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§0. Introduction.

Consider an ordinary differential equation in the complex domain.
Singularities of solutions of the equation are divided into two categories:
fixed singularities and movable singularities. The formers are those
singularities which are situated on points determined by the equation
and the latters are those singularities which appear at points depending
on a particular solution. For example, the equation

WP Yy

Y Y x 2

has the general solution y=+/z(A+Blogx) ((4, B)#(0,0)). =0 is a
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fixed singularity and x=exp(—A/B) is a movable singularity.

As is well known, P. Painlevé [5] gave an exact definition of the
set of fixed singularities of a rational differential equation of the first
order, and obtained a fundamental theorem about singularities of solu-
tions.

Consider an equation

(E) Ay _ Flo.9)

dz  Qx,v)

with relatively prime P, Q€ (Op[y], where Op is the set of functions in
x holemorphic in a domain DcC and Op[y] is the polynomial ring in y
with coefficients in p. Suppose that by the change of the dependent
variable y=1/v, (E,) is transformed into the equation

“dv _ Py,)
dx  Quz,v)

(E1)2

with relatively prime P,, @,€Op[v]. Painlevé defined the set @ of fixed
singularities as

@ - @l U @21
where

0.={£c D|Q(& v)=0},
0,={¢ € D—B,| for some n€cC, P& 1)=Q(& 1) =0}
U {fe D—@1| Pz(Ev O)ZQz(Sy 0):0},

and obtained the following fundamental theorem.

THEOREM «a. Let @ be a solution of (E,).
(1) If @ has a singularity @ on a € D—0, ® is an algebraic branch

point.
(2) If ® has a transcendental singularity @ on £cP, w s an

ordinary transcendental singularity.
He also defined the set of fixed singularities of an algebraic differen-

tial equation

(Ay) F<x v, %—)zo,
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where F €(Oply, dy/dx] is irreducible, and proved the same result as in
Theorem « (1).

In the cases of higher order differential equations or systems of
differential equations, as examples show, movable transcendental singu-
larities arise in general (See [1], [6].). For these equations, he tried to
define the set of fixed singularities and to derive fundamental properties
about singularities of solutions such as Theorem « (See [5].). He studied
the rational differential equation of the second order:

dy P(x, Y %%)

with relatively prime P, @ € Oply, dy/dx], the algebraic differential equa-
tion of the second order:

where F €Oy, dy/dxz, d*y/dx?] is irreducible, and the system of rational
differential equations of order n:

dyl — Yl(xv yh ) yn)
diL‘ X(CL‘, yly DY yn)

dyn — Yn(xv Yy, - -, yn)
dm X(x, y1, "'vyn) '

where X, Y, -, Y, €Ou[y1, - - -, ¥.] especially (E,). However, since his
investigations of the set of fixed singularities were insufficient, he could
not completely generalize Theorem a.

Later T. Kimura [1] investigated the set of fixed singularities of
(F,) and derived some properties of movable essential singularities of
solutions (See §4.).

The purposes of this paper are to give a general theory of fixed
and movable singularities of rational differential equations and to study
particular cases in detail.

(I) For the equation
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Ay, _ P, Y1, -+ Ya)
dx Ql(x, yly Sty yn)
&) 1
dy‘n — Pn(x’yly ° 'yyn) ,
dx Qn(x, '.'/1, Sty yn)
where P, Q,€Op[y,, - -+, ¥.] are relatively prime (I=1, ---, n), we give an

exact definition of a fixed singularity and that of a movable singularity,
which are stated in Definition 1.12 and 1.13 in 1.4.

(II) Under these definitions, we prove two theorems (Theorem 2
and Theorem 3 in 1.5) which are generalizations of Theorem a.

(ITI) As a particular case, we study (E,) in more detail in §3. We
prove Theorem 4, 5 and 6.

(IV) Using the results in (III), we study (F,) and derive some results
obtained by Kimura [1] (i.e. the definition of the set of fixed singulari-
ties (Proposition 4.1, 4.2 in §4), the sufficient conditions for nonexistence
of movable essential singularities (Theorem 7 in §4)).

Before carrying out (I)~(IV), we make the following preparations
to avoid confusions of concepts:

(P1) In 1.1, we clarify the concepts of values, singularities, cluster
sets of m-tuple analytic functions.

(P2) We explain the prime factorization theorem for Oy, - - -, ¥.)
(Theorem 1 in 1.2). In the Appendix, this theorem is proved in a more
general situation.

§1. Fixed and movable singularities of the system (E,) of rational differen-
tial equations of order n.

1.1. Singularities of n-tuple analytic functions.

An ordered n-tuple of analytic functions has some different proper-
ties from those of a single analytic function. So we survey the theory
of m-tuple analytic functions in the following.

1° The definition of n-tuple analytic functions.

Let DCC be a domain, and let ¢.=(du.1, -+, d...) be an ordered
n-tuple of convergent Puiseux series around a € D with finite principal
parts. @.=(@s1, * -+, Pon) a0d Po= (s, - - -, P,.) are identified if and only
if gorx=¢., for k=1,.-.,mn. Let ! be the set of all ordered n-tuples



Systems of rational differential equations of order m 443

of convergent Puiseux series around a € D with finite principal parts.
Let A*=U A" and let =: A~——D, ¢.——a be the natural projection.

a€D
In the usual way, A" becomes a Hausdorff space and = is continuous.
But, since = is not locally topological, (A", x, D) is not a sheaf.

Elements in (A" are classified as follows:

Let ¢a:(¢a,1» Tt ¢u,n) € J",

1. If every ¢4.; (¢=1, ---,n) is holomorphic at a €D, ¢, is called a
holomorphic element.

2. If some of ¢,.’s have poles at a € D and the others are holomor-
phic at a€ D, ¢, is called a polar element.

3. If ¢, is a holomorphic element or a polar element, ¢, is called
a meromorphic element.

4. If any one of ¢,.’s has an algebraic branch point at a€ D, @, is
called a ramified element.

Let O be the set of all holomorphic elements at a€ D and let
Or= LGJD@Z;. Then ©" is open dense in A" and (0", x, D) is a sheaf.

DEFINITION 1.1. For ¢,€ A" take a holomorphic element ¢, in a
connected open neighborhood UcC A" of @,. And let @, be a connected
component in " containing ¢, and let #=0&, be the closure of @, in
A @ is called the n-tuple analytic function determined by @..

Note that @ contains &, and that @, is independent of the choice
of ¢,.

@ (resp. ;) has a structure of Riemann surface. When we regard
& (resp. §,) as a Riemann surface, we denote @ (resp. @,) by R (resp.

R).

REMARK 1. Let M* be the set of all meromorphic elements at
a€D and let M*=U M:. Then M* is open dense in A" and (M*, =, D)

a€eD
is a sheaf. For ¢,c A", take a meromorphic element ¢, in a con-
nected open neighborhood Uc A" of @,. Let @, denote a connected
component in M" containing ¢,. Then, @, is independent of the choice
of ¢, and 9,CP,CP, ¢,=0,=d. &, has a structure of Riemann sur-
face. If we regard @, as a Riemann surface, we denote @, by R..

REMARK 2. An element @,€ A" is often identified with an ordered
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n-tuple of germs at a of analytic functions.

2° Values of n-tuple analytic functions.

DErFINITION 1.2. A rational compactification of C* is an n-dimensional
compact complex manifold M with the following properties:

1. M contains a nonempty nowhere dense closed analytic subset A
such that M— A is biholomorphic to C*.

2. M has an atlas {(U, «;)} which satisfies the following conditions:

(1) {(U, x:)} consists of a finite number of charts (U, &), - - -, (Un, £n)-

(2) Uy=M—-A=cC", 6,=id: U,=C"—C".

(3) ICJOIC -1. (y(i), cee, y(:l)) (y(a) e y(J)) Where y(])_Rﬂ( (t) .. _’y(:',))
eCy?, ---,yY), i.e. R is rational in y?, ..., y'D over C.

In what follows, we always take an atlas with the above properties
whenever we consider a rational compactification of C™.

REMARK. An n-dimensional compact complex manifold which satis-
fies the condition 1 in Definition 1.2 is called a compactification of C™.
In the cases n=1, 2, any compactification of C" is a rational compacti-
fication. Strictly speaking, the compactification of C' is nothing but P!
and any compactification of C* is a rational surface (K. Kodaira [2], J.
Morrow [3]). Especially, compactifications of C* were studied by Morrow
[3] in detail. Hirzebruch surfaces ¥* (k=0,1,2, ---) as well as P? are
compactifications of C2

Let R be a Riemann surface determined by an m-tuple analytic
function @ (=@,) on D, and let M be a rational compactification of C*.
We define a mapping ¢ : R— M as follows:

Suppose @, € R.

(A) If @, is a holomorphic element, &(d,)=g.(a) € C".

(B) If ¢, is a polar element or a ramified element, then for any
small >0, there exists a connected open neighborhood U,Cz '({z||x—a)|
<r})CR such that any point in U,—{@.} is a holomorphic element.

Define @(¢u)= m(ﬁ(CU,—{¢a}), where — means the closure in M.
r>0

PROPOSITION 1.1. (1) For any ¢.€ R, d(g.) is a point in M.
(2) & .‘R———»M 18 @ holomorphic mappmg
38) axd: R—>DXM, g.—(a,d(.)) is an immersion.

Proor. (1) It is sufficient to prove the proposition in the case that
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@. is a polar element or a ramified element. Suppose that @, is a polar
element, and let (@, 4,)=((¢s, - - -, ¢.), 4,) denote a representative of g,
where >0 and 4,={x||x—a|<r}CD. We may assume that ¢ is holo-
morphic in 4,—{a} and =:U,—{@.}—4.—{a} is biholomorphic, and that
the following diagram is commutative:

A

U, —{g.} cr=U,

T & K, =1d

Ar_{a}—¢’C”:’C1(U1)-

Let S=nN &(U,—{@.}). It is clear that S is not empty, so we will
r>0

prove that S consists of just one point. Suppose that S contains distinet
two points p, ¢, and that p is in U, where (U, «;) is a chart of M. Let

g0kt £ (U)—k(U), (7D, -, yD0)— (%, -~ -, y¥%),
where y§=Ri(y?, - -,y eCly?, -, y?), and let E,Ck,(U,) be the
exceptional set of R (k=1, ---, n).

If there exists a k such that @(4,—{a})CE, then &(U,—{g.})=

$(4,—{a))Cri(E,)C M—U. This means that pe SCOU,—{g.})cM—U,
which contradicts the assumption. Therefore, ¢(4,—{a})cE, for any k
and the function ¢=(Ri'(@), ---, Ri(¢)) defined on 4, is meromorphic at
a. Since pe U, ¢:4,—>C"=k,(U,) is holomorphic at a and ¢(a)=r;(p).
Then, for any neighborhood VC M of p, we have &(U,—{¢.})CV with
a suitable small »>0.

By a similar consideration, we can conclude that for any neighbor-

hood WC M of q, we can choose a suitable »>0 such that 5(CU,—{¢,,})C w.
Hence, if we take V and W such that VN W=, there exists a small

>0 such that ScHU,—{g)CV and ScHU,—{g.})CW. This is a
contradiction. Therefore, S consists of one point.

In the case that @, is a ramified element, the proposition can be
proved in a similar way.

(2) For any ¢@.c€ R, there exist a neighborhood U of ¢, an open
disk 4={t||t|<e}cC and a homeomorphism 6:U—>4 such that
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kr0Bo07(t)=(fi(t), -+, folt), fult)= ¥ Cut’, 0€ Z, (k=1, ---,m). There-

U:ﬂk N
fore, the same arguments as in (1) shows that @ : R—— M is a holomor-
phic mapping.
(3) It is apparent from (2) and the definition of = x@. q.ed.

Suppose @=®,, and take any element @,c®,. If (¢, U) is a rep-
resentative of ¢, with an open neighborhood U of a, we can regard ¢
as a holomorphic mapping ¢é:U-—M by the same arguments as the
above. Then there is an open neighborhood Uc R of @, such that U
and U are biholomorphic and the following diagrams are commutative:

A A

RoY M RoU -2 pum
! @ ! idxé
DoU, DoU.

3° Analytic continuations and singularities of n-tuple analytic functions.

Let I be a nonempty interval in R and let I: I—D be a curve in
D. Consider the Riemann surface R determined by an n-tuple analytic
function &(=9,=9,). Let R,, R, denote the Riemann surfaces deter-
mined by @, @, respectively. A curve [:I—> R is said to be an
analytic continuation along 1 if zol=I. In particular, if I[(I)CR,=
RNO" (resp. R,=RNM"), then [ is called a holomorphic (resp. mero-
morphic) continuation. When a curve [: I— D starting from ¢ € D and
a point @,€ R are given, @, is said to be analytically continuable along
[ if there exists an analytic continuation along [ starting from ¢,.

Suppose that [: I=[a,)—D is a curve such that lirlrgl l(t)=be D,

and that [ is a holomorphic continuation along I. Then we have the
following four possibilities:

(1) [ is continuable to a holomorphic element on b, i.e., there is a

curve [ :[a, B]—>O" such that |, ,=I.

(2) 1 is continuable to a polar element on b.

(38) [ is continuable to a ramified element on b.

(4) [ is not continuable to any element on b.
In each case of (1)~(3), | reaches a certain point @€ R on b. In the
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case (4), | does not reach any point in R on b. But, including the case
(4), | is said to determine a point @ on b€ D. Particularly, in the case
(3), [ is said to determine an algebraic singularity (or an algebraic branch
point) @ on be D, and in the case (4), | is said to determine a tran-
scendental singularity @ on be D. When any one of (1)~(3) occurs, [
is said to determine at most an algebraic singularity @ on be D.

Using the above concepts, we find that the n-tuple analytic function
9=90,(=R) is nothing but the set obtained by adding to 9,(=R,) all
polar elements and all ramified elements (i.e., all algebraic singularities)
which are reached by holomorphic continuations on R,.

DEFINITION 1.3. An n-tuple analytic function is called an n-tuple
algebroidal function if it is of finite sheets and every singularity is
algebraie.

We make a remark about transcendental singularities of @(=QR).
Let [ and I/ be curves in D converging to b€ D. Suppose that there
exist a holomorphic continuation ! along ! which determines a tran-
scendental singularity @ on b and a holomorphic continuation I’ along I
which determines a transcendental singularity @’ on b. Let U, U’
denote connected components in 7z Yx|0<|x—b|<r}NR, which include
terminal subarcs of I,1’ respectively. We define that w=w’ if and only
if U,=U"’ for any r>0.

We make one more remark. Let ! be a curve in D converging to
be D, and let | be a holomorphic continuation along ! which determines
a point @ on b. A connected component in z7'{x|0<|x—b|<r} (resp.
x| 0<|z—b| <r}N R4, 77Y42|0<|z—b|<7r}NR,) which includes a ter-
minal subare of [ is called an r-neighborhood (resp. a holomorphic -
netghborhood, a meromorphic r-neighborhood) of .

4° Cluster sets and transcendental singularities.

Let ! be a curve in D converging to be D, and let [ be a holomor-
phic continuation along ! which determines a point @ on b.

DEFINITION 1.4. Let 9, be the r-neighborhood of w. The set
S.=N®U,)CM is called the cluster set of & at w.

r>0

As usual, S, has the following properties.

PROPOSITION 1.2. (1) Let ¢ be any positive constant, n a positive
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integer, and U, the holomorphic ¢/n-neighborhood of @. Then

’

S.=nN&(U,)

n=1

p € M| there exists a sequence {x,} im R such that

z,€U,, lim d(x,) =p}.

Il
—

(2) S, ts closed and connected in M. Hence S, is either a set con-
sisting of one point or a set containing infinitely many points.

(8) Suppose that ! is a curve in D converging to b€ D, and that
the holomorphic continuation I’ along U determines a point @’ on b. If
w=w', then S,=S,..

(4) If o is at most an algebraic singularity, S.,=0(w).

We omit the proof.
Before classifying transcendental singularities, we show an important
example of the 2-tuple analytic funetion.

Example. Consider a 2-tuple analytic function @=(1/¥z, 1/log x)
defined on C with a transcendental singularity @ on =0, where k is a
positive integer. Let R be the Riemann surface determined by @, M
a rational compactification of C* and &: R—M the holomorphic map-
ping determined by &.

(1) In the case M=PXP.

