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By Reiji KonNO

There is an abundant literature about the non-existence of positive
eigenvalues of the Schrédinger operator or more general second order
operators. However, not so many papers were found which dealt with
the same problems considered on non-Euclidean manifolds (e.g. [4], [5],
[6]). Recently, T. Tayoshi [11] investigated the spectrum of second
order elliptic differential operators on noncompact Riemannian mani-
folds. He laid very general conditions on the coefficients and the
metric, and, as one of notable results, he showed the non-existence of
eigenvalues in a half line (3E, o0) by giving the growth order of non-zero
eigenfunctions.

The present article treats the special case that the metric is spheri-
cally symmetric and the operator is —A-+q(x). In this case however,
we can offer another simple approach making the conditions slightly
relaxed and concrete.

The main part of the proofs are described in an abstract manner.
A part of the methods used there originates mostly from S. Agmon’s
works, especially from [1]. Furthermore, K. Masuda’s work [7] [8] gives
a great suggestion on developing the abstract theory.

The author would like to thank Professor H. Fujita for kind and
valuable advice.

§1. Assumptions and theorems.

Let M be an n-dimensional Riemannian manifold (n=2) of the
structure

M=(r,, o) X S"'={(r, ) |7 € (1), ), w € $*7!}

with the metric
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ds*=dri*+p(r)d§

where d3 is the ordinary line element of n—1 dimensional unit sphere
S$*7 and p(r) is a non-negative twice continuously differentiable function®.
Then, the Laplace-Beltrami operator on M is expressed as

A= L (i) Ly
ot or or 0

where 4 is that on $*%.

We use the following notations throughout this paper: x denotes a
point of M, g(x) is a measurable real-valued function® defined on M, 2 is
a constant and f(x) is the real-valued solution® of the Schrédinger-type
equation

(1.1) —Af+qf=2f on M (in the sense of distribution)

which belongs® to H%.(M) and does not vanish identically in any neigh-
bourhood of infinity. Moreover, we denote by a topside or superior dot
the (ordinary or partial) derivative with respect to » and by a superior
—1 the reciprocal number. Further, the expression ‘(r—oco, unif.)”
should be read as ‘“uniformly on S*! as r—oco0”.

ASSUMPTION, . p € C?((ro, o)) while p(r) is monotone increasing and
diverging.

ASSUMPTION,;. p ‘p=o0(1), o o=o0(1) (r—o0).

For economy of description, we shall refer to some properties of the
potential functions by certain names.

DEFINITION OF PROPERTY .. We say a function q has Property,.
if for any ¢>0 there exists a positive constant C. depending only on
q, ¢, p and the demension n, such that for every ve€ H},. (M) and for any
r, " (r+1Z7r'<r”) we have

1) The variable r corresponds to the length along the meridian and p(r) to the radius
of rotation if M is a surface of revolution.

It should be noted that we consider a local problem in the neighbourhood of infinity.
Therefore it is of no significance that the boundary of M has the very specific shape.

2) With little modification, we can treat complex-valued ones.

3) H! (M) is the set of functions € L{ (M) whose derivatives in the sense of distri-
bution up to k-th order with respect to the local coordinates also belong to LZ.(M). '
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(1.2 [, 9@ o) s

geg |Vv(x)|2dx+C€S |v(z) .

r—1<r<r 41 r—1<r<lrr4+1

REMARK ON dq/dr. Let us agree that if we find, say, ¢ in the sequel,
q(r, ) is assumed to be absolutely continuous with respect to r>r, for
almost every fixed we S

DEFINITION OF PROPERTY,. ¢ is said to possess Property, Iif
glv|*e L},.(M) for every v€ Hi.(M).

ASSUMPTION, ;. ¢ is decomposed into the sum of two real-valued
functions ¢, ¢, such that
(i) ¢, possesses Properties s q.5;
(ii) There exist constants y (0<y<2) and E and a nonnegative function
e(r) such that

e(r)=o(1) (r—>o0),
r o7+ = E+elr) almost everywhere;

(iii) g¢,=o(p7'p) (r—oo, unif.).

