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A mathematical study of the charge simulation method I

By Masashi KATSURADA and Hisashi OxAmMoTO*

Abstract. The charge simulation method, which we abbreviate to CSM, is
one of numerical techniques to solve the boundary value problem for the
622 +L22+-'-+L22, and has been used effectively in
or] 0z, ox;,
some fields of engineering, e.g. in electrical engineering. In spite of its effec-
tiveness and popularity very little mathematical study has been done for CSM.
Actually even the convergence of CSM has not yet been established yet. Here
in this paper, we confine our analysis to a very special case where the domain
is a two dimensional disk, and establish the following facts: if the boundary
data is analytic, the error is of the order of a¥, where a is a certain positive
constant less than one and N is the number of the collocation points. This
exponential rate of convergence is rather remarkable, because usual methods
such as the finite difference method or the finite element method can offer
solutions with the error of the order of N-2 or N3,

Laplace operator 4=

§1. Introduction.

In this paper we discuss the mathematical aspect of the charge
simulation method (CSM). In applications it is experienced that CSM is
very effective in solving the boundary value problems for the Laplace
operator. Let us consider the following problem:

(L1) du=0 in 2,
(1.2) u=f on T,

where £ is a bounded domain in R™ with a smooth boundary. I is the
boundary of 2. f is a given function defined on I". We introduce the
fundamental solution E of the Laplace operator:

E(x,y)=—2lﬂloglx—yl (z,y € RY)

or

* Partially supported by the Fujukai.
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1

1
Exz y)y=—_—_——
(2, ¥) PP

(x, ¥ € RY.

We also take N points ¥, ¥,, - - -, Yy outside 2. In CSM we intend to
construct an approximation ™’ to u in the following form:

W)= ¥ QEwy)  (@eD).

Here @Q,’s are constants which are to be chosen so that u¥’ satisfies the
boundary condition (1.2) approximately. To be more specific, we take N

points x;, 2,, - -+, 2y on the boundary I', and determine the coefficients
Qs by the equations below:
(1.3) wM (x;) =1 (x;) (1=1,2,-.-,N).

This is a description of CSM. In terms of the electric field, the required
static field is approximated by the field generated by point-charges
located at w,, ---,yn. Note that the approximate solution ‘™ satisfies
the equation (1.1) exactly. In principle, this rather primitive method is
applicable to any domain of any dimension. In spite of its simple proce-
dure, this method sometimes yields very good simulation results (see, e.g.,
[1], [2]). But the mathematical proof of convergence of CSM is not so
easy as might be expected from the simplicity of its formulation.

In order to obtain a clear-cut result we consider in this paper the
following case with nice symmetry. Namely the domain £ is assumed

to be a two dimensional disk. The charge points ¥, 9., - - -, Yy are dis-
tributed evenly on some circle which is concentric to /I". The collocation
points x;, @,, - - -, xy are distributed evenly on I, too. In this situation

we prove that ™ exists uniquely and converges exponentially to the
exact solution » under a certain condition on the radii of the circles (see
§2).

We think this is a rather surprising result because other popular
methods such as finite difference method or finite element method can
approximate the solution with the error of order N ° (s is some positive
number). Although our proof covers only a very special case, there are
practical evidences of numerical results which show that CSM is very
effective even for general domains (see the final comments in §4).

This paper is composed of 4 sections. In §2 we state the theorems
which assert the solvability and convergence of CSM and we prove them
in §3. In §4 we give several remarks and comments.
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§ 2. Exponential convergence.

In this section we state the exponential convergence of u'¥’ to w in
the case where the domain is a two dimensional disk. From now on we
assume that the domain 2 is a disk with the center at the origin and
with the radius p. We denote by I' the circle which is the boundary
of . We fix a number R>p. Using the polar coordinates (r,6), we
define the charge points y, as the points in R®* which have the coordi-
nates r=R, 6=2z(j—1)/N (=1,2, ---, N). Finally we define the colloca-
tion points 2; as the points which have the coordinates r=p, 6=2r(j—1)/N
(7=1,2, ---, N).