Take an atlas {(U,, x:)}i—, on M as follows:

£, : U=CXC—C? P—r,(P)=(y,?),
£y: Uy=C X P*——C? P——k,(P)=(y, s),
ky: Uy=P* XC—C?, P——ry(P)=(v, 2),
Ky : U=P*X P*—C*? P—k,(P)=(v,s),

where P*=P—{0}, s=1/z, v=1/y. Then from

(@ ()= (v, 2)=(1/¥ =, 1/log 2),
kB (x7(2)) =y, 8)=(1/¥ =, log @),
ry(@(z (@)= (v, 2)= ¥z, 1/log z),
k(D7 (@) = (v, 8)=(¥z, log ),

it follows that S,={(0, 0)}.
(2) In the case M=2X" (Hirzebruch surface).
Take an atlas {(U;, x,)}{_, on M as follows:
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£, : Uy =C*—C", P—”CI(P) = (y’ Z),
Ky : Uy——C? P—ry(P)=(y, s),
ky: Us——C? P——ky(P)=(v, w),
£y U——C? P—k,(P)=(v, 1),

where s=1/2,v=1/y, w=y*2,t=1/w. Then from

))=(y,2)=(1/¥ =z, 1/log 2),
))=(y,8)=(1/¥ x, log x),
=, w)=¥x,1/xlog z),
D=, t)=¥x, xlogx),

it follows that S,={co}XxP"

As this example shows, if @ is a transcendental singularity, S, be-
comes either a single point set or an infinite set depending on the choice
of M. Therefore, when n=2, the concept of ordinary (or essential)
transcendental singularity has no a priori meaning. Giving attention to
this fact, we classify transcendental singularities as follows.

DEFINITION 1.5. Let @ be an n-tuple analytic function defined on
DccC. Suppose that @ takes its values at M, where M is one of rational
compactifications of C*, and that @ has a transcendental singularity w
on acD. Let S,CcM be the cluster set of @ at w.

(1) If S, consists of one point, @ is called an ordinary transcendental
singularity (briefly, ordinary singularity) with respect to M.

(2) If S, contains infinitely many points, @ is called an essential
transcendental singularity (briefly, essential singularity) with respect to
M.

According to this definition, the transcendental singularity @ of
@=(1/¥x,1/logz) on x=0 is an ordinary singularity with respect to
M=PxP, and an essential singularity with respect to M=3®,

Next we give a definition on the figure of the cluster set S,.

DEFINITION 1.6. Suppose that & and M are the same ones as in
Definition 1.5. Let @ be a singularity of @ on a €D and S, the cluster
set of @ at w. Take an atlas {(U, x;)}~, on M, and let

P K(U)—C, (W9, -+ YD) —yY.
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(1) If there are (pi)icr (I€{L, ---,m}) such that p{(r:(S.NU;))
consists of one point, then S, (or w) is said to be at most ordinary in
(k:);c-direction.

(2) If there are (pil)ier (I€{1,---,m}) such that p{(k(S.NT))
contains infinitely many points, then S, (or ) is said to be essential in
(k:);er-direction.

Note that when w is a transcendental singularity,  is ordinary if
and only if S, is at most ordinary in every direction.

The cluster set S, of ®=(1/¥z,1/logx) at the transcendental
singularity @ is at most ordinary in (v®, v¥)-direction whether M=PxP
or M=3®,

1.2. The prime factorization theorem for Op[yy, - - -, ¥.].

Let DCC be a domain, O, the integral domain of all holomorphic
functions on D, and Op[¥,, - - -, ¥.] the polynomial ring in ¥, ---,y, over
Op. A unit in Op is a holomorphic function without zeros and a prime
element in @, is a holomorphic function with a simple zero. Then a
holomorphic function with infinitely many zeros, the existence of which
is guaranteed by Weierstrass’ theorem, cannot be written as a product
of finitely many primes. This means that ), is not a Unique Factoriza-
tion Domain (UFD). Therefore Op[¥, - -, ¥.] is not a UFD. Neverthe-
less, the following prime factorization theorem holds.

THEOREM 1. (1) Every irreducible element in Oply,, ---,¥.] 18 a
prime element.

2) Any polynomial F€Oply, - -+, y.] with deg F=1 can be express-
ed as F=aF, - -F, where acOp—{0} and F;s (j=1, - --, p) are irreduci-
ble polynomials in Oplyy, - - -, Y.] with deg F;=>1.

(8) If a polynomial F €Oy, - -+, ¥.) with deg F=1 s decomposed
n two ways as F=aF,---F,=bG,---G, in the sense of (2), then a and
b are associates (i.e. there exists a unit u such that a=ub), p=q, and
F; and G; (j=1, ---,p) are assoctates by the proper rearrangement of
indices.

We will state a more generalized theorem than Theorem 1 in the
Appendix. From now on, we apply the above prime factorization theorem
to any polynomial in Op[yy, - - -, ¥.].

Let F, G€Op[Ys - -+, ¥.). If F and G have no common divisor except



Systems of rational differential equations of order m 451

units, F and G are said to be relatively prime and we write symbolically
s (F,G)=1. On the resultant R(F, G), see Theorem IV in the Appendix.

1.3. The extension E, of (E,) and the autonomous system A,.

Let DcC be a domain. Consider the following system of rational
differential equations of order =:

dy, _ Pz, Yy -+, Ya)
dx Ql(xy l/x, Sty yn)

dyn — Pﬂ(x' Yy, - '!yn)

dx Qn(x’ yly Tty yn)

’

where P, Q, €Oy, -+, ¥.) (P, @)=1 (I=1,---,n). We consider that
(E,) is defined on the total space DX C* of a fiber space &,=(DxC", pr,, D),
where pr,: DXC*——D is a natural projection.

A solution of (E,) which is guaranteed to exist by Cauchy’s theorem
is called a local solution of (E,). A local solution ¢ of (E,) determines
an n-tuple analytic function @ on D (See 1.1.). @ is called a global
solution of (BE,). Asin 1.1, let R denote the Riemann surface determined
by @. Let M be one of the rational compactifications of C*, and let
&: R—>M be the holomorphic mapping associated with @. Then, 7 X
d: R—>DXM, ¢u—>(a,d3(¢a)) is an immersion and the following dia-
gram is commutative (See 1.1.):

Q axX®

DxM

T pr

Therefore a study of the global solution @ consists of a study of
properties of R as a covermg surface over D and a study of propertles
of the immersion 7x& (in other words, propertles of the motion =X :
R——>DxM). To study the motion 7x®, we must extend (BE,) to the
system on the total space X=DX M of a fiber space & =(X, pr, D).

Let {(U;, «:)}ix, be an atlas on M which satisfies the conditions (1),
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(2), (3) in Definition 1.2. Then there exists an atlas {(U}, 6,)}™, on X with
the following properties:

Al. ClJ‘:DXl]“ 0;:id></€,' (i:]-y "',m),
ie. 0;: DXU——DXr,(U), (a, b)—>(a, £:(b)).

In particular, 6,=id : U,=DxXC*—DXC".

A2, 0;007 =id X (ksori") : (m, YD, -+, YD) —>(z, ¥, -+ -, ¥D),
Where y(i):Rii(y(i), ttty ’.ll(f;)) eC(y(i)v M) ’.l/(:;))-

From now on, we consider only the atlas which satisfies the above condi-
tions. Note that if two atlases {(U,, 6.)}r,, {(CV;, 7,)}, on X are given, the
coordinate transition between U, and C|/; (where U, NCY/,;+ &) is rational:

Tjoai—l : (xv y(i)y ) y(:;)>—)(x; y,(]l.)v MY '!//(3;));
where y'?=Qi'(y?, ---, y?) €CY?D, -+ -, yD).

Now take an atlas {(U,, 6:)}, on X. Then (E,) is regarded as an
equation on 6,(U,)=DxC".

DEFINITION 1.7. Consider a system (E,); of rational differential equa-
tions of order n defined on 6,(U,) (i=1, ---, m):

dy(i') _ P(i)(x, y(}‘)’ - y(‘i))
dx Q(;l)(xv y('{)i ) ?/(1?)

dy(:;) _ P("’i)(x’ y(i’), - y(;;))
\ dx Q('ri») (xv y(;’)’ ) y(ri)) ’

The set E,={(E,):}: is called an extension of (E,) onto X=DXM if the
following conditions are satisfied.

El. PP, QP eOoly?, -+, yP1 (PP, QV)=1 (I=1, ---,n).

E2. (E,), coincides with (E,).

E3. If U.NU,;+, the change of dependent variables y4{ =
Ri{(y%, ---,9%) (k=1, ---,n) transforms (E,); into (E,);.

The extension E,={(E,):}7~, of (E,) is uniquely constructed. To show
this, we prepare some notations.
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Notations.
Y
y =
Yo
Rit(y®, -+, y®)
YD =gox(y?) =Ri(yV)=
Rii(y®, -+, y®)

oRi  ORY
oy T ooyl

J(kjori!) =J(R") =
oRF  oR¥
o

POz, yD, .-,y
QY (x, y?, ---, ¥y

P(i)
Q(i)

P(:;)(xv y(;-)v Ct Yy y(:;))
Q(:;)(x, y(i)‘ cee y(;))

If A, BeOoly?],

A lpon) () = R ()
_ Alw Ri(y®). -, RE(y™)
B(x, Ri'(y"), - - -, B3 (y?))
- the substitution of Ri(y‘) for ¥ (k=1,.--,n).

453

Since U,=Dx U, is open dense in X=Dx M, we see that U,NU,#J

for any . By y* =R (y®), we obtain

d . L PW o
11 T ) — il 1if 4, (3)
(L1) ey = TR D e R ().
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Rewrite the right-hand member of (L1) so that the condition E1 is
satisfied. Then (1.1) becomes (E,).. Apparently (E,), is (E,). We will
check the condition E3. If U.NU,#Q, then y®=R%(y%) transforms
(E,); into the equation

(12) dixym - J(R"‘)%* RI(y),
Since U,NU;NU;+ &, we can rewrite (1.2) as follows:
dixyw=J(x,-ox;*)dix.v(*)*(x;ox,-l)(yw)
:J(xjox,-—l)J<x,oxrl>§‘;i,*'<xlox:1>o(mx;*)(y‘f))

(1) )
= Jmsori) ¥ (rior ) (r?)

Therefore, (1.2) coincides with (E,);.

REMARK. Take atlases {(U, 6.)}y, {(U; 7)) on X and let E,—
{(E.)iry, Ef={(E.);}, be extensions of (E,) onto respective atlases. If
U:NCV;+ &, then the change of coordinates y'{ =Qji(y, cen YD) (B=1,
- -+, n) transforms (E,); into (E.),.

Next we introduce autonomous systems (A,); (1=1, - --, m) which are
used to define the singularity set of (E,). Rewrite (E,); as

dy(il') _ P(li) _ Y(i‘)
dw Q(;’) X(i)

dy‘,",’ . pw _ Yo
dx Q(f;’ X ’

where X®, Y9, ..., Y9 eOy[y?], (X¥,YP, ..., Y¥)=1, which is equiv-
alent to X“=le.m.(Q7, ---,Q%). From this, we obtain an autonomous
system

de _ dy® _ _ dy® —

X(i) Y(;') Y(;i)
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on 6;(U,).

DEFINITION 1.8. Consider the autonomous system on 6,(U.):

dr _ v
dt® -

dy(i') )
_ Y({)
(A,,),; _{ dt(i)

dy(:;)
dt

— VU
=Y.

A, ={(A,);}r, is called the autonomous system associated with E,.

REMARK. Since X%, Y9, ..., Y% are determined only by the relation
(X%, Y%, ..., Y®)=1, they have ambiguities of multiplications by units.

In the following, we study the relationship between (A,); and (A,);.
For that purpose, consider a vector field

X=x0 0 yyo 0 4. 4yo 0
R A L

n

defined on 6;(U,).

PROPOSITION 1.3. Suppose U.NU;+# . Let X denote the meromor-
phic vector field on 0;(U;) obtained from X, by the coordinate transition
0{00;1. Then,

L-.-(x, y(i))
Mj‘_(x' y(j))

where Ly, M;eOp[y?] and Lj;, M;; have no zeros on 6;(U;NU,).

From this proposition, we obtain the following result.

PROPOSITION 1.4. Suppose U,NU;#. Let PecU.NU; 6.,P)=
(a, b) € DX £i(U;) and 0;(P)=(a, b') € DXk;(U;). Let (x(s), §(s)) denote the
solution of (A,); which is defined on an open meighborhood 4,CC of s=0
and satisfies the initial condition (x(0), #(0))=(a, b), where s=t. Sima-
larly, let (x/(t), §’'(t)) denote the solution of (A,); which is defined on an
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open meighborhood 4;CC of t=0 and satisfies the imitial condition
(@'(0), @'(0)) =(a, b’), where t=t". Then there exist open meighborhoods
V.cd, V,Cd; and a bikolomorphic mapping &: V,—>V,, t—>s=E(t)
such that £(0)=0 and 67" (x'(t), @¢'(t)) =0;"(x(£(t)), S(E(E))) for any t€ V.

The proofs of these propositions are easy. So we omit them.

REMARK. Let E, E, be the extensions of (E,) onto atlases
{(U,, 0}, {(CV;, 7)), on X respectively, and let 4,={(A,)}r, 4,=
{{A2),}~, be the autonomous systems associated with E,, E. respectively.
Let X, be the vector field on 6,(U;) defined by (A,);, and let X/ be the
vector field on 7;(CV/;) defined by (AZ);. Then, when U,NV,;#@, X, and
X’ have the same relation as in Proposition 1.3, (A,); and (A}); have
the same relation as in Proposition 1.4.

DEFINITION 1.9. The fiber space ¥ =(X, pr, D) is called a definition
space of (E,) when on X the extension E, of (E,) and the autonomous
system A4, are defined. The total space X is called a definition manifold

of (E,).

Note that if #=2, then there exist various definition spaces of (E,)
according to rational compactifications of C™.

1.4. The singular initial set S, the fixed singularity set @ and movable
singularities of (E,).

Let F=(X, pr, D) be one of definition spaces of (E,), {(U, 6,)}~, an
atlas on X=DXM, E, the extension of (E,), and 4, the autonomous
system associated with E,. As is stated in the definition of atlases on
X, U,=DXxU,; and 6,=id X«,, where {(U,, £;)}i~. is an atlas on M.

DEFINITION 1.10. Let
pr; : 6;(U;)=DXr;(U.)—D, (a, b)—>a.

We define S; to be the set of points (a, b) € 6,(CU;) such that the solution
(x(t), @(t?)) of (A,); defined on a set 4CC and passing (a, b) satisfies
the condition pr;({(z(t?), @(t®))| t? € 4}) ={a}.

It follows from Proposition 1.4 that 6;%(S;)=60;%S,) on U;,NU,; if
U:NnU;+2.

DEFINITION 1.11. We set
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S:C)lﬁfl(s,)
S is called the singular initial set of (E,) in X.

REMARK. The Remark after Proposition 1.4 tells us that § is
uniquely determined for the pair ((E,), X) independent of the way of
extending (E,) (i.e. the choice of an atlas on X). However, S depends
on the definition manifold X. Strictly speaking, S.’s depend on the
rational compactification M of C* except S..

The sets S; (¢=1, ---,m) and S have the following properties,

PROPOSITION 1.5. (1) S; is an analytic set in 6,(U;)CDXC™.
(2) S is an analytic set in X=DX M.

Proor. For the sake of simplicity, we omit the suffix (¢) of the
variables ¢, ¥y and the polynomials X®, Y% of (A,)..
Let (a, ) €6,(U;)cDXC" and consider an equation

dy(t) _ e
T-—- Y,(a, yl(t), ’ yn(t))

w4

dy.(t) _ ...
T_Y,.(a, Yil), -+ -, yalt)) -

Let y(t)=(ys - -+, ¥.)(t) be the solution of (1.3) which is defined on an
open neighborhood 4CC of t=0 and satisfies the initial condition y(0)=
(Y + -+, ¥.)(0)=b, and let X(t) denote the function X(a, y:(t), - - -, ¥.(t))
in t. From the definition of S, we see that (a,b)€S; if and only if
X(t)=0 on 4. Apparently the condition “X(¢)=0 on 4” is equivalent to
the condition:

!
(1.4) % =0 for any nonnegative integer [.
t=0
Moreover, (1.4) is equivalent to the following sequence of equalities:
X(a, b)=0,

(X, Y.+ +X, Y.)a b)=0,

[(Xy1v1Y1+ e +Xv11/,,Yn) Y1+Xu1((Y1)v1Yl+ e +(Yl)v Yn)+ T

18 37 FX, (Vo) Yok - +(¥.),, Vo) )@ b)=0, '

n
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Therefore S; is expressed as
Si:{(ar b) 601(CU1)| X(a? b):0v Zl(afv b)=0 (l:1! 29 31 ° ')},

where Z,€ Oply,, - - -, ¥.] denotes the (I+1)-th polynomial of the sequence
in (1.9). This means that &; is an analytic set in 6,(U;)CcDXC" (Refer
to [4]).