THEOREM 1. Let ASSumptions .o ey 0¢ satisfied and let A>E.
For an arbitrary e (0<e<min(y, 2—E)), there exist a positive constant
C, a constant C and an r, (=7, such that

| @rdezc| oty rar+C  (Rzr)

holds. (dx=p(r)"'drdew is the volume element of M and r,<r<R indi-
cates the range of x whose r-coordinates fulfil the inequality.)

REMARK. If we apply Tayoshi’s result [11; Theorem 1.0.1] to this
special case, we are led to the following statement. Assumptions: 3C,>
3C, >0, Cor'<p(r)'o(r)<Cyr™* for large r; ¢, satisfies Properties, . .»;
3y (0<y<C, such that 7'r¢,+q,<E+e(r); q.=o(r™). Conclusion:

S . <R] flx)|*de=CR" ¢, His theorem treats of very general circum-
To r

stances in comparison to our Theorem 1. But we have a little sharper
results. Note that we need not exclude the case p~'g+0(r™") for example
o(r)=log .
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Properties ., are rather abstract. If M is a surface of bounded
curvature which is imbedded isometrically in R"*', we can find more
concrete conditions. First, let us introduce the “quasi-Stummel space”
S?(M) in a similar manner to that in the ordinary Euclidean spaces (cf.
[3], p.124).

DEFINITION OF S°(M). We denote by S?(M) (0 being a constant
0<0<2) the set of functions g(x) such that

(1.3) j la(y)l dy

s dis(x, y)* 7’

is bounded on M, where dis(x, ¥) denotes the geodesic distance between
x and y, and B(x)={y € M |dis(x, y)<1}. We denote further by Si.(M)
the set of ¢(x) such that (1.3) is locally bounded.

DEFINITION OF PROPERTY,.. We say q(x) has Property,,. if it
satisfies at least onme of the following conditions (i) and (ii).
(i) gq is expressed as a sum of two functions ¢ and ¢® such that
g9 e Sl(M) (i=a,b) for some d and ¢“=0, ¢® <0 almost everywhere;
(i) ¢eSi. (M) for some 0.

ASSUMPTION, . ©(r)<1 (therefore, M is a surface of revolution in
R"*') and the normal curvature of the meridian does not exceed a con-
stant in magnitude, i.e.

KR <
for some constant ¢>0.

LEMMA 1. If Assumption,. s satisfied and if q€S°(M), then q
possesses Property... If q€Sh.(M) then q satisfies the same inequality
with C, depending also on v’ and r”.

REMARK. Thus, in particular, g€ S.(M) and v€H.(M) imply
qlv*€ LL (M) where M={x e M |r>r,+1}.

LEMMA 2. If Assumption. s satisfied, Property,,. tmplies Prop-
ertyY q,m-

The proofs of these lemmas will be given later. Assumption,,, is needed
only in proving Lemmas 1 and 2. Therefore, if ¢ is a bounded C'-func-
tion, we can dispense with this assumption because ¢ has Properties,,qq.s
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automatically.

If M is an exterior domain of a Euclidean space, the ¢ in Theorem
1 can be taken away. Indeed, many works (e.g. [10] [13]) dealt with
this case. Especially, Uchiyama [12], Mochizuki and Uchiyama [9] and
Eastham and Kalf [3] gave sharpest forms. As an application of our
method, we would like to offer another proof. We repeat the theorem
in a rather rough form, though the conditions on ¢ is slightly relaxed.

ASSUMPTION, ;. m=3 and p(r)=cr (0<c<1l), i.e. M is the exterior
domain {|xz|>7,} in R" or the part {r>r,} of the surface of a cone.