Now we can write (1.3) in terms of @,’s as follows:

2.1) GQ=f,

where G=(Q:, Qs - -+, Qn), F=(f(2),f(®), -+, flxy) and G is an NXN
matrix with the entries ¢,;=FE(x;,y;) (1=t j<N). We are now in a
position to state the theorems:

THEOREM 1. Suppose that R¥ —p"+#1. Then we can determine u™
by (1.3) uniquely. In other words, the matrix G is nonsingular.

THEOREM 2. In addition to the hypothesis of Theorem 1, we assume
that R+1 and the boundary data f is real analytic. In this case the
exact solution u admits of a harmonic extension to some meighborhood of
Q. Hence we may assume that w is harmonic in 0Sr<r, with r,>p.
Then there are constants A>0 and a with 0<a<<1 which are independent
of N and u such that

(2.2) sup |u(x) —u'M(x)| < Aa” - sup |u(x)|.
z€Q EIEE

REMARK. If R=1, the approximate solution does not converge to
the exact solution. This would be clearly understood by observing the
following example (this example was communicated to the authors by
Prof. S. Yotsutani):
Let 2 be a domain which is not necessarily a disk such that its closure is
included in the interior of the unit circle. Then the approximate function

N N
M (x)= _1 > Q; log|x—y,| satisfies that u¥(0)= ~1 > @, log|y;| =0, no
27 i=1 2 i=1

matter what the choice of {y,} and {Q;} may be. Hence %"’ cannot
approximate a harmonic function which does not vanish at the origin.
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§ 3. Proof of the theorems.

First we define the following symbols:
o — 2ml>
W= exp<——N R
L,=E(p, Ro") (ke Z),
N-1
oM (2)= ¥ w™E(z, Rw") (2€C, pe Z).
k=0

In this section, we identify R* with C. The function ¢ (z) plays a
fundamental role in the following analysis. We first prove the following:

LEMMA 1.
_1
2r

(&)=1 N 7 1 (L)lmlgi'"” (otherwise)

EF m=p(mod N) |m| R
mezZ

log|z" — R¥| (p=0 (mod N))

Sor all z=re"’ such that r<R.

Proor oF LEMMA 1. First we note that if p=q (mod N), it holds
that

(N) — (M)

Py =Py

Case 1. (p=0 (mod N))
In this case w»=1. Hence we can compute ¢¢ as follows:

o(2)= T Blz, Ro")
t= 1 N-1

=—_— Y log|z— Ro*|
27 k=0
1 N-1

=——1log I] |2— Rw*|
2r k=0

=L jog|e" R
27

Case 2. (p=£0 (mod N))
First, we expand E(z, Ro*) as

E(z, Ro") = — 51_ log|z— Re*|
T
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N-1 {N (if =0 (mod N))

w .
k=0 0 (otherwise),
we have
o™ ()= 3 0" Elz, Ru")
k=0
_—1 o w1 i)" ing  —nk | ,—inf  nk
=or ; {logR §7<R (o™ ey )}
::zl ,,f: ‘<£> g— {emﬂw(p n)k+e—sn8w(p+n)k}
Z—V—{ 3 ( > e imN—R0 4 3 1 <L>MN+‘) i(mN+IJ)0}
4 E= 1mN mzo mN+p R €
AEEG
4z é:,, lm| \R
mezZ
Q.E.D.

ProoF OoF THEOREM 1. We see
=FE(o, R ") =L;_; (1=<1,7<N).

Hence the matrix G is cyelic:

L, L, - Ly,
G Ly, L, - Ly_,
L, L, ---- L,

Therefore we can compute the determinant as
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N-1 N-1
detG=T1 (L kaL,,)
=T 02" (o).

By Lemma 1, we know that if 1<p<N—1 and p>0, then it holds that
oM (p)>0. Hence

det G£0 & ¢ (p) 0
& R"—p"+#1
Q.E.D.