(2) For any %, 6,(SNU;)=S:.. Then, by (1), S is an analytic set in
X=DXM. q.ed.

REMARK. When we study S more concretely, we divide S into the
following two subsets S and T (See §2, §3.):

Si={(a, b) €0.(U.)| XV (a, b)=YP(a, b)="--=YP(a, b)=0},
T,:Si—S,,
S=00:(S),

S:c6,(U.) is the singularity set of the vector field X; (See 1.3.). ¥rom
Proposition 1.4, we see that 67(S;)=6;(S,), 0;(T:)=60;(T;) on U,NU,;
if U,NU;#@. Furthermore, the Remark after Proposition 1.4 ensure
that S and T are uniquely determined for the pair ((E,), X) independent
of the extension E, of (E,).

Suppose that § is decomposed into irreducible components as

S=uUSPyu---Uu USPyU---U U S&,

gEN oE A 0€EAy 41
where some of A4,’s (k=1, ---,n+1) may be empty sets, codim,S¥=Fk,
{S®},, is locally finite, and S¥« U S% for any S*®. Then we have
(1,7)
#(k,0)

the following

PROPOSITION 1.6. For any S%, pr(S¥®) is either a single point set
or the domain D.

ProOF. Let A denote the set pr(S%®). Since M is compact, the
projection pr: X=DX M——D is a proper holomorphic mapping. Then,
by a theorem of Remmert (See [4].), A is an irreducible analytic set in
D. If dim,A=0, then A consists of one point. If dim;A=1, then A=D.

q.ed.
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DEFINITION 1.12. (1) If pr(S%) consists of one point, S% is called
a vertical singularity set of the k-th kind of (B,). If pr(S®)=D, S% is
called a covering singularity set of the k-th kind of (E,).

(2) In the base space D, take the following subsets:

0,={¢ € D| for some SP, pr(SY)={&}},

6,={6€D—6,U ---UB,_,| for some S%, pr(S%)={&}}
k=2, ---,n+1),

6———@1U M U6n+1-

0, is called the fixed singularity set of the k-th kind of (E,), and @ is
called the fixed singularity set of (E,). A point in @, is called a fived
singularity of the k-th kind of (E,), and a point in @ is called a fized
singularity of (E,).

REMARK 1. As is noted in the Remark after Definition 1.11, S is
uniquely determined for the pair ((E,), X). Then vertical singularity
sets, covering singularity sets, fixed singularity sets are uniquely deter-
mined for the pair ((E,), X).

REMARK 2. By the definition, vertical singularity sets and fixed
singularity sets are classified into n+1 types respectively (from the first
kind to the (n+1)-th kind), and covering singularity sets are classified
into » types (from the first kind to the w-th kind).

REMARK 3. If (E,) is an autonomous system, then (E,)’s (i=1, ..,
m) are autonomous systems. Therefore, in this case, S consists of the
union of covering singularity sets, and @=(.

REMARK 4. Suppose that (E,) is a system of linear differential
equations:

dy, 1 2

dz ~ bi(x) I’Z:,lal,,,(x)y,,
w) 4

dy. 1 2

de b.(x) ;L:la"’p(x)yp’
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to take the fiber space <,=(DXC" pr,, D) as a definition space of (E,).
Therefore,

S=8,={e€ D|b¢)=0} xC™,
where b(x) :lﬁl b(x), and
0=0,={¢c D|b¢&)=0}.

The fixed singularity set @ and covering singularity sets have the
following good properties.

ProrosSITION 1.7. O 1is a discrete set in D.

Proor. Let {S,} denote all the vertical singularity sets. Since {S,}
is locally finite, @ is discrete in D. g.ed.

PROPOSITION 1.8. The number of covering singularity sets is finite.

Proor. Let {S,}.es denote all the covering singularity sets. Take
a point a € D—@ and set M,={a}XM. Then for any cc 4, M.NS,+ .
From the locally finiteness of {S,},cs, for any P¢E M,, there exists an
open neighborhood 4,C X of P such that {¢|4,NS,# @} is a finite set.
{dp}peu, makes an open covering of M,. Since M, is compact, M, is
covered by finite numbers of {4p}pcx,. Therefore, A={o| M.NS,+I} is a
finite set. qg.ed.

DEFINITION 1.13. If a global solution @ of (E,) has a singularity
on a € D—0, a is called a movable singularity of @.
1.5. Fundamental theorem.

We will study relationships among the singular initial set S, the
fixed singularity set @ and singularities of solutions of (E,).

DEFINITION 1.14. Let &% =(X, pr, D) be a definition space of (E,) and
S the singular initial set in X. If P X—S§, then P is called an ordinary
wnitial point (briefly, an ordinary pownt) tn X of (E,).

The definition of S shows us that for any ordinary initial point P,
there exists a unique local solution of E, which passes P. Furthermore,
we obtain

PRrOPOSITION 1.9. Let P=(a,b)€ X=DXM be an ordinary initial
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point. Then there exist an open meighborhood 4,CD of a and an open
neighborhood 4,CM of b which satisfies the following conditions:

0l1. 4.xXd4,cX—S8 and 4,X 4, is contained in some chart U..

02. For any (o, yo) € 4. X k:(4s)TO,(U.), let y(x)=@(x; 2o, yo) be the
solution of (E,); which passes (x, y,). Then @&(x;x%,, yo) ts an n-tuple
algebroidal function on 4.,.

ProorF. Suppose Pe U;—S. Since S;=0,(U;NS) is a closed set in
0,(U.;), there is a neighborhood W,x W,C6,(U;)CDXC" of 6,(P)=(a, ")
such that W,x W,c6,(U;)—S,;, where W,CD is an open neighborhood of
a, W,CC" is an open neighborhood of »%.

For any (x,, yo) € WiX W, let (z, y) = (t; 20, Yo) = (Po, P, - - -, Pa) (&5 Tor 30)
be the solution of (A,); which satisfies the initial condition z(0)=x,,
y(0)=y,. Then ¢ is holomorphic in the domain WX W, X W,CC"**, where
W={t| |t| <R} with a positive constant R.

Now set F(x,t, %o, ¥o) =% —o(t; %, ¥o). Then F is holomorphic in
WX WX Wy X W, and Fl(a,0,a, 5?)=0. Since P=(a,b) is an ordinary
point, we have Fl(a,t,a,b®)=a—¢t;a, b)=£0. Therefore, by the
Weierstrass preparation theorem, F' is written as

F(x,t, %o, o) =2 — Po(t; %o, Po)
=G(x, t, %o, yo)H(z, t, o, ¥o)

in an open neighborhood U=4,XAX4LX4LCW XWXW,XW, of
(a,0,a, b*). Here the following conditions are satisfied:

(1) Gz, t, 2o, o) =t*+ga(, To, Po)t* 7+ - - - + gu(@, To, Yo)-

(2) k is the order of zero of F(a,t,a, b'") at t=0.

(8) g1 ---, g are holomorphic in U'=4,X 4, X 4,.

(4) For any (Z, %, y,) € 4 X 4, X 45, G(%, t, T,, ¥,) has k zeros in 4 with
multiplicity.

(6) Hizx,t, 2y, yo) is holomorphic and has no zeros in U.

Take a point (%, y;) € 4,X 4, and consider the set of zeros in 4,X4
of F(x,t,7,7,). We can easily infer that G(z, ¢, T,, ;) ={G.(x, t)}*, where
Gi(m, t)=t"+¢.,, ()t + - - - +¢.,(x) is an irreducible polynomial in O,[t],
and p, q are positive integers with pg=£k. In addition, we find that the
inverse function of x=¢,(t; %, ¥;) is a p-valued algebroidal function
t=g¢y(x) in 4, which is determined by the equation G,(z,t)=0. Since
Go(dy)CACW and y=(¢y, - -+, ¢.)(t; Ty, ¥,) is defined in W, y=¢(x; T,, ¥,) =
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(¢, -+ -, &) (Po(); Ty, Vo) is an n-tuple algebroidal function in 4, and is a
local solution of (E,); which passes (%, ¥,). Therefore, if we set 4.=4,,
4ds=k;7'(4,), then 4, and 4, are the desired neighborhoods. q.ed.

REMARK. Let P=(a, b)€U,; be an ordinary initial point, and let
é(x; P) be a local solution of (E,); which is defined on a neighborhood
4, of a and passes 6,(P)=(a, ). In the case 1=1, ¢(x; P) is a solution
of (E,). Suppose i#1. In this case, if {6;'(x, #(x; P))|xz€ 4.} X—U,,
then ¢(x; P) cannot be continued to any solution of (E,), and if
{07 (%, §(x; P))| x € 4.}« X—U,, then ¢(x)=R"(@(x; P)) is a solution of (E,).

On an analytic continuation of a local solution of (E,), we have the
following result.

PrOPOSITION 1.10. Let I:[a, 5)—D be a curve which starts from
lla)=x, and converges to acD. Let $(x) be a local solution of (E,)
holomorphic in a mnetghborhood ACD of =z, Suppose that Q.(x, d(x))’s
(k=1, ---,n) have no zeros in 4, and that @(x) is holomorphically contin-
uable along | and determines a point @ on a, where @ 1s either a
singular point or a monsingular point (See 1.1, 3°.). Then there exists
a slightly deformed curve I of | which satisfies the following conditions:

Cl. U:[a, B)—D, lU'(a)=1,, linﬁ} U'(s)=a.

C2. ¢ s holomorphically continuable along U and determines the
same point @ on a.

C3. Let {@i(}lerasy be the holomorphic continuation of ¢ along U
and (@., 4,) a representative of .., where 4, is a sufficiently small
open neighborhood of U'(s). Then, (1) @, is holomorphic in 4, and
Q:(x, @.(2))’s (k=1, ---,n) have mo zeros in 4, (2) @, is a local solution

of (E.), (3) for any s€la, p), {(z, g.(z)|2€ 4}NS=@.

PrOOF. Let {¢is}icra,py be the holomorphic continuation of ¢ along

l and (¢, D,) a representative of ¢,,, where D, is an open neighborhood
of I(s). From the assumption on @, it follows that Q.(x, ¢.(x))#0 (k=1,
.-,m) in D, for any s€[a, 8). Then the set Z={s€[a, B)| for some £,
Qu(l(s), ¢.(l(s)))=0} is a discrete subset in [«, 8). Therefore we can
deform [ into a curve I’:[a, 8)—>D on which there exists a holomorphic
continuation of ¢ satisfying the conditions C1, C2, C3. qg.e.d.

From Proposition 1.9 and 1.10, we obtain the following theorem on
relationships between the singular initial set S and a singularity of a
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global solution of (E,).

THEOREM 2 (Fundamental theorem). Let @ be a global solution of
(E,), @ a singularity of @ on a€D and S,CM the cluster set of @ at
. Set S,=pr*a)NS.

(1) If {a} XS, contains an ordinary initial point P€ {a} XM, then
{a} X Se={P} and w is an algebraic singularity.

2) If @ is a transcendental singularity, {a}XxS,CS..

Proor. (1) Let @ be a local solution of (E,) which determines .
We may assume that ¢ is holomorphic in an open neighborhood 4 of a
certain point xz,€ D, and that Q.(x, ¢(x))’s (k=1, ---, n) have no zeros in
4. Then, by Proposition 1.10, there exists a curve [:[a, /)——D which
starts from [(a)=x,€ D and converges to a and satisfies the conditions
C2, C3 in Proposition 1.10.

If {a} xS, contains an ordinary initial point P=(a, b) € U;, then there
exists an open neighborhood 4,X4,CDX M of P which satisfies the con-
ditions 01, 02 in Proposition 1.9, where 4,={z| |t—a|<r} with »>0.
Moreover since P=(a, b) € {a} X S,, it follows from Proposition 1.2 (1) and
Proposition 1.10 that in the holomorphic r-neighborhood U, of @ there
exists a point ¢, a representative (¢, 4,) of which satisfies the follow-
ing conditions:

(i) ¢. is the terminal germ of a holomorphic continuation of some
b1 €U, along a certain curve ! in 4,.

(ii) ¢ is holomorphic in an open neighborhood 4. of c¢€ 4..

(iii) {(z, P(x))|x € 4} 4. X 4.

(iv) ¢ is a local solution of (E,).

Since R¥(¢p(x)) is a solution of (E,); which passes (c, x:(¢(c))) € 4. X k:(d5),
it follows from Proposition 1.9 that R"(¢(x)) is an n-tuple algebroidal
function in 4,. Then ¢(x) is also an n-tuple algebroidal function in 4,
and o is an algebraic singularity. Therefore {a}xS,={P}.

(2) It is obvious from (1). q.e.d.

REMARK. Theorem 2 (2) tells us that if a [-parameter family
D(x; C,, - -+, C) (1L1<n) of solutions of (E,) has a transcendental singularity
o, ---,C)onz=a(C, ---,C)€D—-0O with the cluster set S,(C,, ---, ()
and a(C,, - - -, C;) moves depending on C,, - - -, C;, then the set {a(C,, ---, C))}
XS.(Cy, - -+, C,) moves in the covering singularity sets of (E,).
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Theorem 2 is the most fundamental theorem on singularities of
solutions of (E,). In fact, we find that Painlevé’s theorem for (E,)
(Theorem « in §0), the next theorem 3 for (E,) and Kimura’s theorem
for (F,) (Theorem 7 in §4) are corollaries of Theorem 2.

THEOREM 3. Let @ be a global solution of (E,).

(1) Suppose that (E,) has no covering singularity sets. If @ has a
singularity @ on a€ D—0, then ® 1is an algebraic singularity. If @
has a singularity @ on E€0,,, then w is either an algebraic singularity
or an ordinary transcendental singularity. (Hence, if @ has an essen-
tial singularity o on E€O, then £€0,U ---UB,.)

(2) Suppose that (E,) has no covering singularity sets from the first
kind to the (n—1)-th kind. If @ has a singularity ® on a€ D—0 or
on £€0,,, then w 1is either an algebraic singularity or an ordinary
transcendental singularity. (Hence, if @ has an essential singularity @
on E€0, then £€6O,U---U0,.)

Proor. (1) Let S, denote the cluster set of @ at @. Since (E,)
has no covering singularity sets, SCOX M. Hence, if a€ D—06, then
{a} xS, contains an ordinary initial point. By Theorem 1 (1), @ on a is
an algebraic singularity. If £ €0,,,, then S;=pr*(&)NS =GEJA({P§"“)}, where

(P} is a vertical singularity set of the (n+1)-th kind such that
pr(P"*")={¢}, and A’ is a finite set. Therefore, if @ on ¢ is not an
algebraic singularity, then there exists a point P{**" €S, such that {£}x
S,={P**"}. Hence  is an ordinary transcendental singularity.

(2) By the assumption, the covering singularity sets of (E,), if
exist, are of the n-th kind. Let them be {S,},c., where 4 is a finite
set. Suppose that a is a point in D—6. If we set M,=pr*(a) (={a}X
M), then M,={(z, y)|x—a=0} is an irreducible analytic set and M,»S,
for any o€ 4. Hence M.NS,= U {P,.}, where P,, is a point in M,

t€ly

and I', is a finite set. Therefore S,=M,NS= U U {P,.} is a finite

geA t€lg
set. If a singularity @ of @ on a is not an algebraic singularity, then
there exists a point P,,€S. such that {a}xS,={P,.}]. Therefore w is
an ordinary transcendental singularity. Let & be a point in 0,,, and
M,=pr (&) (={€}xX M), then M,NS,= Lf, {@,..}, where @, is a point in
T€dg
M, and 4, is a finite set. Then S;=M;NS= U u Q. JU U {Pr*0} s
oeA tely ged’
a finite set, where {P{**"} is a vertical singularity set of the (n-+1)-th
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kind such that pr(P{**")={¢}. Therefore, if a singularity @ on & is not
an algebraic singularity, {¢§}xS,={a point}CcS; and ® is an ordinary
transcendental singularity. q.e.d.

REMARK. As will be shown in Proposition 2.1 (1) in §2, (E,) has no
covering singularity sets. On the other hand, if n=2, then (E,) has
covering singularity sets in general. Moreover, the larger n becomes,
the more various kinds of covering singularity sets (E,) has. So, by the
Remark after Theorem 2, the larger n becomes, the more possibility
there is that (E,) has movable transcendental singularities.

§2. Fixed and movable singularities of (E,).

For the equation (E,), we have two ways to define the fixed singu-
larity set @. One is the classical definition by Painlevé (See § 0.) and the
other is the new definition stated in Definition 1.12. In this section,
we shall show that these two definitions coincide and that Painlevé’s
theorem (Theorem « in §0) is a corollary of Theorem 3.