ASSUMPTION . 5).
(i) q€& S (M) for some ¢ and possesses Property,..:;
(ii) There exist constants y (0<y<2) and E and a function e(r) such
that

e(r)=o(1) (r—>co),
rirqg+g<E+e(r) almost everywhere.
THEOREM 2. If ASsumptionsgs . are satisfied and if 1>E, we can

Jfind a positive constant C and an r, (=1,) so that
(a) if 0<r<2, we have

s | fl@)|’de=CR""*  (R=my),
ro<lzI<R
(b) and if r=2,
§ |f(x)]"de=Clog R (R=m).
ro<IzI<RB

The case “y=0" corresponds to the requirement “q is repulsive”.
Theorem 2 fails in this case. But we can obtain two theorems for
repulsive potentials by strengthening the conditions. The first one is,
so to speak, on positive sub-homogeneous potentials such as the repulsive
Coulomb potentials.

ASSUMPTION ;2.
(i) q€S (M) for some g;
(ii) ¢=0;
(iii) There exists a constant y (0<y<2) such that

rirqg+q9=0 almost everywhere.
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THEOREM 2. If Assumptions, ., are satisfied and if 2>0, we can
find a positive constant C and an r, (=7, such that

L <lz|<R If(w)lzdeCR (R%’h).

The second one relates to simple repulsive potentials. In exchange
for weakening the restriction on ¢ we assume that M=R" or the entire
surface of a cone. J. Weidmann gave a result in this connection ([14];
Corollary 1. Cf. also [3]; Example 5.3.6). We make it more precise under
a little weaker conditions.

ASSUMPTION , 5,.
(i) qe S (M) for some 0.
(ii) ¢=<0 almost everywhere.

THEOREM 8. If M=R" (n=38) or the whole surface of a (half) cone,
and if Assumption, s satisfied, then, for the monzero solution f(x) of
(1.1) such that f(x) and Vf(x) are bounded mear r=0, there exist a posi-
tive constant C and an r, (=0) for which

[ f@PdazCR  (Rzn)

holds. (This statement is valid in the case —oo<A<0.)

In a very particular case, we can present one more theorem where
the smallness of p is not required.

ASSUMPTION,,. The dimension n=2.

ASSUMPTION 4.
(i) qeS*M) for some J and possesses Property..;
(ii) There exist a constant E and a nonnegative function ¢(r) such that

e(r)=o(1)  (r—oo),
%p<%>_1§% +q<E+e(r) almost everywhere.

THEOREM 4. If ASsumptions.psw.awe e satisfied and if A>E,
then we can find positive constants C and r, (=7, such that
E dr

[, oeg | S dzC S (R,
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REMARK. The right-hand member goes to o as R—oco because
p(r)'=p(r)p(r) (this fact is essential in the proof). As was mentioned,
if in addition q € C* and is bounded, then Assumption . is not necessary
though r o(r)'dr=oo is required instead.

"o

It is of some interest to describe this theorem in terms of surfaces
of revolution. We prefer to assume ¢ is bounded and C' in order to
emphasize unnecessariness of restrictions on the curvature of M.

COROLLARY. Let M be the two dimensional surface obtained by
rotating the graph of a C-function t=t(p), 0L p,<p< o, around the t-
axis in R. If q is a bounded C'-function and if there exist a mumber
E and a nonnegative function e(p) such that

e(p)=o0(1)  (p—o0),

; gq +g<E+e(p) almost everywhere,

then, for A>E there exist positive constants C and p, such that

Jppeper 10 0N PAZC o VIFE @D (P20)

holds. Here do means the surface element of M.

§2. Abstract differential equation.

In order to carry out the proofs systematically, we prefer to desecribe
the process of estimation in an abstract manner. That is, we interpret
(1.1) as an equation for a vector-valued function and closely examine a
subsidiary function to obtain the estimate of the solution.

Let § be a Hilbert space and ¥, its linear subset. A,=A,(r) and
A,=A,(r) are assumed to be linear operators defined for each r (>m,).
Further, we assume that for each value of r the domains of A,(r) and
A,(r) contain ®,. We denote in the sequel by (,) and | | the inner
product and the norm of £ respectively, and by a dot the derivative
with respect to . Moreover, instead of writing as “for almost every
r>r,’, we say simply “(r>r,)”.

