b(u, 0, 7)| < sl Vull VOVl for ueV, 6,reW.
PROOF. By Holder’s inequality, we have
(3-1) [B(u, v, w)| Scllull 4o I Vvl wll L4y

where ¢ is a constant depending only on the dimension (n=3). Using
Lemma 6 below, we have the inequality for B(u,v,w). The inequality
for b(u,d,7) is proved in a similar way.

LEMMA 6. For 2<p<6, we have

(1) lNulzocyZcr(p)IVul, for any w in V,
(1) 160l ecoy<cw(p) VO], for any 6 in W,

where c¢y(p), cw(p) are constants depending only on 2 and p.
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PROOF. By Lemma 2, we find a constant c,(p) depending only on 2
and p, such that the inequality
lull Pgy < (@ {llul + [ Vul}

holds for any u in V. From (2-2) the right hand side is bounded by

e(p)| - +1]ivul.

Taking cy(p)=ci(p){(1/4/2;)+ 1}, the inequality (i) is obtained. The inequality
(i) is obtained in a similar way and the proof is omitted.

§4. Proof of Theorem 1.

We begin by proving Lemma 1. We use the Leray-Schauder principle.
Let A be a completely continuous (nonlinear) operator in a separable
Hilbert space J. If all possible solutions x=2x(4) of the equation

x=2Ax
for 20, 1] lie within some ball ||z[|<p, then the equation
r=Ax

has at least one solution inside this ball (cf. [7] Theorem 11.3, [11]).
Let =V XW. The inner product and the norm in ¥ are defined

as follows:

(%, 0), (v, 7)]=(Vu, Vv)+ (Y6, Vr), for (u,09), (v,r)eH,

I(w, )= VIVul*+ V6.

Let (u,8) be fixed in 4 and consider the linear functional on 4 :
(4-1) Fiv, )= %B(u, u, v)+ %b(u, 6, 1).
Using Lemma 5, we have the following estimate.

IF 10, ) < 21Tl Tl + 2 | Tul 19611 V<]

=cl(u, )%, 7)lx,

where ¢ stands for a constant independent of (u,8), (v,7). Therefore the
functional defined by (4-1) is continuous in %. By Riesz’ theorem, there
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exists a bounded operator B: H — 9 such that
[B(u, 6), (v, 7)]= %B(u, w,v)+ %b(u, 6, 7).
Next, let us consider the linear functional
(4-2) Fo(v,0) =— %(,Bgﬁ, v)+ %b(u, 6o, 7).
We have the estimate

1w, T)| = % lglllollvi+ % V6l wllsllzlls

1{,8

g«/llyl jl!gllmﬂ-%IIVﬁoH 1w, ) lla(v, 7)lls 5

where ¢ is a constant depending only on £ (cf. Lemma 6). Therefore,
the functional &, is continuous in 4, and there exists a bounded operator
C: Y- 9 such that

(C(u,8), (v, 7)]=— %(ﬂgﬁ, v)+ % b(u, 6o, T) .
Consider the linear functional
Fiv, t)=— %(ﬁgﬁo, v)+(V8,, V7).
Since &F, is continuous in 4, there exists Fe4( such that
[F, (v, 7)]=— %(,Bgﬁo, )+ (V6,, V7).
Suppose (u,6) in K satisfy (2-1) for any (v,7) in 4. Then we have
(4-3) [(u, )+ B(u, 6)+C(u, 6)+F, (v,7)]=0.

Conversely, if (u,#) satisfies (4-3) for any (v,z) in 4, then the equation
(2-1) holds.

We now show the operator B, C are completely continuous in 4.
Let (vn, tn) converge weakly in K. So, v, (resp. t,) converges weakly in
V (resp. W). By Rellich’s theorem [1], there exists a subsequence, which
we denote by the same symbol, converging strongly in L*2). According
to Lemma 3, v, (resp. r,) converges strongly in L‘(2). Using Lemma 4,
we have
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[Q(vm; T'm.) _Q(’Um Tn); (’U, T)]

1 1 1
= L B, Uy 0+ —b(Um, Tmy T)— — B(vn, By ¥) — —b(0n, 7y 7)
Y K Vv K

= %{B(vm—vn, Vm, V) + B(Vn, Vm— Va, )}
1
+ ';{b(vm_vn; Tm,y T)+b(vny Tm— Tas T)}

1
= T{B(vm—vn, VU, V) — By, v, V0 —v3)}

1
+ ';' {b(vm—vm Tmsy T) - b(vm T, Tm— Tn)} .
Similarly to the proof of Lemma 5, the following estimate holds.
|[=@(vm; Tm) - ‘gg(vn: Tn); (7), T)]‘

= %{Ilvm—vnllﬁllwﬂl vl et llvnll Ll Vol lvn—val 24

1
SR LIS 2 L LT E RN PN BTA LTSS
< % 1m—vall {1 T+ T, 110

+*z—{llvm—vnllﬁll\7rmll+lIanll ltm—7all L}Vl
where ¢ is a constant depending only on £. Therefore