Let DCC be a domain and consider the equation

dy _ Pz, y)
(E) i Q)

with relatively prime P, Q@€ Op[y]. The equation (E,) is defined on the
total space DXC of a fiber space &,=(DXC,pr, D). As is noticed in
the Remark after Definition 1.2, the rational compactification of C is the
projective space P. Then we extend (E,) to the system E, on the
manifold X=DXxP. A fiber space ¥ =(X, pr, D) is the definition space
of (E).

As an atlas on X, take {(U,,8,), (U, 6.)}:

0,: U,=DXC—>DXC, (x,y)—(x,y),
0,: Up,=DXP*—DXC, (z,y)—>(x, v)=(z, 1]y),

where P¥*=P—{0}. The system E, is constructed as follows:
We set
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dv _ _ 2 Pla,1jv) _ — v 1P (x, v) _ Pyw, v)

dx Q(x, 1/v) vQx, v) Qulx,v)’

where p=deg,P, ¢g=deg,Q, P(z, 1/v)=(1/v")P(x,v), Q(=, 1/v)=(1/v)Q(, v)
and P, Q,€Op[v] with (P, @,)=1, we set

(El)z Z—v—_— Pz(x’ ’U) .
z  Qyx, v)

E,={(E)), (E.),} is the extension of (E,).

PROPOSITION 2.1. (1) The singular initial set S of (E,) in the
definition manifold X=DXP is written as

S={aeD|Q(a, y)=0}x{y| y€ P}
U{(a, b) e DXC| P(a, b)=Q(a, b) =0}
U{(a, oo)| Py(a, 0)=Qy(a, 0)=0}.

Therefore (E,) has vertical singularity sets of the first and the second
kinds, but does not have covering singularity sets.

(2) The fizxed singularity sets 0,, 0, and O of (E,) defined by Defi-
nition 1.12 coincide with those defined by Painlevé.

ProOF. (1) The autonomous system associated with E, is 4,=
{(Al)b (Al)z}, where

S —‘(%=Q(x, v) j—jzoz(x, v)
(A , (Ay)e .
dy _ dv _

l E—P(x, Y) —ds = Py(x, v)

Then,

S=07(S,) U8:%(S.)
={(a, b) € DXC| P(a, b)=Q(a, b) =0}
(2.1) U{(a, b) € DX P*| Py(a, 1/b)=Q.(a, 1/b) =0}
—{(a, b) € DXC| P(a, b)=Q(a, b) =0}
U{(a, o0)| Pya, 0)=Q.(a, 0)=0}

(See the Remark after Proposition 1.5.).
Suppose that (a,b) e U,—S. If a local solution of (A,), passing
0.(a, b)=(a, b) is given by x=a, y=y(t), then Q(a, y(t))=0 and y(f) is not
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a constant function. Therefore Q(a,y¥)=0 as a polynomial in y. Con-
versely, suppose that Q(a,y)=0, and take any beC. If y(t) is the
solution of dy/dt=P(a,y) which satisfies the initial condition y(0)=b, then
r=a, y=y(t) is a solution of (A,), passing (a,b). Hence we see that

Ti={a € D| Q(a, y) =0} x{y| y €C}—=S..
By similar arguments, we obtain

T,={a € D| Qy(a, v)=0} x{v|veC}—S,.
Since 07Y(T,)=0;'(T.) on U,NU, we have

(2.2) T=607(T) U6; (T,
={a € D| Q(a, y)=0} X{y| y € P}—S.

By (2.1) and (2.2), S is written as the desired form (See the Remark after
Proposition 1.5.).

For any a € D which satisfies Q(a, ¥)=0, the set {a}X{y|y€P} is a
vertical singularity set of the first kind. The set {(a, b)} which satisfies
P(a, b)=Q(a, b)=0 and the set {(a, o)} which satisfies P,(a, 0)=@Q:(a, 0)=0
are vertical singularity sets of the second kind. Consequently (E,) has
vertical singularity sets of the first and the second kinds, but does not
have covering singularity sets.

(2) From (1) and Definition 1.12, it follows that

6.={£ € D| Q¢ y)=0},

0.={§ € D—6,| for some n€C, P, 7)=Q( ) =0}
U{€ € D—6,| Pi(§, 0)=Q,(&, 0)=0},

60=0,U0..

Therefore 0, 0, @ are the same sets that are defined by Painlevé
(See §0.). q.ed.

Lastly we note that Painlevé’s theorem (Theorem « in § 0) is derived
from Theorem 3 (1), because (E;) has no covering singularity sets.

§ 3. Fixed and movable singularities of (E,).

In this section, we study the singular initial set S and the fixed
singularity set @ of (E,) in detail. Preliminaries and results are stated
in 8.1 and proofs are given in 3.2.
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3.1. The singular initial set S and the fixed singularity set @ of (E,).

Let DCC be a domain and consider a system of rational differential
equations of order two defined on DXC*%

dy _ P92
dz  F(x,y,2)Q(x, v, 2)
(E,) 4
z _ Viz, v, 2)

de Fl@,y,2)Wx,y,2)

where P,Q,V, W, FeOly, 2], (P, FQ)=1, (V, FW)=1 and (@, W)=1. By
Kodaira [2] and Morrow [3], any compactification of C* is a rational
surface. Hence it is always a rational compactification. Therefore let
us take a rational surface M which is a compactification of C* and
extend (E,) to the system E, on the manifold X=DXx M. A fiber space
% =(X, pr, D) is a definition space of (E,).

Let {(U, x:)}i~. be an atlas on M which satisfies the conditions (1),
(2), (3) in Definition 1.2. We can take the atlas so that the condition
k:(U;)=C*? is satisfied for any ¢, because M is obtained from one of
Hirzebruch surfaces ¥*® (k=0,2,8, --.) or P® by blowing up points. Let
{(U., 6.)}r-, be the atlas on X which satisfies the following conditions:

A.l. CU;:.DXU;, 0i:id><l€i (?::1, .. ',m),

i.e. 0,’ . DXU,_*DX'C,(U,) :DXCZ,
(a, b)—>(a, (b)) =(a, b;, c;).

Particularly, U,=DxXC? 6,=id: DXC*—DXC™

A2, 0,007 =id X (k;067") : (2, ¥s, 2:)—> (2, Y5, 25),
where y,=A;(y:, 2:) and z,=B;(y., 2:) with A, B;; € Cy;, z).

Then (E,) is extended to the system E,={(E,)}i, given by

dy.' — R(xv Y, zi’)

dw Fi(xy yiv zi)Qi(x* yiv zi)
(Ee);

dz; _ V‘i(xi Y, zi)

= .

dx F"(xy yi, zi) W(w, ?/n Zi)

The equation (E,); is defined on 6,(U,;)=DXC? and satisfies the following
properties: P, @i, V,, W, F,€ @D[yi, zl, (P, F.Q)=1, (V,, F; wW)=1 and
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(Qb W,):]--

In order to study the irreducible decomposition of the singular
initial set S of (E,), we consider the irreducible decomposition of
0.SNU,)=8;=S;U T; in 6,(U;)=DxC? First, we obtain the following

PropoSITION 3.1. Let F; be decomposed into irreducible polynomials
as follows:

M=

R (x, s, ).

Fi=es) I £, v) 1T 00(a, 2)

A=1 r=1

Then,
Si={x] P(x) =Qu(x) =0)
U {x| Vi(x)= Wi(x) =0}
U {x| Qi(x) = Wi(x) =0}
U{x| Fi(x)=Pi(x)=V(x)=0},
where x=(a, b;, ¢;) €60,(U;)=DXC? and
T:=[{(a, ¢;)| Qi(a, ¥;, ¢;)=0} X {w:| ¥: € C}
U {(a, b1)| Wia, b;, zi)EO}X{zil z, €C}
U{al ei(a) =0} x{(ys, )| (v, 2:) € C?}

k
U U {(@ b)I f9(a,b)=0, Pi(a, b, 2)=0}x{z| z€C)
kl
U ﬂL:Jl {(a, ¢))] 99 (a, ¢;)=0, Vi(a,y; ¢)=0}X{y:| y: € C}
u U H?9]-S,
r=1

where H? 1is the set of poimts (a,b;, c;)€0,(U,) such that there exist
holomorphic functions y;(t), z(t) defined on a meighborhood of t=0 and
satisfying the following conditions:

(1) ¥:(0)=b;, z,(0) =c..
2) h?(a, yi(t), 2:(t))=0.

dyi(t) _

——di— —P«; VV,;(G/, y,-(t), zi(t))
(3)

dzi(t) —

—dt =Q:Vila, yi(t), z:(t)).

All of the sets which constitute S; are analytic sets in DXC?. By
the same arguments as in Proposition 1.5 (1), we find that H?’s are
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analytic sets in DXC2% Then all of the sets which constitute T; are

also analytic sets in DXC?% To study the irreducible decompositions of
these analytic sets, we introduce some terminologies.

DEFINITION 3.1. (1) Let a€D. The analytic set {a}xC*cDxC?
which is irreducible and of codim.1, is called an analytic set at a of the
type V1.

(2) (i) Let aeD, and let A(y; 2) be an irreducible polynomial in

~ ///////////////> V2<g’:2>
/ -1

| 1BEd

@e) | i i i

Figure 1.
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C[y;, 2. The analytic set {a}Xx{(b, ¢:)| A(b;, ¢;)=0}C D XC? which is irre-
ducible and of codim.2, is called an analytic set at a of the type V2-a.

(ii) Let (a,c;) € DXC. The analytic set {(a, ¢;)} X {y:| ¥: € C}CDXC?
which is irreducible and of codim.2, is called an analytic set at a of the
type V2-y.

(iii) Let (a,b)€DXC. The analytic set {(a, b;)}X{z]|z € C}CDXC?
which is irreducible and of codim.2, is called an analytic set at a of the
type V2-z.

Analytic sets at a of the type V2-a, V2-y, V2-z are called analytic
sets at a of the type V2.

(8) Let aeD. The analytic set {(a, b;, ¢;)}C DX C? which is irreduci-
ble and of codim.3, is called an analytic set at a of the type V3.

DEFINITION 8.2. (1) Let A(x, . 2), Y(x,z) and Z(x, y;) be irreduc-
ible polynomials in Op[y;, 2], where deg, A>1, deg.A>1, deg, Y=0,
deg. Y=1, deg, Z=1 and deg.Z=0. The analytic sets in DXC*

{(a, b;, c;)| A(a, b;, ¢;) =0},

2

Figure 2.
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{(a, ¢))| Y(a, c.) =0} X {y:| y: € C},
{(a,b)] Z(a, b)=0}x{z| z € C},

which are irreducible and of codim.l, are called analytic sets of the type
Cl-a, Cl-y, Cl-z respectively. In general, these analytic sets are called
analytic sets of the type Cl.

(2) Let (yi, 2z:)=(é(x), ¢(x)) be a 2-tuple algebroidal function on D
.(See Definition 1.3.). The analytic set {(a, ¢(a), ¢(a))| @ € D}C DX C?, which
is irreducible and of codim.2, is called an analytic set of the type C2.

Using terminologies in Definition 3.1 and 3.2, we obtain the following

_ THEOREM 4. Irreducible components of the amalytic sets which con-
stitute S;, T; are analytic sets of the type V or the type C and as follows:

Analytic sets Types of irreducible components
{P;=Q;=0}, {V;=W,;=0}, V2-a, V2-y, C2
{Qi=W;=0} V2-2z
(Fi=P,=V,=0) V2-a, V2-y, V3 C2

V2-2
{(@, ;)] Qila, ys, c;)=0}xC Vi V2-y Cl-y
{(a, b;)] Wila, b;, z,)=0}xC Vi V2-2 Cl-z
{a] e;(a)=0}xC? \'al
)| [ O(a, b)=
{(a, b1 S (@, b) =0, _—
P;(a,b;, 2:)=0}xC
a,c;)| 9% (a, c;)=0,
(@, ¢ ¢P(a, c:) Voy

Vila, ys, €,)=0}XC

V2-a, V2-y, V3 Cl-a Cc2

7
HY Vo-2 (x) (x%)

REMARK. Irreducible components of the type V3 of H? (the above
(x)) are either the same ones as in {F;=P,=V,=0} or the sets contained
in the irreducible components of the types V2, C2 of {P,=Q;=0},
(V.=W,=0}, {@=W;=0} and {F;=P;=V,=0}. Irreducible components
of the type C2 of H? (the above (x)) are the same ones as in {P;=Q,=0},
(Vi=W.=0}, {Qi=W,=0} and {F,=P,=V;=0}. More detailed results on
irreducible decompositions will be stated in Proposition 3.6~Proposition
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3.11 in 3.2.
Suppose that S is decomposed into irreducible components as

S= U SYU U S?PU U 8§
LAY ’ o€ Ay ¢ o€ °’
where codim S*=Fk (k=1,2,8). Then we obtain the following result
for S%s.

PROPOSITION 3.2. (1) The following three conditions are equivalent:

(i) S® 4s a wvertical singularity set of the k-th kind with
pr(S%) ={a}.

(ii) For any 1, every component of 0,(S®NU,) is an analytic set
at a of the type VEk.

(iii) For an 1, a component of 6,(S® NU.) is an analytic set at a of
the type Vk.

(2) The following conditions are equivalent:

(i) 8% 4s a covering singularity set of the k-th kind.

(ii) For any 1, every component of 0,(S® NU,) is an analytic set of
the type Ck.

(iii) For anm 1, a component of 6,(S® NU,) is an analytic set of the
type Ck.

We can easily check this proposition. So we omit the proof. This
proposition means that S% is obtained by gluing analytic sets of the
same type. So a vertical (resp. covering) singularity set of the k-th
kind is called a vertical (resp. covering) singularity set of the type Vk
(resp. Ck).

Next we define some subsets in D to describe the fixed singularity
set O of (E,).

DEFINITION 3.3. Suppose that @, W, are decomposed into irreducible
components as

!

1
Q:=q:(x) II ¢'9 (=, ¥:) ﬂT_I ¥ (x, 2;)

a

,
I 9" ?(x, yi, 2).

r=1

=1 1
r r’ "
W;=w,(x) ,El w'(z, y,-)BI:I1 w'P(w, 2;) 7I211 W'D (x, s, 7).

We define the subsets 49 (j=1~4) and 4, as follows:

49 ={a| Pi(a, y), Qi(a, y) have a common divisor with deg.gl}‘
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U{a| Vi(a, y), Wia, y) have a common divisor with deg.>1}

U{a| Qi(a, ), Wi(a, y) have a common divisor with deg.>1}

Ufal Fi(a, y), Pi(a, y), Vi(a, y) have a common divisor with deg.>1},
where y=(y, z).

7=1 -

.
4?= U {a| for some ¢,;€C, ¢"7(a, ¥ ¢;)=0}

4
=1

U [J {a| for some b,€C, w7 (a,b;, z)=0}.

k
4% = L_J1 {a| for some b,€C, f¥(a,b;)=0, Pia,b, z)=0}

k!
U ﬁL_Jl {a| for some c¢;€C, g¥(a, c;)=0, Vi(a, y: c;)=0}.

y
4P = Ul {a| there exists an irreducible component A of the type V2
g
of a H? such that pr,(4)={a}},
where pr;: 6,(U,)=DXC*—D, (a, b)—a.

4; ={a| for some (b, ¢;)€C? (a,b;,c) is an isolated point of the set
of common zeros of F;, P, and V}.

Using Definition 3.3, we obtain the following

THEOREM 5. The fixed singularity set @ of (E,) is written as

@ = @1 U @2 U @3,
where

O,={al] e,(a)=0 or q,(a)=0 or w,(a)=0},
0,={ae CJ (APU 42U 49U 49)— 0O, there exist vertical singularity

sets at a of the type V2 which are mot contained in any
covering singularity sets of the type Cl},

0,={ac G 4;— 0, O,| there exist vertical singularity sets at a of
=1

the type V3 which are mot contained in any covering singu-
larity sets}.

From Theorem 3, Theorem 4, Proposition 3.2 and Definition 1.6, we
obtain the following theorem on singularities of solutions of (E,).
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THEOREM 6. Let @ be a global solution of (E,).

(1) Suppose that (E,) has mo covering singularity sets. If @ has
a singularity @ on a € D—0, then w is an algebraic singularity. If @
has a singularity @ on &€ O, then @ is either an algebraic singularity
or an ordinary transcendental singularity. (Hence, if @ has an essential
singularity @ on E€ 0O, then £€6,U6,.)

(2) Suppose that (E,) has mo covering singularity sets of the type
Cl. If @ has a singularity @ on a € D—0O or on &€ 0, then o is either
an algebraic singularity or an ordinary transcendental singularity.
(Hence, if @ has an essential singularity o on &€ 0, then &€ 6,U6,.)