We shall consider a differential equation in § and want to get
estimates for the norm of the solution. To this end, we begin with
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several conditions and definitions.

Condition 0.
(1) (Ao(r)v, w)=(v, Ay(r)w) for every v, w € D,
(ii) For each veD, (A,(r)v,v) is differentiable at almost every r>r,
and its derivative (Ao(r)v, v) € Li.((ro, o0)).

DEFINITION OF B(v, w). Let p(r),a(r) and ¢(r)>0 be real-valued C*-
functions. For every v€®, and we€ , we set
B(v, w) = ({{pAd)"+pp(As+ A1) + (ag) }v, v)
+ (o —po)|wl*+ ({2p(a — A,) — (pp) }v, w).

Condition 1. There exist a nonnegative function ¢ and a number
1, (=7,) such that

(i) | gprydr=co
(ii) B(v, w)=¢|v|* (r>1,)
for every ve®, we 9.

Condition 2. We can find a nonnegative function b(r) and a number
r, (=71,)* such that for an arbitrary v ¢ D,

(1) (ar)—Air), v)Z—=br)v|*  (r>r);
(ii) r eFIb(r)dr<oo, where P(r)=Sp(7')d1'.

"o

Condition 3. Let K be an arbitrary positive constant and put

({,(R)zr0 ;I(,:; rgb(s)exp{—KS:e"’“’dt}dsdr.

Then we have
lim {(R) =oo, lim e"?*®{(R) =oo.
R—c0 R—»c0

Condition 4. There exist a number 7, and a function 7(r) € Li,.((r,, o))
such that for every v€®, and we 9,

B(v, w) Zn(r)¢{l|w]*+ (Aw, v) —p(v, w) +alv]*} (r>s)
holds.

4) We can choose the same value of 7, as in Condition 1.
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Condition 4’. There exist a number 7, and a function y(r) € L'((r,, o))
such that for any v€ %D, and we 9,

B(v, w) 2 (¢ —ex){l|lw]’+ (A, v) —pv, w) +allv[}  (r>r)

holds.

Now we consider the following second order differential equation in
o:
(2.1) i+ Ay (r)u+ Ay (r)u=0,

and study the solution %(r) which does not vanish identically in any
neighbourhood of infinity. We mean by “u is the solution” that
(i) u(r)eD, a.e. (ii) i(r) exists a.e. in the strong sense belonging to
L% ((ro, 0); ) and enjoying (2.1); (iii) u, % are the indefinite integrals
of 4, it respectively in the strong sense; (iv) (A,(r)u,u) is absolutely

continuous and satisfies di(Aou, u) = (Ao, u) +2 Re(Agu, ) a.e.
r

DEFINITION OF F'(r). For the solution u, we set
F(r)=|ul*+ (Ao, w) —p(, u)+alu?

where p(r) and a(r) are the functions appearing in the definition of
B(v,w). (Note that F'(r) is an absolutely continuous function.)

We are now in a position to describe several estimates for F'(r).
LEMMA 3. If Conditions 0 and 1 are satisfied, we have

(pF) =B(u, w)z¢llul*  (r>mry).
Proor. Differentiating ¢F by r and considering (2.1), we have

(0F) = {2+ A, &) + (Aqw, w)}+G{| ]2+ (Agw, u))
— () (u, ) —po|ul*—po(it, w) +2ap(u, @)+ (ap)||u|*
=—2¢(Awu, u)+ ({(pAd) + (ap) tu, u) + (p—po) | 4|
+1{2a¢0 — (pp) Hu, u)+pp((As+ A u, u)
=({(pAo) +pp(As+ A1) + (agp) }u, u)
+(@—po)llul*+ ({2ap —20 A, — (po) }u, i)
=B(u, ).
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Therefore, by Condition 1, we obtain
(pF) z¢|ul™

LEMMA 4. Under Conditions 0,1,2 and 8, we can find an 7, (=7,
such that
F(ry) >0.