”Q(vm: T,,,,)—.@(’l)n, Tn)”&[é _j' ”vm—vn||L4{HV1)mH + HV’Z},,”}

+ %{va——vn]lullvmll +1Vvalllen—7allz4

Therefore, B(v,, t») converges strongly in 4 and the operator B is com-
pletely continuous in . As for the operator C, we have

|[C(’Um, Tm) _C’(vn; Tn)y (v; T)]I

= %(Bg(rm—rn); ’U)"l‘ %((vm_vn) 'Veoy T)
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B 1
= 7”9”0@”7771_77;" llvll+;IIVOoH lvm—valilizly.
Therefore we have

”C(vm) Tm)_c(vn) Tn)”.!(é 67‘8 ”g”oonrm-fn“ + —Z— HveoH ”vm—vn”4

where ¢ is a domain constant. Since v, (resp. r,) converges strongly in
LY(2) (resp. L¥R2)), C(v,, t,) converges strongly in 4, and C is also com-
pletely continuous.

Let 0<21<1, and suppose (u,8)=(u(1), () satisfy

(4-4) (u, )+ 21{B(w, )+ C(u, )+ F}=0.
This is equivalent that the following two equations hold:
v(Vu, Vo) + 2{B(u, u, v) — (Bgb, v) — (Bgbo, v)} =0, for any veV,
£(V8,V7)+ 2{b(u, 8, r) +b(u, b, 7) +£(V0,, V7)} =0, for any reW.
Putting v=w and =6, and calculating in a similar way when we obtained
(2-7), (2-8), we have

[Vul < Bllgll A 2186l + 2 12116611},

1
{1—2rjvv 2,

1
<
1901 < 7=

{21V0,]l + 22~/ vl 6ol }

where we have used 0<r<1 and 2€[0, 1]. Therefore the solutions to (4-4) are
bounded in 21<[0, 1], and the Leray-Schauder principle shows us the equation

(u,0)+B(u, )+ C(u, )+ F=0

has a solution and Lemma 1 is proved.

PROOF OF THEOREM 1. If we succeed in constructing a function 4,
C(2) which satisfies 6,=¢& on I}, 86,/on=0 on I",, and the condition (iii) in
Lemma 1, then we can apply Lemma 1 and Theorem 1 is proved. By
Whitney’s extension theorem [12], we can obtain an extension # satisfying
0=C (R, 6=¢& on I, and 06/on=0 on 92. Let d(x) be the distance of
and 002, and 2,={xrcR’|d(x)<d} and a(x)=Ci(2; such that 0<a(zx)<1,
a(®)=1 in L;,. Put 6,(x)=a(2)8(x). Then 6, is a required extension. Be-
cause, 0,=Ci(2;) and
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16l 2 0y = Hgo”L”(!)a)

S sup [0(@)||2:]"7, 1=p<oo,
325
where |2;| is the volume of 2;. For a given positive number ¢, we can
choose >0 sufficiently small so that the right hand side of the above in-
equality is less than e.

In the case 02 is of class C? however, its construction is direct and
easy. Therefore, we give it in the following.

Let 02 be of class C? and I'N1; be C' curve. Then & has a Cl-exten-
sion on whole 92 ([7], p. 136). We denote this extension by & Since 2
is a bounded domain with C? boundary 02, we find a positive constant J
such that, for any xz€®; there exists a unique point y=y(x)=df2 such
that |t—y|=d(x). The points £ and y are related by

(4-5) x=y+n(y)d(x) .

We fix such 6. Now we define an extension § of &(z) (x€0R) as follows:
Let x be in Q;. We define

G(x)=£(y),

where © and y are related by (4-5). Clearly 4 is an extension of &(x), 4
is in C'(@Q;) and independent of d.
Now we can easily see that
80 =0 on 0@,
on
because & is independent of d. i
Let a(x)eCi(2;) and 0L a(x)<1 a(x)=1 in Q.. We put 0y(x) =0 (x)a(x).
It is easy to verify that 6y(x)ECi(2s), 6o(x) is an extension of ¢ satisfying
36,/on=0 on 02, and

sup |fy(z)| < sup [6(2')].
z€25 z'€09Q

Now we calculate the LP-norm of 6, 1Sp<oo:
{08, 10s@)1de < sup (040171251
Q2 zEQ;

For any positive ¢, we can choose d such that the volume |[£2;| is smaller
than . Thereby, 6, is a desired extension of & and Theorem 1 is proved.
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§5. Proof of Theorem 2.

Under our hypothesis, we can find 6, belonging to C*(22), which satisfies
6,=& on I';, 30,/on=0 on I'y and the condition (iii) of Lemma 1. Accord-
ing to Lemma 1, there exists a weak solution {u,d} of (1-3).

It is known that there exists a distribution p such that

(5-1) udu—%sz(u-V)u—ﬂgﬂN—,Bgﬁo,

(5-2) £d6= V)0 + (u-V)8,— £ 40,,

are satisfied in distribution sense (e.g. Temam [14]).