(8) Suppose that (E,) has no covering singularity sets of the type
Cl-a and Cl-y (resp. Cl-2). If @ has a transcendental singularity o
on a€D—0,UB,, then ® 13 at most ordinary in (Y, - - -, Y.)-direction
(resp. (2, - - -, zu)-direction). In addition, vf all of the vertical singularity
sets of the type V2 are of the type V2-z (resp. V2-y), then transcendental
singularities on £€€0, are at most ordinary in (Y., ---, Yn)-direction
(resp. (2, -+« -, 2a)-direction).

3.2. Proofs of Propositions and Theorems.

1° Proof of Proposition 3.1.

PrOOF. For the sake of simplicity, we omit the suffix 7 of the
variables y,, z;, t; and the polynomials P, @, V;,, W,, F..

Since
dx
9T _
it QW(x, vy, 2)
(A0 & Wiy, 2
dz _
-(i?_QV(x, yy z) ’

we have S;={x| FQW(x)=PW(x)=QV(x) =0}, where x=(a, b, ¢) (See the
Remark after Proposition 1.5.). Hence, apparently,

S;={P=Q=0U{V=W=0lU{@=W=0}U{F=P=V=0)}.
We also find that

Tiz{(a, b,c)| there exist holomorphic functions y(t), z(t) defined
on a neighborhood 4CC of t=0 and satisfying the following
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conditions:
at least one of y(t), 2(t) is not a constant function,
(3.1) ¥(0)=b, 2(0)=c,
FQWia, y(t), 2(t)=0

(3.3) ) pwia, ytt), 2(t)
dat) _
(3.4) 220 —Qvia, ), 20},

We will study T; in the following. By (3.2), we see that Q(a, y(t), 2(t))
=0 or Wia, y(t), 2(t))=0 or Fl(a, y(t), 2(t))=0.

(i) If Qa,y(t),2(t)=0, then z=c¢ by (8.4). Since y(t)zconst.,
Q(a,y,¢)=0 as a polynomial in y. Conversely, suppose Q(a,y, ¢)=0 and
let y(t) be a solution of the equation dy(t)/dt=PW|a, y(t), ¢) satisfying
the initial condition y(0)=b. If y(t) is not a constant, then (a,b,c)€ T,
and if y(t)=b, then (a,b,c) € S..

(ii) Similarly, we obtain W(a, b, 2)=0 from W(a, y(t), 2(t)) =0.

(iii) Suppose that

Fla, y(t), (t) =e(a) 11 (. y(®)

=1

(A) Suppose e(a)=0. Let y(t), 2(t) be solutions of (8.3), (3.4) satisfy-
ing the condition (3.1). If at least one of y(t), z(t) is not a constant,
then (a,b,c) € T;, and if y(t)=b, 2(t)=c, then (a, b, c) € S..

(B) Suppose f“(a,y(t))=0. If y(t)zconst.,, then f“(a,y)=0 as a
polynomial in y. This implies that f is decomposed as f“(x,y)=
d(x)fi(x, y) with a non-unit d(x), which contradicts the assumption that
S@ is irreducible. Hence y(t)=b and f*“(a, b)=0. From (3.3), W(a, b, 2(t))=0
or P(a,b,z2(t)=0. The case W(a,b,2(t))=0 is reduced to the case (ii).
Since z(t)const., it follows from P(a,b, 2(t))=0 that P(a,b,2)=0 as a
polynomial in 2. Conversely assume that (a,b) satisfies f““(a,b)=0,
P(a,b,2)=0, and let z(t) be a solution of the equation dz(t)/dt=
QV{a,b, z(t)) which satisfies the initial condition 2z(0)=c. If 2(f) is not
a constant, then (a, b, c) € T;, if z(t)=c, then (a, b, c) € S..

(C) Suppose g¥(a, 2(t))=0. By the same arguments as in (B), we
find that z(t)=c and V(a,y,c¢)=0 as a polynomial in y. Conversely
assume that (a,c) satisfies g‘®(a, c¢)=0, V(a,y,c)=0, and let y(t) be a
solution of the equation dy(t)/dt=PWi{a, y(t),c) which satisfies y(0)=b.

k

0(a, 2(6) I1 k7 (a, y(t), 2(0)
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If y(t) is not a constant, then (a, b, ¢) € T}, and if y(t)=b, then (a,b,c) € S.
(D) If h'7(a, y(t), 2(t)) =0, then we define the set H'” as in Proposi-
tion 3.1.
From (i), (ii), (iii), 7; is the desired one. q.ed.

2° Preparatory propositions for Theorem 4.

In the following, we prepare some propositions for the proof of
Theorem 4.

ProrosiTION 3.3. Let

P(x’ Y, z) =p0((l}, z)yl‘l' e +pl(xv Z) € @D[y’ Z]
be an irreducible polynomial with deg,P=1=1, deg.P=1.
(1) The following (i) and (ii) are equivalent:
(i) For a point a € D, there is ¢ € C such that P(a,y, ¢)=0.
(ii) For a point a € D, either (A) or (B) occurs.
(A) For more than one of pj(a, 2)’s, the condition deg.p;(a,z)=1
holds. Those have a common divisor with deg.>1 in C[z].
The others are identically zero.
(B) For a unique one of p;(a,z)’s, the condition deg.p;(a,z)=1
holds. The others are identically zero.
(2) For any a€ D, {ce€C|Pa,y,c)=0} is a finite set.
(8) f{a| for some c€C, P(a,y,c)=0} is a discrete subset in D.

Proor. (1) Since P(x, y, 2) is irreducible, P(a, y, 2)%0 for any a € D.
Note that p,(z, 2)#0, and that some of p;(x, 2)’s are of deg,>1.
We set d={a € D| for some ce€C, P(a,y,c)=0}. Let a be a point
in D. For p,(a, 2)’s, we have the following four possibilities:
1. More than one of them are of deg,>1.
2. A unique one of them is of deg,=1. Among the others, there
are nonzero constants.
3. A unique one of them is of deg,>1. The others are identically
Zero.
4. All of them are constants. Then, among them, there are nonzero
constants.
In the case 1, if all the constants among p;(a, 2)’s are zero and all the
polynomials among them have a common divisor with deg.>1, then a € 4,
if not, then a ¢ 4. Apparently, in the case 2 or 4, a ¢ 4, and in the case
3, ac 4. From these, we obtain the desired result.
(2) It is apparent from (1).
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(3) As in (1), we set 4={a € D| for some c€C, P(a,y,c)=0}, and
set Z={a € D|a is a zero of a certain coefficient of some p;(z, 2)}.

Suppose a € 4. If a satisfies the condition (B) in (1), then obviously
a€Z. So we consider the case where a satisfies the condition (A) in
(1). In this case, a€Z or a¢ Z. Let us consider the case where a ¢ Z.
If a¢Z, then all of p,(a, 2)’s are of deg,=>1 and have a common divisor.
Let p;(@, 2) =p;.(x, 2) - - - P (%, 2) (5=0, - - -, 1) be the irreducible decomposi-
tion in Op[2]. We note that there exist p, (2, 2), - - -, Pis (¥, 2) such that
D;.»,(x, 2) is an irreducible divisor of p,(x, 2) for j=0, ---,l and p;, (e, 2)’s
have a common root ¢. Since P(x, y, 2) is irreducible, we can choose a pair,
say, p(x, 2) and p’(x, 2), out of pj,,,j(x, 2)’s so that they are not associates.
Here we define the set Z, as Z,={a € D|a is a zero of a certain coefficient
of some p;.(x,2)}. Then, a€Z, or a¢Z,. We study the case where
a¢ Z,. Let R(x) be the resultant of p(x,y) and p’(x,y). Then, the
holomorphic function R(x) on D is not a constant and R(a)=0. Hence,

a€Z,;= U {a|] a is a zero of the resultant

i,5,a,B

B s(®) =R(pia(x, 2), D6, 2))},

where (¢, j, «, B) is an ordered 4-tuple for which deg.p..=>1, deg.p; =1,

and p,.(x, 2) and p;4(x, 2) are not associates. From the above considera-

tion, we find that 4cZU Z,UZ,cD. Therefore 4 is discrete in D.
q.e.d.

PrOPOSITION 3.4. Let Bz, z), P(x,y, z) be trreducible polynomzials in
Oply, 2] such that
B(x, 2) =by(x)2*+ - - - +bi(2),
P(xv yr Z) :po(xv z)yl"l" tet +pl(xv Z),

where k=1, l=deg,P>1, deg,P=1. Let z=¢(x) be the algebroidal func-
tion defined by the equation B(xz, z)=0, and set

Z,={(a, ) € DXC| B(a, ¢)=0, P(a,y, c)=0}.

Then,

{(a, b, ¢) € DXC? B(a, ¢) =0, P(a,b, c)=0}
=Z,x{y| y € C} (the type V2-y)
U ”%JA{(a, $.(a), ¢la))| a € D}, (the type C2)

where A is a finite set and (§,(x), ¢(x)) is a 2-tuple algebroidal fumction
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which satisfies the condition P(x, ¢,(x), ¢(x))=0

Proor. If p,(x, ¢(x)) =" =plx, ¢(x))=0, then B|p,, - --, B|p,, Hence
B divides P. This contradicts the assumption. Therefore there exists
an integer s such that 0<s<I polx, ¢@)=- - =p.lx, ¢x)=
p.(x, ¢(x)) £0

We set

P*(z, y, 2)=p.(x, 2)y' "+ - - - + 12, 2).

Suppose that P* is decomposed into irreducible polynomials as

Pz, y, 2)=e(@) 11 fulo, 9) 1 ga(a ) I1 1o(a 9, 2.

B=1 r=1

Then,

{(a, b, ¢) € DXC? B(a, ¢)=0, P(a,b, c)=0}
={(a, b, ¢(a)) € DXC?| P*(a, b, ¢(a)) =0}
={(a, (a))ercle(a)=0}x{y1yec}

U {a} X{ga(a)} x{¢(a)}

{(a $(a)) € DXC| g4(a, $(a)) =0} x{y| y € C}

?C“ ||C

{(a, b, ¢(a)) € DXC?| hy(a, b, $(a)) =0},

where y=g¢.(x) is the algebroidal function defined by the equation
falz, ¥)=0. Let us study these sets in detail.

(i) Obviously, {(a, ¢(a))] e(a)=0}C Z,.

(i) Fix a point a € D, and take an ordered 2-tuple (¢, ¢.) of germs
é., ¢. which are germs of ¢., ¢ at a € D respectively. Continuing (¢., ¢.)
analytically in D as far as possible, we obtain the following result:

GLEJD{a}X{¢a(a)}X{sb(a)}:agll{(a, $.(a), $(a))| a € D},
where /4, is a finite set, (¢,(x), ¢(x)) is a 2-tuple algebroidal function.

(iii) Since gp(x, ¢(x)) =0, {(a, P(a))| gsla, ¢(a)) =0} is a discrete set in
DXC and apparently it is contained in Z,.

(iv) Let 4(B)(x)=R(B, B.) be the discriminant of B. Since B is
irreducible, 4(B)(x) is not identically zero. Take any point @€ D—{a € D]
4(B)(a)=0}. On a small neighborhood U of @, z=¢(x) has distinet holo-
morphic k& branches ¢,(x), -- -, ¢(x). Suppose that h, is written as
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h,(x,y,2)=Hy(x, 2)y"+ - - - + H,(, 2).
Let us consider the equation

o, v, i) = Halw, du@)y+ - - - + Hi (x, ()

=A(z)[Hy(x)y +- - -+ H,(x)]=0
for =1, ---, k, where A(x) €Oy is a G.C.D. of H,(x, ¢(x))
Then we see that

H,(z, §(x)).
{(a, b, ¢i(a)) € UXC? hyla, b, ¢(a)) =0}
={(a, ¢u(a)) €UXC| Ala)=0}x{y| y € C}

U U (@, g.(a), gula))la e U}

where (4,(x), ¢i(x)) is a 2-tuple algebroidal function on UcD and

1<w<r. Note that (4,(x), ¢i(x)) is analytically continuable on D and
determines a 2-tuple algebroidal function (¢,(x), ¢(x)) on D. Set

Z,,={(a, $(a)) € DXC| hy(a, ¥, ¢(a)) =0}
Then, obviously Z,,CZ,

By the above arguments, we have

{(@, b, ¢(a)) € DXC*| hy(a, b, ¢(a)) =0}
:Zz,rx{?” y€eC}

U U {(@. ¢.(a). $(a))| a € D},

where 4, is a finite set

(@, (), ¢(x)) is a 2-tuple algebroidal function
which satisfies the condition h,(z, ¢,(x), ¢,(x))
From (i)~

=0.
(iv), we obtain the desired result

g.ed.
REMARK. We obtain a similar proposition for the set of common
zeros of irreducible polynomials

Clx, y) =co(x)y*+ - - - +eulx),
P(z, y, 2) =pi(x, ¥)2"+ - - - +pl(x, ¥)

in Oply, 2], where h=1, deg,P=1, r=deg,P>1

PROPOSITION 3.5. Let P(z, v, ?), Q(x,y, 2) be irreducible polynomials
in Oply, 2] which satisfy the conditions (P, Q)

,Q)=1, deg,P=1, deg.P=>1
deg,@=1 and deg,Q=1. Then,
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{(a, b, ¢) € DXC? Pla,b, c)=Q(a, b, ¢) =0}
= U (analytic sets at a of the type V2) (the type V2)

a€dy

U U{a¢()¢ (@))] @ € D}, (the type C2)

where 4,={a € D| Pa, ¥, z), Q(a, ¥, 2) have a common divisor with deg.=
1}, 4 is a finite set and (§,(x), ¢,(x)) is a 2-tuple algebroidal function
which satisfies the conditions P(z, ¢,(z), ¢,(x)) =0, Q(x, ¢,(x), ¢,(x))=0.

PRrROOF. Suppose that P, @ are written as

P(z, y, 2) =po(x, 2)¥' +p0i(x, 2)¥' 4 - - +1u(w, 2),
Rz, ¥, 2) =qo(z, 2)y"+qu(x, 2)Y" '+ - - - +qa(z, 2).

Assume that p,. q, are decomposed into irreducible polynomials as

;ja

po@, 2) =ala) 11 B,(a 2),

d;(z, 2),

1

.
1

Ju

q(®, 2) =7 () ]

.
1]

and that- the resultant 4(z,2)=R(P,Q)(x, 2) (3£0) is decomposed into
irreducible polynomials as

e

Il
-

d(x, 2) =2Ax) TI pi(x, 2).

Apparently,
{{a, b, ¢)| Pla, b, ¢)=Q(a, b, ¢) =0}
={(a, b, ¢)| po(a, ¢)=P(a, b, c) =Q(a, b, ¢) =0}
U{(a b,c)l g ( ¢)=P(a, b, c)=Q(a, b, c) =0}
U{(a, b, ¢)| 4(a, c)=P(a, b, ¢) =Q(a, b, ¢) =0}.
Let us study the set

{(a, b, ¢)| po(a, ¢)=Pla, b, c):Q(a, b, ¢) =0}
:{(a’v b! C)Ia( ) (a b )
U U {(a,b, ¢)| (@, ¢) = Pla, b, ) =Q(a. b, ¢) =0}

From the irreducible decompositions of P(a,y,2) and Q(a, v, 2), we see
that

{(a, b, c)| (@) =Pla, b, ¢) =Q(a, b, ¢) =0}
= U (analytic sets at a of the type V2 or the type V3),

a€S2.a
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where S,, is a subset of the set {a € D| @(a)=0}. From Proposition 3.4,
we have

{(a, b, 0)| B;(a, c)=P(a, b, c) =0}
=235, X{y| y € C}
U {(a, ¢.(a), $(a))| a € D},
UEApJ_
where Z7, ={(a, ¢) € DXC| B;(a, ¢)=0, P(a,y,c)=0}, 45, is a finite set and
(@(x), ¢(x)) is a 2-tuple algebroidal function which satisfies the condition
Bi(x, ¢(x))=0, P(x, ¢,(x), ¢(x))=0. Therefore,

{(G/, br C)l ﬁj(av C) =P(a’ b1 C) =Q((l, br C) :0}
=2y, X{yl y €C}

U eUAﬁ ‘{(a, $.(a), ¢(a))| @ € D}

U (anzﬁytic sets of the type V3),

where Z,, ={(a, ¢) € DXC| gi(a, ¢)=0, Pla,y,¢)=0, Q(a,y,c)=0}, 4, is a
finite set and (¢,(x), ¢(x)) is a 2-tuple algebroidal function which satisfies
the conditions B;(x, ¢(x))=0, P(x, ¢,(x), ¢(x)) =0, Q(z, ¢,(x), ¢(x))=0.