ProoF. Suppose to the contrary that F(r)<0 for almost every 7
(>7,). Then, since F and F belong to L}.((r, o)), it follows from
Lemma 3 that

— ¢ Ftr) =)0+ (pls)Fls))ds

= | g)lut)ds.

The last member is an increasing function of ¢, while the first one does
not depend on ¢. Hence, letting t—c0, we obtain

22 — () F(r) 2| gls) [uls) 'ds

together with the finiteness of the right member.
Now, let I be an interval in which wu(r) does not vanish, and for

rel, set
g(r)=log/|[u(r)|®

Then,
g=2(u, w)/||u|?
G={2(ik, w) + 22|}/ | w|®—4(%, u)*/||ul*

And the Schwarz inequality shows

g={2(i, u) —2[la]*}/|lwl®
=—2¢"{F+p(, u)—alul*+ (Aw, u)}
=—2¢F—pgj+2a—2e°(A,u, u).

Hence,

(2.3) (e"g)" =€"(§ +pg)
> —2e"F+2¢{a— (A, u)/||u|?}.

Therefore, from Condition 2 and the assumption F'<0, we see
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(e"g)' = —2e",
and hence, there exists a positive constant K such that
t
eP(t)g‘(t) ;e""'z’g(rg) _25 e“”b(’)’)d’r
>—K. l
Consequently, we obtain
g(s)—g(r)= —Kjue“"‘”dt (r,sel, r<s).
The right-hand side being a continuous function of s€ (r, o), g(s) never
goes to —oo at a finite s. Hence we conclude
u(r)#0 throughout the interval (7, o).

Moreover, from (2.2) and (2.3) we have
2eP(r)
o(r)
261’(7‘) oo
o(r) S

(e"™g(r)) =

Swdz(s)e" @-sMds+summable function

> gb(s)exp( —K S e ? “’dt>ds +summable function

T 4

which yields

P(R) - R eP(r)
e’ g(R)=2
. o(r)

=2C(R) +const.

©

g!:(s)exp( —K S: e F® dt)dsd'r +const.

r

Therefore, Condition 3 shows
g(R)=e"7®(2{(R) +const.) = e P*®{(R) —> oo (R—c0),

and hence
lu(r)|| =" — o (r—o0),

which contradicts the fact that

o

Sjogb(s)l|u(s)||2ds<oo while Sgl)(s)ds:oo,

7o

as were found in (2.2) and Condition 1. Thus, Lemma 4 is established.

LEMMA 5. Under Conditions 0, 1, 2 and 3, we can find a positive
constant C satisfying
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Fir)zCo(r)™  (r=mr).

Proor. Lemma 3 shows (¢F) =0 for r>r, Therefore, ¢>0 and
F(r) >0 (by Lemma 4) give

@(r)F(r) Z ¢ (r) F(ry) =C>0.

LEMMA 6. Under Conditions 0,1,2,3 and 4, there exists a positive
constant C such that

Fr)zCo(r) ™ exp{ | nr)olr) gtridr}  rzn)

holds. In particular, if n(r) is a constant 5, we have
F(r)zCo(r)™  (rzmy).
Proor. Since Condition 4 reads
(pF) 2npF =997 '¢(pF),
the fact that ¢(r)F(r)>0 (r=7;) (by Lemma 4) shows

r

o) F(r) Z o) Firexp| 760l g)ds|  (rzn).

T3
In passing, we refer to the following lemma though it is not used
in this paper.

LEMMA 6. Under Conditions 0,1,2,3 and 4’, we can find a positive
constant C such that

Proor. Condition 4’ means just
(pF) 2 (¢ "¢ —2)@F,
by Lemma 8. Hence, from Lemma 4 it follows that
(F)eF) 2¢7'0—2

for r=7, Integrating both sides from r; to 7, we obtain

Fir)zF(rexp| | xo)dsh=C,

T3

which proves Lemma 6.
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§3. Estimates for multiplication operators.
Let us begin with the proof of Lemmas 1 and 2.