Before proving Theorem 2, we introduce norms ||, by
[9]|o,r =sUD |v(x)].
lzlsr

ProorF oF THEOREM 2. From Theorem 1, we know that if R¥ —p"+1,
then there exists the inverse G™'. In fact, we have

1 N-1 Pl 7)
=e..

NS

the (7, j)-element of G'=

To prove this formula, we verify that the matrix product G- (e;) is the
identity matrix. Namely

N

the (1, j)-element of G- (e;;)= Z Giiri

llep(k 7)

_kZLk N Ogo‘”’( )
__]__N 1 WP~ 3) N p(k—i)L .
TN W &
_ 1N o
N pr SD;,N)(p) ¢P (p)
_._1_ = P(z*:)
N nz=0
=0;; (0;; is the Kronecker’s delta).
Thus we obtain the following expression of our CSM solution:
N-1 (N
B uM@=x % wlew)er S mec jal<p).
,p=0 P )(P)

Let f. be the Fourier coefficients of f, then the solution of Dirichlet
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problem (1.1)-(1.2) can be written as follows:

(3.2) uré?)= ¥ fa ) e,
nezZ
Evaluating u(pw’) by (3.2) and substituting them into (3.1), we have
LS ( Yorn 202
(N) —_ nj »J P
(3.3) M (x) N MZ;() ﬂ;Zf,,a) ® o (0)
._.__1__N—1 ¢1(’N)(x) ,N_l (n—p)Jj
"N i oM (p) Ezf" :‘gow
N-1 . (N)
=% &8 5,
=0 @Y (p) ez
N-1 (N)
_ @ ()
-EE
N )
&7 i (p)
Consequently we can write the error function e (x)=wu(x)—u"(x) as
(3.4) e (rei?) = Ef{( > ”O_SD;N)(Teio)}.
ses”" (o)

Since ¢ is a harmonic function, we obtain by the maximum prin-
ciple

sup [¢™ (re) | 3 | fulgias
r<p neEZ

where
o _— ginb 0u"(0e’)
= R
On the other hand, by the last assumption of Theorem 2, we have
In|
35 AIS(L) [, (E2),
0

for the Fourier coefficients. At this stage we claim the following Lemma
2 concerning g\).

LEMMA 2. Put

C(R, p):max{l, %_}‘%l},



514 Masashi KATSURADA and Hisashi OkAMOTO

then we have

(3.6) 9%, =9 (ne Zz),
(3.7) ge=1+C(R,p) (n€Zz),
and for sufficiently large N,
3.8 M <
(8.8) 940 = Nlog B[ logRl (R)

8,n p N—2n N
3.9 < L NY.
(8.9) i Y n(R> (1§"’§2>

The proof of this lemma will be given later.
Now we are ready to derive the error estimate in the theorem.
Namely we have

suple™(z)|< 3 |fal0w
=|/fol g+ ”Z(IfH-If a1)gin+ E (Al 17l gs

<where m=integral part of %)

We are going to estimate each term of the right hand side. First, by
(8.5) and (3.8), we have

< 8
(3.10) lfolgo p)_m< > 1|, 7or

And by (3.5) and (3.9), we estimate the second term as follows:

S0+ B (L) Tl 2 (£

<16(L )" [lr, 3 ( :i Y.

And using
™/(t—1) (if =>1)

= (if ==1)
1/1—7) if 0<r<1)

it
<\
E3
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for t=R?/(pr,), we have

(3.11) oY (FAEHVARIPY
e () ulen, (Rl
<| 8N (L) 1l (Bfor,=1)

Ty () Wl (Blpr<).

Finally for the last term, we have

812 3 (Al s EECER AL Ny
n=m+1 /1‘0 7’0
1+C R,p (N+1)/2
S i ©0,Tq "
<A () e
By (3.10)-(3.12), we obtain the conclusion of Theorem 2. Q.E.D.