By similar arguments for the sets {¢,=P=Q=0}, {4=P=Q=0} and
the fact that codim,{(a, b, ¢)| P(a, b, ¢)=Q(a, b, ¢) =0}<2, it turns out that

{(a@, b, ¢)| P(a, b, c)=Q(a, b, ¢c) =0}
= (U (analytic sets of the type V2 at a)

a€S,

UZ.X{y|l y€C}

U U l(e. ¢.(a), §:(a))| a € D},
where S, is a subset of the set {a¢ €D|a(a)=0 or y(a)=0 or i(a)=0},
ZZ_{ a,c IH Bila H d(a, ¢ II uila, e)=0, P(a,y, c)=0, Qa, v, C)EO}, A
is a finite set and (¢ ( ),¢U(x)) is a 2-tuple algebroidal function which
satisfies the conditions 111 B,(x, ¢.(@)) n 5,(, 4. () n (3, §.(2)) =0,

P(z, ,(x), $,(%) =0, Qx, §,(2), ¢.(x))=
Since 4,=S.U{a € D| for some c€C, (a,c)€ Z;}, the desired result is

derived. q.e.d.

3° Proof of Theorem 4.

Theorem 4 is reduced to the following Proposition 3.6~Proposition
3.11.
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PROPOSITION 3.6. Putting

dy,p,0,=1a € D| Pi(a, y:, z) and Qi(a, y;, ) have a common
divisor with deg.=1},

we have

{(@, b;, ¢;) € DXC?| Pi(a, b, ¢;) =Qi(a, b;, ¢;) =0}
= U (analytic sets at a of the type V2) (the type V2)

ae Az Q
{(a, ¢,(a), ¢.(a))| a € D}, (the type C2)

'u

i

BN

ll€

where A is a finite set and (¢,(%), ¢,(x)) is a 2-tuple algebroidal function
which satisfies the conditions Pi(x, ¢,(x), ¢.(x)) =0, Q:i(®, ¢,(x), ¢,(x))=0.

Proor. Suppose that P, and Q; are decomposed into irreducible
components as

h h! X4
P;=p;(x) aI:Ilp“-"(x Vi) ﬂI=I1 P (x, ) 7I=Il "Dz, Yi, 2),
1 14 144
Qi=0q:(x )ag q'P(, y.)ﬂg1 q'?(x, 2) Lllq”‘f’(w, Y, %).
Then,
{P,=Q,;=0}
={p;=Q;=0}U {g;=P; =0}
U U {pP=¢9"=0lU H;{ PP =q'P =0}
uy {pP=q"7P=0}U Y PP =q'?=0}
U U {p/(ﬁ)_q/(ﬁ)_o}u U {p’(ﬁ)__q/l(‘r)._()}
U U (p"?=¢@=0}U U{ "o =q'® =0}
U U { Il(7)_qll(7')__0}
7,7’
Set

65, o,={a € D| p;(a)=0 or g:(a)=0},

6%.0,= U {a€D| p"?(a, y: 2) and "7 (a, y;, z) has a common
7,7’

divisor with deg.=1}.
Y% 0, = U {(a, b;) € DXC| p'?(a, b)) =¢'¢"(a, b;) =0},

Y;z’p o= U {(a, b;) € DXC| p'P(a, b;) =0, ¢"P(a, b;, z;) =0}
U U {(a, b) € DXCl q¥(a, b) =0, p"7(a, b, 2)=0},
a,T
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Zi%r0,= U @ c)eDXClp"Pla, c) =" (a, c;) =0},
VAR U {(@, ¢) e DXC| p"P(a, ¢) =0, ¢"V(a, ¥, c;) =0}
U ﬂLJ {(a’r cl) e DXC' q,(f) (a’y ci) :07 p//({) (a’y yi: ci) EO};
s

2
0s.7,.0,=04% o, U O o,
2
YZ,Pi,Qi— Yz P;,Q; U Yé,)}g,oi,
( 2
Zz,,,i,Qi_Zz_;,z,Ql UZ&

By Proposition 3.4 and 3.5, we obtain the following result:

{(a’ big ct)l Pi(av biv ci) =Qi(a, bt‘y ci) :0}
= U (analytic sets at a of the type V2)

@€62,P,,0; '
(the type V2)

U Yo p,.e X{z| z€C} (the type V2-2)

UZ;,p,0,X{y| y€C} (the type V2-y)
(the type C2)

U U {@ ¢.(@) ()| a€ D),

where / is a finite set and (g4, (%), ¢,(x)) is a 2-tuple algebroidal function

which satisfies the conditions Pi(z, ¢,(%), ¢,(x)) =0, Qi(x, ¢,(x), ¢,(x))=0.
Since

AzxpitQizez,Pi’Qi
U{a € D| for some b;€C, (a,b) € Yyp.0}
U{a € D| for some c;€C, (a,¢:) € Zyp,0.},

we obtain the desired result. g.ed.

We obtain similar propositions for the sets

{(a, b;, ¢;)| Vi(a, b, ¢;) = Wila, b;, ¢;) =0},
{(a, b, ;)| Qi(a, by, ¢.) = Wi(a, b, ¢;) =0}.

PROPOSITION 3.7. Putting

4y, r,={a € D| Fi(a, ¥;, z), Pia, y;, 2,) and Via, v, 2)
have a common divisor with deg.=>1},

we have

{(@, b, c))| Fi(a, b;, ¢;) =Pi(a, b, ¢;) = Vi(a, b;, ¢;) =0}
= U (analytic sets at a of the type V2) (the type V2)

GEAZ,Fi
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U (analytic sets of the type V3) (the type V3)
U U {(a, ¢.(a), ¢.(a))| a € D}, (the type C2)
g€

where A is a finite set and (4,(x), ¢,(x)) ts a 2-tuple algebroidal Sunction
which satisfies the conditions Fi(x, ¢,(x), ¢.(2)) =0, Pi(x, ¢,(2), ¢, (x x))=0
and Vi, ¢,(x), ¢.(x))=0.

ProoF. Suppose that P; and V, are expressed as
P,=R.P!, V=RV, (P, V)=
where R;, P!, Vi€ Oply;, z]. Then,
{F,=P,=V,=0}={F,=R,=0}U{F,=P/=V/=0}.

Since (F, R;) =1, it follows from the same arguments as in Proposi-
tion 3.6 that

{Fl:Rlv:O}
= U (analytic sets of the type V2 at a)

a€43,F, R,

uuy {(a, g.(a), ¢,(a))| a € D},

where 4,7z ={a € D|F;(a,y:,2) and R(a,y:; z) have a common divisor
with deg.>1}, 4, is a finite set and (4,(x), ¢,(2)) is a 2-tuple algebroidal
function which satisfies the conditions F(z, ¢,(x), &,(x)) =0, R;(x, ¢,(), ¢.(x))
=0.

By similar consideration, we find that

{F;=P!=V!=0}
={P/=V/=0}N{F;=0}
= U (analytic sets at a of the type V2)
aedé'Fi
U (analytic sets of the type V3)
uu {(a, ¢.(a), ¢.(a))| a € D},
o€y

where 4; . ={a € D| Fi(a, y., 2:), Pi(a,y:, z) and V/(a, ¥, ;) have a common
divisor with deg.>1}, 4, is a finite set and (4,(x), ¢,(x)) is a 2-tuple
algebroidal function which satisfies the conditions Fi(z, ¢,(x), ¢,(x)) =0,
Pi(z, ¢.(z), $.(x))=0 and Vi(z, ¢.(x), §,())=0.

From these facts, we obtain the desired result. g.e.d.

PROPOSITION 3.8. Suppose that Q; is decomposed imto irreducible
components as
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] l 14

Qi=q,(z) 11 ¢9(x, v:) I1 ¢D(x, 2) 1 ¢"D(, ¥, 2:).

a=1 p=1 r=1
Set
6..o,={a € D] g;(a) =0},
v
Zue,= U {(a, ) € DXC| "% (a, ys, ) =0},
=1

and let z;=¢®(x) be the algebroidal fumction defined by the equation
¢’ (x, 2)=0. Then, we have

{(a, ¢;)| Qi(a, ¥;, ¢) =0} X {y:| v: € C}

=00, X{(¥: 2)| (v, 2:) € CY (the type V1)
U Zs,0, X{¥:| ¥:€C} (the type V2-y)
I
Uy {(a, ¥ (a))| @ € Dy x{y;| y; € C}. (the type Cl-y)

Proor. From

1 I I
Qila, ¥i, ¢;) =qi(a) T1 ¢ (a, ¥:) gjlq"?’(a, ¢.) I ¢"V(a, yi, ¢;) =0,

a=1 r=1

it turns out that g¢(a)=0 or ¢'®(a,c;)=0 or ¢"V(a,y. c;)=0, because
9‘?(x, y) is irreducible (=1, - - -,1). Then {(a, ¢;)| Qi(a, ¥:, ¢.) =0} X {y;| ¥: € C}
is written as the desired form. q.e.d.

In a similar way, we obtain the following

PROPOSITION 3.9. Suppose that W, is decomposed imto irreducible
components as

W =w;(x) I w'P (, ;) H w'P(x, 2;) H1 w" (@, ¥, 2:).
a=1 B=1 =
Set
6.w,={a € D| w;(a) =0},
Yow,= U {(@ b) € DXC| w"D(a, b,, 2) =0},
r=1

and let y,=¢'C(x) be the algebroidal fumction defined by the equation
w'P(x, y;) =0. Then, we have

{(a” bz)l I/V:'(a’» biv zi) EO} X{ztl zi e C}
=0.w, X{(¥;, )| (:, 2:) €C?} (the type V1)
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UY.w X{zl 2.€C} (the type V2-2)
U U {(@ ¢9@)laeDixlal n€Cl.  (the type Cl-2)

Furthermore, we obtain the following two propositions.

PROPOSITION 3.10. (1) The sets

{(@, b)] f9(a, b)=0, Pi(a,b;, z:)=0},
{(a, c))| 9¥(a, c.) =0, Vi(a, ¥, c:) =0}
are discrete subsets in DXC.
(2) The set {(a,b)| f(a,b)=0, P,(a, b, z)=0}X{z| 2:€C} 1is ¢ union
of analytic sets of the type V2-z.
Similarly the set {(a,c)| g9 (a, ¢;) =0, Vi(a, ¥, ¢.)=0} X{y:| v:€C} is a
unton of analytic sets of the type V2-y.

Proor. (1) We prove only the case of {(a, b))| f'¥(a, b)) =0, Pi(a, b;, z)=
0}. Let us recall the prime decomposition of P; supposed in the proof of
Proposition 3.6:

h h’ h”
Pi=pi(a) T1 p¥(x, y:) 1L "0 (x, ) 1 p"P(®, ¥, 20).
a’=1 A= 7=
Noting that p’*#(x, z;) is irreducible, we see that

)| fP(a, b)=0, Pia,b;, z:)=0}
) f9(a, b) =pi(a) =0}
{(0« b)| f¥(a, b)=p'"(a, b)) =0}

S

{(a,
={(

a,

S

C’. nC"

oy
U {(a, b))| f9(a, b)=0, p""V(a,b;, 2)=0}.

<
i
-

Obviously {(a, b;)| f'@(a, b)) =pi(a) =0} is discrete in DXC. Since (f¢, p'¢”)
=1, {(a, b)| f¥(a, b)) = ‘“’(a,b) 0} is discrete in DXC. Moreover, from
Proposition 3.3 (2), (3), it follows that {(a, b;)| p”"?(a, b;, z;)=0} is discrete
in DXC, and so {(a,b)| f¥(a,b)=0, p"?(a, b, 2;)=0} is also discrete in
DXC. Therefore we have finished the proof.

(2) It is apparent from (1). q.e.d.

ProprosiTION 3.11. (1) The set H? 1is the hypersurface {(a,b; c;) €
DXC? h'D(a,b;, ¢;) =0} or decomposed into irreducible components of the
types V2, V3 and C2.
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(2) Irreducible components of the type V3 of H are either the same
sets that are obtained by the decompositions of {F;=P,=Q,=0} or the
sets contained in vrreducible components of the types V2, C2 of {P,=Q,=0},
{(Vi=W.=0}, {Q=W,=0} and {F,=P,=V,=0}.

(8) Irreducible components of the type C2 of H'? are the same sets
that are obtained by the decompositions of {P;=Q,=0}, {V;=W,;=0},
{Qi=W.=0} and {F,=P,=V,=0}.

ProOF. (1) By the same arguments as in Proposition 1.5 (1), we
find that H'? is written as

HP={(a, b, ¢) € DXC? hP(a, by, ¢) =0,
Ki(a, b, c)=0 (1=1,2,8,---)}

with infinitely many polynomials K;’s in Op[y;, z]. If h7|K, (1=1,2,3,
---), then

HY={(a, bs, ¢:)| h?(a, by, ;) =0}.

Suppose that there exists a K, such that hPYK,. Since (b7, K,)=1,
it follows from the same arguments as in Proposition 3.6 that
{(a/y bi, ci)| h(p(aﬁ bir ci) :Kll(a/r biv ci) :0}: U V(:) U U C(3)$
7€M g€y
where V' is an analytic set of the type V2, C® is an analytic set of
the type C2 and 4, is a finite set. Hence,

H?= UA [VPNn{x| Ki(x)=0, I#1}]
g€ 1
uu [C?N{x| Ki(x)=0, l+#L}],

g€ 2
where x=(a,b;,c). If K|y»=0 for any l#l, then VP N{x| K,(x)=0,

I#£0}=V%, if not, then V®N{x| K,(x)=0, l+l,} is a union of analytic
sets of the type V3 or an empty set. Similarly, C? N{x| K,(x)=0, I+1,}
is C» or a union of analytic sets of the type V3 or an empty set.
Therefore we have finished the proof.

(2) Suppose that {(a,b;, ¢;)} is an irreducible component of the type
V3 of H?. By the definition of H'?, there exist holomorphic functions
¥:(t), z(t) defined on a neighborhood of ¢=0 which satisfy the conditions:

yi(o):bn 2,(0)=c,,
D (a, yi(t), 2(t))=0,
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_‘%ﬂ:ﬂW}(a, ¥i(t), z(t))
dz(t) _ v ) )
__dt__Q. Vila, :(t), z:(2)) .

If at least one of y;(t) and z(t) is not a constant, (a,b;, ¢;) is contained
in a certain irreducible component of H? of higher dimension. Hence,
¥v:(t)=b;, z(t)=c.. Therefore h?(a,b;, ¢;)=0, P.W.a,b;c)=0 and
Q:V.(a, b;, ¢;)=0, which implies the desired result.
(8) The proof is given by the same arguments as in (2). g.e.d.
4° Proof of Theorem 5.

ProOF. From Proposition 3.2, Theorem 4 and Proposition 3.6~
Proposition 3.11, we find that

6.= U (6,.,U6,0,UB,»)

= _L::ll {a € D| e;(a) =0 or ¢;(a)=0 or w;(a)=0}
={a € D| e(@) =0 or ¢,(a)=0 or w,(a)=0},
where 0,,. ={a € D| e;(a) =0},

6,= {a € ‘61 (Az,pi,o'. U Az,vi,wi U Az,oi,wi U Az.Fi ud?ud9u 49) —0, |there

exist vertical singularity sets at a of the type V2 which
are not contained in any covering singularity sets of the

type Cl},
={ae 0 uvua2ua?U49) -0,
i=1
sets at a of the type V2 which are not contained in any

there exist vertical singularity

covering singularity sets of the type Cl},
where A(P ZAg,pi,Qi U Az,vi,wi U Az,qi.wi U Az,Fiv and

@3:{0,6 CJ 4;,—6,U @2] there exist vertical singularity sets at a
i=1

of the type V3 which do not contained in any covering

singularity sets}. q.ed.

§4. Fixed and Movable Singularities of (F)).