ProoF oF LEMMA 1. Let ve CY[v'—1, »"+1]xS*"). Choose an arbi-
trary constant a (0<a<1). Let II be the tangential plane to M at
x€(r,r")xS"* and consider the orthogonal projection of B(x,a)=
{ye M|dis(x, y)<a} on II. We denote by 7 the projected image of
Y€ B(x, a) and set

The distribution of the values of #(») is “compressed” compared with
that of »(y). But we can easily see from Assumption,, and the increas-
ing property of p(r)(=the radius of rotation) that the most compressed
case occurs when each meridian in B(x, a) is a part of a circle of radius
1/c, ¢ being the constant appearing in Assumption,.. Since the com-
pression of 9(») means the extension of the gradient Vi#(p), we can
conclude that there exists a constant C (0<C<1) such that

Vo) |<C[Vo(y)|  for ye B, a).

(In fact, we can put C=cos(ca).)
Similarly, we can find a constant C’ (0<C’<1) which does not depend
on x and satisfies

| —n|=C" dis(x, y)

as long as dis(x, y)<a. In particular, the image of B(x, a) contains the
ball |x—»|<b on II whose radius b does not depend on .

Now, in the Euclidean spaces, the following inequality is well-known
(ef. [3] Appendix 1):

(3.1) |(2)|*< const. 5“5 S Bl Vo) P00 (n) [Fd,

lz—7]
where the const. depends only on n. Recalling the previously mentioned
estimate of each term and considering the fact that the Jacobian <1
(i.e. dp<dy), we have

|v(x) |*< const. G‘ISQ( Y dis(x, ¥)* " {C*°|Vo(y) |*+ b *|v(y) |*}dy,

z,

the const. depending only on n again. Thus,
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[ lalilvto) s

<const. 5“'{ lq(x)|dx

rrlry

X Lm a)diS(x, Y)2 7 C | Vo (y) |2+ 022 v(y) | dy

<const. 5-! S {C* |V y) |+ b2 v(y) [P dy
r'—a<lr(y)<r’+a
lq(=)]
X S a0 dis(a, )
=clba§ |Vv<y>|2dy+czbo-2§ v(y)dy,
r'—a<lr(y)<r’+a r'—a<r(y)<r"+a

with some C,, C,;>0 (r(y) being r corresponding to y). Putting Cb’=e,
we obtain (1.2) for C'-functions. For ve€ H},, choose v, € C*([r'—1, " +1]
X 8*) converging to v in H'((r'—1,r”+1) X S"™") and apply the limiting
process. This proves the former part. The latter assertion is clear.

ProoF OF LEMMA 2. It is sufficient to consider real-valued ¢ and v.

If Ge S (M) then Property: follows from Lemma 1. Therefore
we suppose (i). Consider ¢ and let ve H}.(M). Since ¢““v*¢ Li,.(M) by
Lemma 1, we see that ¢'“v?|4.q, € L'(S™™) for almost every . Let 7’ and
r” (r'<r”) be such values of ». We can find a set 2CS$"" such that
S**—0 is a null set and 2vi e L*((r/, r")) for each w& 2. Therefore, as
an indefinite integral, v* is absolutely continuous in 7 for each fixed o€ Q.
As was mentioned in the remark before the definition of Property,.,
the same is said to ¢'¥, where the set 2 can be chosen commonly. These
facts yield the integration by parts
(32) S1 q'(a)1)2pn—ld,r___q(a),vzpnﬂIrzﬂ_q(a)vz‘on—wr:w

-—2571 q“vop"tdr—(n— I)ST g " 2pdr.

The first and the second terms in the right-hand side belong to L*(S*™).
Further, the inequality 2vv<|v|*+|9|® and v, ¥ € H.(M) imply, by virtue
of Lemma 1, that the third term also belongs to L!'(S"™') as well as the
fourth term. Hence the left-hand side of (3.2) belongs to L'(S""'). But,
because ¢ has definite sign, it follows that ¢“*€ L. (M). The same is
said to ¢®. Hence, ¢v*€ Li,.(M), which proves Lemma 2.
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The following lemma authorizes the differentiation under integral
sign. Namely:

LEMMA 7. If q has Properties, . gy, and v Hi (M), then (qu,u) is
absolutely continuous in r where u=p(r)"'v. Moreover, we have

difr(qu’ u) =(qu, ) +2 Re(qu, %) (a.e. r>1,+1).