ProoF OoF LEMMA 2. (3.6) is easily seen from
oM (2)=9¢)  (n€Z).
By Lemma 1, we see that
lpW(2)| <@ (l2])  (n¢ NZ={IN;le Z}),
and this leads to g)<2 if n¢ NZ. And for n€ NZ we see directly

sup | (2 1%—1 max{| log(R" —o")|, | log(R¥+p")|}

lzl<p

and this leads to g <1+C(R, p). Hence we have (3.7).
To prove (3.9), we write g\, as

ing o (N) (N 6
g%segggﬂle ou(0) —a" (0e”)|
T o™ (o)

As for the denominator we can see

oozl (L) (1=n=)
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by Lemma 1. On the other hand, if N is so large that (o/R)¥<1/2,
then we have for the numerator

; 2N N
ind (N) (N)( ppif o
Sup (e (o) — i (0e”)| < (N— n)<R> :

In fact,

|eim9€0(N)( ) (N) 18

— l <"ﬁ>l ! mo nnﬁ
i &, Im|\R
N 1 (ﬁ)mﬂ inf __ ,i(IN+n)6 1 _P__)m_” inf __ ,—i(IN—n)6
47;’ z=21{lN+n r) e )+lN—n<R (€™ —e )i

gzl_\jr g‘i { lN1+ n(%)””” + lNl— n(%>m_”}

:ﬁ_—ﬁ<%>}l—n l;il {l];/'\[_-‘*—,r;<%>(l—l)N+2n+ _lzjv_-__,);/(%)(l—l)}l}
=) UHE)IEG)
=_L<ﬁ>”’"}ﬂm
2r(N—n) \R —(o/R)"
N-n
Sl s)
Hence (3.9) is true for large N.
(8.8) can be proved similarly. Q.E.D.
§4. Remarks.

Although we assumed the boundary data f is real analytic in this
paper, we shall show in a forthecoming paper that the convergence takes
place under a weaker regularity condition that the Fourier series of f
is absolutely convergent. Moreover it is easy to show that if f,=0(|n|™®)
(as |n]—oo) for some a>1, then it holds that |u—u™|,=0O(N"**) (as
N—oo). We shall also show that the CSM works in such domains as an
exterior of a circle or an annular domain. We shall also consider
Neumann problem. In the CSM, the approximate solution %™ is rep-
resented by a linear combination of concrete functions, so we can
compute its derivative grad #¥ directly. And when we take grad u™
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as an approximation of gradu, we can easily get an error estimate for
the first derivatives. We carried out numerical experiments to see all
these results. These will be given in the forthcoming paper.

Remark on the case of general domains: if 2 is a general domain, our proof
does not work. However, in this connection, the following idea, which
is used by Takahasi and Mori [3] in the error analysis of numerical
quadrature, is worthy of notice. Let us regard the solution u as a real
part of an function g({), which is analytic in a domain D. We assume
that 2 is compactly contained in D, i.e., the closure of 2 is contained in
D. Let C be a contour which lies in D but contains 2 in its inside.
For each ¢=1,2, -.., N, we define @,, by

N
gll()gllxp_yjl'Q:',q:aN (1§p§N)

Note that @,, are determined only by the geometrical data. We denote
by g(2) an analytic function whose real part is u(z). Then we have

_ 1 9(¢)
9(e)= 27:1350 -z °

and

u(z)=Re( % Q. loglz—y| o) -2 ar),

ija=1 2r1 Jo {—x,

Therefore we can represent the error function ¢*’(z) as follows:
e (s)=Re—{ O™(z 0)gl0)dz,
2m1 Je
where

1

—2

N
O™z, Q)= = X Qi loglz—yyl-

q

This formula is useful because we have only to estimate @™(z, {),
which is independent of particular solution %({). We can obtain an error
bound by estimating @*'. The proof of Theorem 2 was first given in
this way and later rearranged as in Section 3, for when we can apply
Fourier series, it is a little simpler to use them in the proof. We con-
sider that in general cases that the domain does not have a radial
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symmetry, although its analysis might be difficult, the method described
above is of some use.
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