In this section, using the results in §3, we study the rational
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differential equation of order two:

P<w, Y, ﬂ)
(7 dy _ d
2 - )
da? dy)
Q(xy yy d_x“
where P, Q€ Oply, dy/dx], (P,Q)=1.
According to particular equations, there exist various ways of re-

writing (F,) into a system of rational differential equations. Here we
rewrite (F,) into the system

dy _
dx =
/
() dz _ Pln,y.2)
de  Q,y,2)

In the case of (Ef), it is better to take the Hirzebruch surface Y® as a
rational compactification of C? and the fiber space & =(X,pr, D) as a
definition space of (Ej), where X=DXxJ3®. Note that 3® is a manifold
obtained by gluing four copies U; (t=1~4) of C* by the following change
of coordinates:

(y’ Z) e Ulr (y’ S) E UZ» (’U, w) e USv ('U, t) E U4,
2 1
2 ot==.
v w
The extension E;={(Ej).}i-, of (Ej) onto the definition manifold X=
Dx3® is constructed as follows:

dy _
dx ?
(Ef),
dz _ Pr,y.2)
v Qx,y,2)
dy _1
( dx s
, 1
(E‘a);' éi——sz P<x’ ¥ S>_ _sq+2g‘)2(x, Y, S)

do Q( 1)” s*Qu(x, ¥, 8)

x,yy—
8



Systems of rational differential equations of order n 491

where P(z,y, 1/s)=(1/s")P.x, ¥, 8), Q(x, ¥, 1/s)=(1/s%)Q:(x, ¥, s), p=deg.P.
q=deg.Q.

eﬂ‘g

P(x,—l—,— )

dw _ 2w° _ . v

de v ( 1
Qw,v, v2>

_ 2w _ v Py(x, v, w) _ Pylw, v, w)
v vQilx, v, w)  Qslx, v, w)

\ g

where P(z, 1/v, —w/v?) = (1/v°)Ps(x, v, w), Q(x, 1/v, —w/v?) =(1/v")Ds(x, v, ),
P, and Q; do not have v as a divisor, 2p<oc<2p+deg, P, 2¢<7<2q+
deg,@, and P,, Q;€ Op[v, w] with (P, Q;)=1.

v _1
de t
( é)l Ps X, U, _1_>
dt __ p t/_ =t Py(x, v, 1)

dz Q3<x,v, % )_ Qi v,t)

where Py(x, v, 1/t) =(1/t")Pi(x, v, t), Qi(x, v, 1/t)=(1/t9)O,(x, v, t),

max(p, q+2)  (if p#q+2)

r_dengs—{gq_i_z if p=q+2) ’ q=deg,Q;=deg.Q.
The reason why we take X® as a rational compactification of C? is
that the change of coordinates: v=1/y, w=—z/y* transforms the deriva-
tive z=dy/dx to the derivative w=dv/dzx.
Let S be the singular initial set of (F,) (i.e. (). Applying Proposi-
tion 3.1 to the system Ej we find that S is written as

S=85'US".
Here,
S'={(a, b, ¢)| P(a, b, ¢)=Q(a, b, ¢) =0}
U{(a, b,d)] Pyla, b, d) =0s(a, b, d) =0}
U{(a, B, 7)| Ps(a, B, r) =Qsla, B, 7) =0}
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U{(a, B, 9)| Lila, B, 0)=Qi(a, 8, 3) =0}
b 2)=0} X{z|z€ P}

U{(a, b)| Q(a, b,
U{(a, B)| @s(a, B, w)=0} X {w| w e P},
and
{(@, b, o0)| Py(a, b, 0)=0}U{(a, 8, )| Pi(a, B, 0)=0} (if p>q+3)
§"=1 {(a, )| Py(a, y, 0)=0}x{y| y € P} (if p=g+3)

the surface {s=t=0} (if p<q+3).

Therefore, from Proposition 3.6 and 3.9, immediately we obtain the
following

PROPOSITION 4.1. Suppose that Q and @, are decomposed into irre-
ducible components as

Q=q(x) ﬁ q'“(x, y) ﬁ q' P (x, 2) l[lq”"’(x Y, 2),

[
I
o)
2.
8
= ﬁ
mi -
2
“8
®
<
= »
o
Q\
%
®
g
E-x
Q\
=
®
<
S

R
1
-
™
I
-
<
I
-

Set

6.={a € D| q(a) =0},
={a € D| P(a, ¥, 2), Q(a, ¥, 2) have a common divisor with deg.>1}
U{a € D| Pyla, v, s), Qsla, v, s) have a common divisor with deg.=1}
U{a € D| Py(a, v, w) Qs(a, v, w) have a common divisor with deg.>1}
U{e e D| P,(a, v, t), Qila, v, t) have a common divisor with deg.>1},

= U {(@, b) € DXC| ¢"(a, b, 2)=0},
r=1
rr 1
7 — *| gD q = =
Yz—rtzjl{(a, b)e DX P*| g 3<a, b,u))_O},
Z,={(a, )| a € D, P,(a, y, 0)=0},
and let y=G(x), v=G9 (x) be the algebroidal functions obtained by the
equations q'“(x, ¥) =0, ¢¢(x, v) =0 respectively. Then the singular initial
set S of (Fy) 1s written as
S=8'us”.
Here

S§'=0,x3*® (the type V1)
U U (vertical singularity sets at a of the type V2) (the type V2)

aeeé

UY,X{z| zc P} (the type V2-z)
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U Ysx{w| we P} (the type V2-w)
U U {la, G(a)) € DXP|a € D} x{z] z€ P (the type C1-2)
U U {{a, G¥(@)) € DxXP| a € Dpx fw| we P} (the type Cl-w)

UuU U {(a $9(a), ¢ (a)) € DXki(U:)=DXC*| a € D},
i=loed (the type C2)

Al is a finite set (i=1~4), (§V(x), ¢V (x)) is a 2-tuple algebroidal func-
tion which satisfies the following conditions:
Pi(z, 9 (x), ¢<o) ) =0, Q,(z, 9 (x), ¢(u)(x))—=- , (if i=1 or 3)
Pi(w, 9 (), ¢2(x))=0, Qi(w, $7(z), ¢P(@)=0  (of 1=2 or 4).
Furthermore, the set S is given in the following way:
(i) If p>q+3, then

S"=2Z,x{y| y€ P} (the type V2-y)
uu U”{(a #?@(a),0) € DX r;(U)|a€ D}, (the type C2)

AV is a finite set (1=2,4) and y=9¢% (x) (resp. v=0'9(x)) ts an algebroidal
Sfumetion which satisfies the condition:

Py, $9 (), 0)=0 (resp. Ly(x, $7(x), 0)=0).
(ii) If p=q+3, then

S§"=Z,x{y| y € P}. (the type V2-y)
(i) If p<q+3, then

S” =the surface {s=t=0}. (the type Cl-y)
From this proposition, we obtain the next proposition.
PROPOSITION 4.2. The fized singularity set @ of (F,) ts written as

6=6,U86,,
where 6, is the same set as in Proposition 4.1 and

{a€eD|ae€®; or for some bEP, (a,b)€Y,UY; and there
exist vertical singularity sets at a of the type V2 which
are not contained im any covering singularity sets of the
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6,=/ tpe CliU{aeD| (@, 0)€Z}  (if p=q+3),

{a€D|a€ @ or for somebe P, (a,b) € Y,U Y} and there exist
vertical singularity sets at a of the type V2 which are
not contained tn any covering singularity sets of the
type C1}  (of p<q+3).

In particular, (E;) does mot have the fived singularity set of the third
kind.

From the above propositions and Theorem 6, we can derive the follow-
ing

THEOREM 7. Suppose that a global solution @ of (F,) has a singu-
larity @ on a€D. Let S, be the cluster set of @ at .

(1) Suppose a€ D—O. If (F,) has no covering singularity sets,
then @ ts an algebraic singularity.

(2) Suppose p=q+3 and a€ D—0. If w is an essential singularity,
then,

{a}xS.C Q‘ {(a, G (a)) € DX P} X {z| z€ P}
U U {la, G'9(a) € DX P} {w| w e P).

Hence, any singularity on a is at most ordinary in (y,y, v, v)-direction.
If there do mot exist G (x)’s and G'¢(x)’s, then any singularity on a s
etther an algebraic singularity or an ordinary singularity.

(8) Suppose p<g+3 and ac D—B. If ® is an essential singularity,
then

{a}xS.C L’=Jl {(a, G (a)) € DX P} {z] z€ P}

U Lr_gl {(a, G¥(a)) € DX P} X {w| w € P}
U{(a, ¥, o0)| y € P}.

Hence, if there do not exist G (x)’'s and G (x)’s, then any singularity
on a is at most ordinary in (z, s, w, t)-direction. If there do mot exist
G (x)’s, G (x)’s and the surface {s=t=0}, then any singularity on a 1is
either an algebraic singularity or an ordinary singularity.

(4) Suppose a €O, If there do mot exist G'(x)’s, GP(x)’s and
vertical singularity sets of the type V2-a, V2-z, then @ is at most
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ordinary in (z, s, w, t)-direction. If there do mot exist the surface {s=t=0}
(in the case p<q+3) and the vertical singularity sets of the type V2-a,
V2-y, then @ is at most ordinary in (y, y, v, v)-direction.

(2) and (3) in the above theorem are obtained by Kimura [1].

Appendix: The prime factorization theorem for Ou[X,, - -, X,].

As is stated in Theorem 1, a prime factorization theorem holds in
Oul¥:, -+ -, ¥a]. We will prove this theorem in a more general situation.

Let Oy be the integral domain of holomorphic functions on a complex
manifold M, and let Ou[X,, ---, X,] be a polynomial ring over Oy. We
prove that if the Cousin II problem is solvable on M, then a prime
factorization theorem very similar to that in a UFD holds in Oy[X], - - -, X,],
though Ou[X;, - -+, X,] is not a UFD.

In order to prove this fact, we define a ring called w-UFD (weak
UFD) in Al. We show that a prime factorization theorem holds in any
polynomial ring over any w-UFD. Next, in A2, we show that Oy is a
w-UFD if the Cousin II problem is solvable on M. From these results,
the prime factorization theorem for Oy[Xj, ---, X,] is obvious. In A2, we
study the relationship between the prime factorization in Oy[X,, - - -, X,]
and that in Mu[X,, ---, X,], where M, is the ring of meromorphic
functions on M. We also study the relationship between the prime
factorization in C[X,, ---, X,] and that in OJ[X,, ---, X,]. Lastly, in A3,
we prove the theorems in Al and A2.

Al. Polynomial rings over w-UFD’s.

First, let us recall some fundamental definitions.

Let R be an integral domain.

If a and b are elements in R and there exists ¢ € R such that a=bc,
then it is said that b divides a (symbolically, b|a) and that b is a divisor
of a. Let 1 be the identity of R. An element u€ R is called a unit
if it is a divisor of 1. When a=bu and u is a unit, @ and b are called
associated elements, or simply accociates, and we symbolically write as
a~b.

An element a € R is said to be irreducible if it is neither zero nor
a unit and every divisor of a is a unit or an associated element of a.
An element a€ R is said to be prime if it is neither zero nor a unit and
the ideal (a) generated by a is a prime ideal. In an integral domain,
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a prime element is irreducible, but an irreducible element is not prime
in general.

Let a,, ---,a, be in B. An element d € R is called a greatest com-
mon divisor (GCD) of a,, - - -, a, when it satisfies the following conditions:

(1) d is a common divisor of a,, -, a,.

(2) If ¢ is a common divisor of a,, ---, a,, then c|d.
A GCD of a, ---,a, does not always exist, but if both d and d’ are
GCD’s, then d~d’. Elements a,, ---, a,, are said to be relatively prime
if any common divisor of a,’s is a unit.

DEFINITION I. An integral domain R is called a weak UFD (w-UFD)
if it satisfies the following three conditions:

W1. Every irreducible element in R is a prime element.

W2. Any element in R which is neither zero nor a unit is divisible
by an irreducible element.

w3. If a,, ---,a, are in R and any one of them is not zero, then
there exists a GCD of a,, - -, a,.

REMARK. Let R be an integral domain. R is a UFD if and only if
it satisfies the following two conditions:

Ul. Every irreducible element in R is a prime element.
U2. The ascending chain condition for principal ideals holds in R.

From U2, we can immediately derive the following property.

U3. Any element in R which is neither zero nor a unit is divisible
by an irreducible element.

From Ul, U2 and U3, we obtain the prime factorization theorem for E.
From this theorem, the next property is deduced.

U4. If a, --+,a, are in R and any one of them is not zero, then
there exists a GCD of a,, ---, apn.

Therefore a w-UFD is nothing but an integral domain in which the finite-
ness (any element which is neither zero nor a unit can be expressed as a
produet of finitely many primes) required by U2 is not assumed, but U1,
U3, U4 are assumed.

THEOREM I. (1) A UFD is ¢ w-UFD.
(2) A w-UFD R is a UFD 4f and only if it satisfies the following
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condition: Any element in R which is meither zero mor a unit can be
expressed as a product of finitely many irreducible elements.

(8) A w-UFD is ¢ normal ring.

From the above Remark and Theorem I, we see that a w-UFD is
an integral domain with weaker axioms than those of a UFD, and that
w-UFD’s are intermediate rings of UFD’s and normal rings. However, a
polynomial ring over a w-UFD have the following properties very similar
to those of a polynomial ring over a UFD.

THEOREM 1I. Let R be a w-UFD, and let R[X,, ---, X,] be a poly-
nomial ring in m indeterminates over E.

(1) Any polynomial f € R[X,, ---, X,] with deg f=1 can be expressed
as f=af, --f,, where ac R—{0} and fys (=1, ---,p) are trreducible
polynomials in R[X,, ---, X,] with deg f;=1.

2) If a polynomial f€ R[X,, ---, X,] with degf=1 s decomposed
m two ways as f=af,---f,=bg,---g, in the sense of (1), then a and b are
associates, p=q, and f; and g; (=1, ---, p) are associates by the proper
rearrangement of indices.

(3) RL[X,, ---, X,] its a w-UFD.

(4) If R 1is not a UFD, then R[X,, ---, X,] is not a UFD.

DErFiNITION II. Let f be a polynomial in R[X], - - -, X,] with deg f>=1.
f is said to be primitive if and only if coefficients of f are relatively
prime. In the case f=aX;'---X'* f is primitive if and only if a is a
unit.

THEOREM III. Let R be a w-UFD, Q a quotient field of R, and let
f be a polynomial in R[X,, ---, X,] with deg f=1.

(1) f is wrreducible in R[X,, ---, X,] of and only if it 18 primitive
wm R[X,, ---, X,] and irreducible in Q[X,, ---, X,].

(2) Let f=af:---f, be the prime factorization in R[X,, ---, X,] in
the sense of Theorem II. Then f=(af))---f, is the prime factorization
m QX -+, X,] in the sense of UFD. Conversely, if f is decomposed
wnto trreducible polynomials in Q[X,, ---, X,] as f=F,---F,, then f can
be decomposed into irreducible polynomials in R[X,, ---, X,] as f=af,- - -f,,
where a € R—{0}, F; and f; (=1, ---, p) are associates in Q[X,, ---, X,].

On the resultant of two polynomials f, g€ R[X,, ---, X,], we have
the following
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THEOREM IV. Let R be a w-UFD, and let
f___aOXm_I_ale_l'l- A +a’m,
g=bX"+bX"'+...+b,

be polynomials in R[X], where m=1, n=1, a,#0 and b,+0. Then, f
and g have a common divisor h€ R[X] with deg h>1 if and only if
R(f, 9)=0, where

Qg svvrrenes U 0
n
0 [ PR A
R(f, 9)=
Byevooeeeenn b, 0
m
0 Byevvveeennn b

R(f, g) is called the resultant of f and g.
A2. A w-UFD Oy.

Let M be a complex manifold, and let O, be the ring of holomorphic
functions on M. If O,=C, then, of course, Oy is a UFD. Therefore we
restricted ourself to the case ©422C in the following.

Now let O%=0x—{0}, Div(M)={divisors on M}, Div*(M)={De€
Div(M)| D=0}, and let ¢ denote the mapping Of——Div*(M), f—>
é(f)=X n,D,, where > n,D, is the divisor of zeros of f. Then we obtain

the following theorems.

THEOREM V. Suppose that f is in OF and that ¢ is surjective.

1) fis a unit in Oy 1f and only if $(f)=0.

(2) f is irreducible in Oy if and only if ¢(f)=D with an irre-
ducible hypersurface D.

THEOREM VI. Suppose that ¢ is surjective.
(1) Ox 1s a w-UFD.
(2) If there exists a divisor X, n,D,€ Divt(M) with infinitely many

nonzero n,’s, then Oy s not a UFD.
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REMARK 1. Let .M, denote the field of meromorphic functions on
M, and let ME=My—{0}. Then, ¢:0——Div*(M) is surjective if
and only if ¢: ME—Div(M), f—é(f)=(f)o—(f)=» is surjective.
Namely, surjectivity of ¢ is equivalent to the solvability of the Cousin
II problem on M.

REMARK II. Let D be a domain in C. Then ¢:(O5——Div*(D) is
surjective (i.e. Weierstrass’ theorem) and there exists a divisor > n,D,

with infinitely many nonzero n,’s. Therefore O, is a w-UFD, but not a
UFD. Similarly, it is well known that on a cylindrical domain 4=

ﬁ D;cC" whose components are simply connected, the Cousin II problem
i=1

is solvable, ie., ¢:(Of——Div*(4) is surjective and that there exists a
divisor Y n.D, with infinitely many nonzero m,’s. Therefore O, is also

a w-UFD, but not a UFD.