We shall show u, 8 belong to C*(27), for any subdomain £’ such that
2’cQ. Since w is in H(R), we find (u-V)u is in L**(2). By Lemma 2,
HY(2)cL¥2), and we see Bgf<L’(Q). From the hypothesis, 8g6, is in
C>(2). Therefore the left hand side of (5-1) is in L*?(Q). By the theorem
of Cattabriga [3] (see also Temam [14]), we find

[ we Win(2),
pE Win(2).

(5-3)

From Lemma 2, we have W32,(Q)CL*(Q) for Yac[l, ). Hence u is in
Le(2) and (9/0x,)(u,u;) is in W;'(2). Since divu=0, (u-V)ucs W;'(2), and
we find the left hand side of (5-1) is in W;'(2). Using again the theorem
of Cattabriga, we find

l u€ We(Q2),
peL*(2), for Vaeg[l, ).

Since % and ou/dx; belong to L*(2), we see (u-V)u is also in that space,
and considering § e L¥(2), we know the left hand side of (5-1) is in L5(Q).
Cattabriga’s theorem gives us the following result:

[ we WiQ),
peE WiR).

(5-4)

By Lemma 2, the inclusions
W) CcWU2)C L=(2)

hold. Therefore (u-V)d=L*RQ). Since 6, is smooth, the left hand side of
(5-2) is in LX), and from the result concerning the interior regularity
of the solution to the elliptic equation (e.g., Grisvard [8]), we find f&
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W3R’y for any £’ such that 2’C . Since Wi(RQ)c Wi(R’), it follows
(u-V)Fe L¥(R2’). Using a similar argument, we find § belongs to W2(2")
for any Q” such that 27CQ’. Since 2’ and 27 are arbitrary, we find

(5-5) Ge WiQ')

for any 2’ such that 2'c Q.

Now, we shall show u,d e W3(2’). The first derivatives of u are in
Wi2)cL*(2), and the second derivatives are in L52). Therefore
(0/0x)(u-V)u is in L), that is, (u-V)u belongs to Wi(2). As is already
shown, § is in W2%Q’). Therefore the left hand side of (5-1) is in Wi(2’).
In consideration of (5-4), we can use Theorem 10.1 of Agmon-Douglis-
Nirenberg [2], and we obtain

ue WiR"),
peE W27,
for VQ” such that Q7cC Q’. Since 2’ and Q” are arbitrary, we have
ue Wi,
pE WL,
for VR’ such that 2’C Q. In a similar way, we can show
Ge Wy,
for V9’ such that 2’ 2, and for any m=1,2,83,-,
ue W2,
pe W),
GeWg(Q),
for VQ’ such that 27C 2. Theorem 2 is proved.

§6. Proof of Remark.

Let (u,,6), (u.,0,) be weak solutions of (1-3). We subtract the equa-
tions corresponding to u, and u, and we obtain

V(Y (26— %), Vo) + B(aty— ts, %1, ) + By, 11— s, v) — (Bg(6,—62), v) =0,

for ve V.
Similarly we have
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£(V(0,—6.), V1) + b(w,— s, 01, ) +b(t, 0,— 05, T) + b2 — us, o, 7) =0 »
for reW.

We put w=u,—u, 0=60,—60., and take (v,7)=(u,d). Then, according to
Lemma 4, we have

v Vul®+ B(u, w, u) — (890, w)=0,
£l|NV6*+b(w, 8, 0)+b(u, 6,, 6)=0 .

Using Lemma 5 and the a priori estimate (2-7), (2-8), we have

(6-1) VIVl < sl Vol 1922+ Bll gl 101 1]
cgﬁ \
= S 21—y 191AIV8l + 6ol 1 T
+ AL g1 17011 Tul
Vs
and
(6-2) elIVOIP< es{lIVOIVullIVOl+ 190, Tl [VE}

ch{ L1900+ T «/;zlllﬁoll}HVuIIIIWH

Therefore, if [V@I, iVul#0, then, the inequalities

) - _B
(6-3) {v oV Ign(1—7) Ilgllw(IIVOoll+«/mllﬁoH)}HVuII§ i lglllvol,
and
(6-4) klIVOl Zcs II Vol + x/,ullll?oll } 1V

hold. Substituting (6-4) into (6-3), we have
{“_ T/}%HQHJHWOIHVZI[&OH)}W““

¢sB
= ic\/,llpl(l—‘r)

gl —7) V0]l +7 /gl Ol IVl .
Therefore, if

csB e I !
Ay =RVl + 7 )
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. cB _
<v SV Tn(1=1) lgll {1966+ v/ 221160}

holds, that is,

(6-5)

then,

(1]
[z]
[3]
[4]
[5]

6]
£7]

£8]
(9]

[10]
(1]
[12]
[13]

[14]
[15]

1C_BTW% o1{(£+2— )70+ Va(+r)iool} <1,

this contradicts ||Vull, ||V8]#0, and the uniqueness holds
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