From Theorem II and VI, it is obvious that if the Cousin II problem
is solvable on M, a prime factorization theorem holds in Ou[X,, - - -, X.].
The relationship between the prime factorization in the w-UFD
Ou[X., - -+, X,] and that in the UFD Mu[X,, ---, X.] is given by Theorem
III. Suppose that f is a polynomial in C[X,, ---, X,]. The following
theorem shows the relationship between the prime factorization of f in
the UFD C[X,, ---, X,] and that in the w-UFD O/J[X,, ---, X,].

THEOREM VII. Let f be a polynomial in C[X,, -- -, X,] with deg f=1.

(1) f is irreducible in C[X,, ---, X,] tf and only if f is irreducible
m OdX,, -+, X.]

(2) Let f=fi---f, be the prime factorization in C[X,, ---, X,] in the
sense of UFD. Then it is also the prime factorization of fin OJX,, - - -, X.]
in the semse of Theorem II. Conversely, if f s decomposed into
irreducible polynomials in OJX,, ---, X,] as f=aF,---F,, then f can be
decomposed into irreducible polynomials in C[X,, ---, X,] as f=fi - -Sa
where f; (=1, ---, p) are irreducible polynomials in C[X,, ---, X,], and
a~1, Fi~f; (1=1, .-+, p) in OJX,, ---, X.].

A3. Proofs of Theorems.

We will prove Theorem II, VI and VII in the following.
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1°  Preparatory Propositions for Theorem II.

First we prove Theorem II in the case n=1, and as a corollary,
next we prove Theorem II in the case n>1.
Hereafter, we assume that R is a w-UFD.

PropOSITION 1. Let f be a polynomial in R[X] with degf=1. If
f=ag=>bh with a, be R and primitive polynomials g, h € R[X], then a~
b, g~h in R[X].

ProposSITION II. If f, g€ R[X] are primitive, then fg is also primi-
tive.

PrOPOSITION III. Let @ be a quotient field of R, and let f be a
primitive polynomial in R[X].

(1) If degf=1, then f is irreducible in R[X].

(2) Suppose deg f=2. If f is reducible in Q[X], then f is reducible
i R[X]. Explicitly speaking, if f=GH, where G, H are polynomials in
Q[X] with deg G=1, deg H=1, then there exist primitive polynomials g,
h in R[X] and elements a, b in Q such that f=gh, g=aG, h=>bH.

PROPOSITION IV. Let Q@ be a quotient field of R. A polynomial
SfE€R[X] s irreducible in R[X] if and only if

(1) degf=0, and f is irreducible in R
or

(2) degf=1, and f is primitive in R[X] and irreducible in Q[X].

ProprosITION V (The Case n=1 in Theorem II).

(1) Any polynomial f€ R[X] with degf=1 can be expressed as
f=afi---f, where a € R—{0} and f;’s (j=1, ---,p) are irreducible poly-
nomials tn R[X] with deg f;=>1.

(2) If a polynomial fe R[X] with degf=1 is decomposed in two
ways as f=afi---f,=bg,---g, in the semse of (1), then a and b are as-
sociates, p=gq, and f; and g; (=1, ---,p) are associates by the proper
rearrangement of indices.

(3) R[X] 2s a w-UFD.

Proor. (1) We denote by @ a quotient field of B. Note that f is
expressible as f=af, with a € R—{0} and a primitive polynomial f, € R[X].

(i) In the case deg f=1. :

Since deg f=deg f,=1, it follows from Proposition III (1) that f, is
irreducible in R[X].
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(ii) In the case deg f=2.

We decompose f, in Q[X] as f,=F,---F,, where F;s are irreducible
polynomials in Q[X]. If p=1, then, by Proposition IV, f, itself is ir-
reducible in R[X]. If p=2, then, applying Proposition III (2) repeatedly,
we obtain fy=fi---f,, where f; (j=1,---,p) is primitive in R[X] and
fi=a,F, with a,€Q. f,=a,F; implies that f; is irreducible in Q[X]
Therefore, by Proposition IV, f; is irreducible in R[X].

From the above, we obtain the desired result.

(2) By Proposition IV, f; and g; are primitive in R[X] and irreduc-
ible in Q[X]. Since fi---f, - g, are primitive (by Proposition II), a
~b and fi---f,~g:---g9, in R[X] (by Proposition I). Then, fi-:-f,=
(ug,)- - -g, with a unit € R. Since we can regard this decomposition as
that in Q[X], p=q and f;~g; (=1, ---,p) in Q[X] by the proper rear-
rangement of indices. If f; is written as f;={(a;/b;)g; with a;, b, € R, then
b;fi=a;g;. From Proposition I, we see that f;~g; in R[X] (=1, ---, D).
Thus we have finished the proof.

(8) We will check the conditions W1, W2, W3 of w-UFD in this
order.

(W1) Let f be an irreducible element in R[X], and (f)z the ideal
generated by f in R[X].

(i) In the case deg f=0.

f is a prime element in R because f is irreducible in R. We denote
by (f) the ideal generated by f in R. Now suppose g, h€ R[X] and
gh € (f)z. Then gh=fk with k€ R[X]. If we express g, h, k as g=ag,,
h=bh,, k=ck, where a, b, c€ R and g,, h,, k, are primitive polynomials
in R[X], then we obtain (ab)gh,=(cf)k, (When deg g=0, we set g,=1.
Similarly, in the cases deg h=0, deg k=0, we set h,=1, k,=1 respec-
tively). By Proposition I, ab=cfu € (f) with a unit uc R. Since f is
prime in R, one of a and b belongs to (f). We may assume that a € (f),
and that a=fd with d€ R. Then, g=ag,=(fd)g,€ (f)z. Thus (f)z is a
prime ideal.

(ii) In the case degf=1.

By Proposition IV, f is primitive in R[X], and irreducible in Q[X].
Let (f)q be the ideal generated by f in Q[ X]. Suppose that g, h € R[X]
and gh € (f)z. Then ghe (f)e. Since Q[X] is a UFD, (f)e is a prime
ideal and one of g and h belongs to (f)e. So we may assume that g=fL
with LeQ[X]. If we set g=ag, L=(b/c)l,, where a,b, ceR, g, and I,
are primitive polynomials in R[X], then we obtain ag,=f(b/c)l,, From
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(ac)g,=bf1l, Proposition I and II, it follows that go=ufl, with a unit
u€R. Then, g=ag,=(au)fl,€ (f)s. Therefore (f); is a prime ideal.

We have finished the check of W1.

(W2) Let f be an element in R[X] which is neither zero nor a unit.

(i) In the case deg f=0.

Since R is a w-UFD, there exists an irreducible element p in R such
that p|f. p is also irreducible in R[X].

(ii) In the case deg f=1.

As is shown in (1) in the present proposition, f is written as f=
afi---f, with nonzero a € R and irreducible polynomials f,, - - -, f, in R[X].
Therefore, in particular, fi|f.

Thus we have checked W2.

(W3) Take elements fi, ---,f,€ RIX]—{0}. If there is a unit u
among f;’s, then, since a divisor of a unit is a unit, % is a GCD of f;s.
Therefore, we may assume that every one of f,’s is neither zero nor a
unit.

By (1) in the present proposition, we can decompose f,’s into primes
as follows:

Si=a,fi - 'fl,kly

where a,€ R—{0} for any j, and f;, is an irreducible polynomial in R[X]
with deg f; ;=1 for any ¢ and any j (When deg f;=0, we consider f;=a,.).
If {fin oo ford oo {fou oo+, fou} include common irreducible poly-
nomials, then we pick up all of them and rename them g,, ---, g;, where
ambiguities of multiplications by units are pressed into a,’s. Moreover,
we let a be a GCD of a;’s. Then g=ag,---g, is clearly a common divisor
of f;’s. Therefore f; is written as f;=gh; with h;€ R[X] (=1, ---, D).

Suppose that s€ R[X] is a common divisor of f;’s, i.e., f;=st; with
t,e R[X] (=1, ---,p). Then we may assume that

fi=gh;=(ag.- - 9.) (b;f 11 - ‘fj,kj)
:Stj: (CSI- . ‘3,,,,,) (djtj,m+1' . 'tj'kj)'

where b;, ¢, d;€R, ab;=a,, g:---gifsiea- - Fin;=fin- - fin; and s; t;; are
irreducible polynomials in R[X] with degs;=1, degt;.=1.

(i) In the case m=0.

By (2) in the present proposition, we see that a;=ab;=cdu; with a
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unit u; € R for =1, ---,p. Then ¢ is a common divisor of a;’s. Since
a is a GCD of a,’s, ¢(=s) divides a. Therefore s divides g.

(ii) In the case m=1.

If s, is not an associate of anyone of g,’s, then it must be included
in {fiien oo fund oo Uaaen oo+, fru ) in common.  Therefore, by the
definition of ¢,’s, s, must be a member of g;’s. But this contradicts the
assumption. Thus s, is an associate of a certain g;. In the same manner,
we see that each one of s;’s is an associate of some one of g;’s. Hence
m<l and s+« +8u|gi---g;. On the other hand, a,=ab,=cd;u; with a unit
u;€R (=1, ---,p). Then ¢ is a common divisor of a;’s. Since a is a
GCD of a,’s, ¢ divides a. From these, we find that cs,---s.|ag:---g.
ie., s|g.

Therefore we have proved that g is a GCD of f;’s. q.e.d.

2° Proof of Theorem II.

Proor. (1), (2), (3). We prove (1), (2) and (3) by induction. We have
proved the case of n=1 in Proposition V. Suppose that (1), (2), (3) in
Theorem II are true in the case n=k (=1). We will check (1), (2), (3)
in Theorem II in the case n=k+1.

Since R[X,, ---, Xil=R[X,, - -+, Xu)[X4] and R[X,, ---, X,] is a
w-UFD, it follows from Proposition V that R[X, ---, X,][X,,.], i.e.,
R[X,, -+, X4,4] is also a w-UFD. We have proved (3).

Next we will show (1). For the sake of simplicity, we set
R[X,, ---, X,]=S. By Proposition V, any polynomial Fe¢ S[X,,,] with
degx,, F'21 can be expressed as F=fF,---F, where fcS—{0} and
Fys (=1, .-, p) are irreducible polynomials in S[X,,,] with degx,, F;=1.
By the assumption, f can be written as f=af;---f,, where ac R—{0}
and f;’s (j=1, ---,q) are irreducible polynomials in R[X,, ---, X,] with
deg f;=1. Therefore F' is expressed as F'=af,-- -f,F,---F, where f’s
and F;’s are irreducible in R[X,, ---, X,,,] and deg f;=1, deg F;=>1 in
X, -+, Xiy. Next suppose that F is a polynomial in S[X,,,] with
degx, F=0 and deg F=1 in X, ---,X,. Then F belongs to S=
R[X,, ---, Xi] and is expressed as F=af;---f,, where a€ R—{0} and
fi’s (j=1,--.,p) are irreducible polynomials in R[X, ---, X;] with
deg f;=1. f;’s are also irreducible in R[Xj, ---, Xi,,] and degf;=>1 in
X, -+, Xiy1e Thus we have proved (1).

Lastly, we prove (2). Suppose that F'is a polynomial in R[X], - - -, X;,.]
with deg FF’=1, and that it is expressed in two ways as F=
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aF,-.-F,=bG,---G, where a, bec R—{0}, Fys and G,s are irreducible
polynomials in R[X, ---, X,,] with deg F;>1, deg G;>=1. Classifying
Fys and G;’s, we may assume that F=af,. . -f,F,---F,=bg,---9.G.---G,,
where a, be R—{0}, [+m=p, s+t=gq, f;’s and g;’s are irreducible poly-
nomials in S=R[X,, ---, X,] with degf;=1, degg;=1, and F;s and G,’s
are irreducible polynomials in S[X,,] with degy, Wizl degy,, G, =1.
Then, by the assumption and by Proposition V, it follows that af;---f;
~bg,---g9,, m=t, F;~G, (=1, ---, m) in S[X,,.] by the proper rearrange-
ment of indices. Since af---fi=(bu)g,---¢g, with a unit u€ R, by the
assumption, we see that a~b, l=s, fi~g, (=1, ---,1) in S=R[X,, ---, X}]
by the proper rearrangement of indices. From these, we can conclude that
a~b, p=l+m=s+t=q, F;~G, (=1, ---,p) in S[X.]=R[X,, - - -, Xeu1]
by the proper rearrangement of indices. Thus we have finished the
proof of (2).

From the above arguments, (1), (2) and (3) are true for any positive
integer n.

(4) If R is not a UFD, there exists an element a € R which is reducible
but cannot be decomposed into finitely many primes. Since a cannot be
decomposed into finitely many primes in R[X, ---, X,], R[X,, ---, X,] is
not a UFD. q.e.d.

3° Proof of Theorem VI.

Proor. (1) We will show that O, satisfies the conditions W1, W2,
W3 in Definition I.

(W1) Let f be an irreducible element in Oy and let ¢(f)=D. If
g, he 0% and ghe (f), then gh=fk with k€ (O} Therefore ¢(g)+¢(h)=
é(f)+¢(k)=D+3 n,D, where ¢(k)=> n,D,. From this, we may assume

that ¢(g)=D+Y m.D,, where ¥ m,D,=0. If we set l=g/f, then 10O}

and g=f1. Since gec (f), (f) is a prime ideal. Hence f is a prime
element in Oy.

(W2) Let f€Oy be an element which is neither zero nor a unit,
and let ¢(f)=> n,D,. Putting D,=D for a suitable nonzero v, we may

set S n,D,=D+ Y n.D,, where Y n/D,>0. Since ¢ is surjective, there

exists an irreducible element g€ (% such that ¢(g)=D and f/g€Of.
Thus we have checked W2.

(W3) Suppose that fi, - - -, f. are nonzero elements in Oy and that
(f)=>n9D, (j=1,---,m). Let n,=minn?9 for any v. If we take a

Pl
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g € 0% which satisfies ¢(9)=> n,D,, then f;/jgeO% (7=1,---,m). On
the other hand, if he O} satisfies f;/h € O% for any j, then f;=hl; with
1,eO% and ¢(f;)=¢(h)+6(,) (=1, ---,m). If weset ¢(h)=2 n/D,, then
it follows from ¢(h)=0 and ¢(;)=0 that n/<minn?=n, for any v.

Therefore, g/h € O% and g is a GCD of f,, ---, f.. We have finished the
check of W3.
(2) Suppose that there exists a divisor Y n,D,€Div*(M) with infi-

nitely many nonzero w,’s. Then, since ¢ is surjective, there exists a
fe O which satisfies ¢(f)=> n,D, If f can be expressed as f=g;---¢,

with irreducible elements g¢,’s in OF then &(f ):_ij o(g;), ie., ZnuDu—-—

Zp D;, where ¢(g;)=D,. This is a contradiction. Therefore O, cannot be
j=1
a UFD. q.e.d.

4° Proof of Theorem VII.

Proor. We first note that C[X,, - - -, X,] is a subring of O [X,, - - -, X.]
and that Oy[X,, ---, X,] is a subring of O .,

C[le ctty Xn]COc[le Sty X7L]C@Cn+1-

(1) Let f be irreducible in C[X, ---, X,]. If we put @:0%,,,—>

Div*(C"*'), then @(f) is an analytically irreducible hypersurface in C"*.
Therefore, by Theorem V (2), f is irreducible in @C,,+,. Now suppose

that f is written as f=GH with G, He(OJ[X,, ---, X,]. Since we can
regard this decomposition as that in @c"“’ one of G and H, for example

G, is a unit in Oc”“‘ i.e., a holomorphic function on C**' without zeros.

Then G must be of degree zero in X, ---, X, and a holomorphic funection
on C without zeros. Thus G is a unit in (,. Hence f is irreducible in
Ol X, -+, X.].

Conversely, suppose that f is irreducible in O[X, ---, X,] and that
f is written as f=gh with g, h€ C[X,, ---, X,]. Since we can regard this
decomposition as that in OJ[X,, ---, X,], one of g and h, for example g,
is a unit in O,JX,, ---, X,], i.e, a unit in ,. Therefore g is an element
in C—{0}, ie.. a unit in C[X, ---,X,]. Then f is irreducible in
c[X, ---, X,l

(2) The first part is apparent from (1). We will show the latter
part. Suppose that f is decomposed into primes in OJ[X,, ---, X,] as
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f=aF,---F, and that f is decomposed into primes in C[X,, ---, X,] as
f=fi---f,. Since we can regard both expressions as prime factorizations
in OJX, -+, X,], by Theorem II (2), we see that a~1, p=q, F,~f;
(=1, ---,p) in OJX,, ---, X,] by the proper rearrangement of indices.
q.ed.
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