PrOOF. We can easily find by Properties, ., that
qu’, q(u*)" € Lie((ro+1, 00) X §™7Y drdw).
Hence, their sum (qu®)’ € Li((ro+1, 00) X $*7" drdw). Accordingly, Fubini’s
theorem yields

S nﬁlquzlmﬂdw—g n_lquZIT:wdeS n_IST” (qu*) drdw
S S S rr

= SM S (qu®) dwdr.
Sn—l

re

Fixing 7/ and replacing r” by r, we see that

(qu ) =[__, (aw)do

is the indefinite integral of the L}.-function g 1(quz)‘olco, and therefore
s"~

o

absolutely continuous. Consequently,

di(qu, u) :S . (qu*) dw
r s

=(qu, u) +2(qu, %) (a.e. r>r,+1).
This completes the proof.

§4. Proofs of the theorems.

Let
u=u(x) =ur, o) =p"V2f(x)

where f(x) is the solution of (1.1). A straightforward calculation shows
that u satisfies the equation

(4.1) W+ Au+ (A—q)u—n,0 20" u —ny0pu=0
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on M, where a dot stands for 9/or and

n—1)(n—38) n—l.

'n1= 4 ’ n2= 2

Now, let

H=LHs™)  with (v,w):s ()@ do,

Sn—l

and set
Dy=H?*S").

Our aim is to reduce the problems to the abstract theory described in
§2. At first, we note that the fact f¢ H}.(M) implies that u(r) satisfies
the conditions (i)~(iii) on the solution in §2.

Further, set

Ao_—_'p_z/l-i—,z—ql with @(Ao) =D,,
A=—q—mp ¢ —mp7p  with  D(4)=9.

We note that Property,,, shows the differentiability of (A,v, v) for ve D,
(Condition 0). Similarly, Lemma 7 realizes condition (iv) on the abstract
solution. Hence, rewriting (4.1) as i+ Au+ A,u=0, we find that u=u(r, -)
is the solution of (2.1).

We have already obtained several estimates on F(r). But our final
need is those for |f(x)|* or |u(r,w)|>. To this end, we present here a
lemma which is a modification of [2; Lemma 2] or [12; Lemma 3]. Let
ox(r) be a C*function which possesses the following properties where
ry (=7,+1) is chosen arbitrarily.

(1) 0=oa()<1 (re<r<oco);

(ii) or(r)=0 (r,=<r=7, or R<r);

(iii) oz(r)=1 (r,+1=Zr=<R-1);
(iv)
(

(4.2)

iv) the values of og(r) do not depend on R in r,<r=r,+1;
v) in R—1Zr<R, the graph of o;(r) does not change its shape but

for translation.

LEMMA 8. Let q=q,+q. and let u(r,-) be the solution of (4.1).
Suppose q, possesses Properties . s and q, is bounded. Then there exist
positive constants C, and C, depending only on p and n such that

g” o;Fdrgclg" ||u||2dr—czg” ol | Tulidr  (R2r+1),

"o 7o "o

where ¥ denotes the gradient on S".
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Proor. Recall that u=p"22f, |Vf|*=|af/or|*+ o *|Vf|% m.=(n—1)/2
and substitute them into (1.2). Then, because o;=0 for r=R, we have

(4.3)

R
[ ottaa war|<( _ iallonsida

r4<r

SS, (0 00”2 Pu) P+ o 2072 Ful}dr
+ csf ol dr

R R
gZES a,?||u||2d'r+eg o207 Fuldr
To 7o

+ g (2ei2+2en o fo~2 6+ C.o ) | ul"dr
§2c~:r o,?llqudr-{—eSR oﬁp‘Z]Wu]]Zdr+k1r ludr
with ' ' '

2.2,"2

k,=sup,,«,|2667+2enioz07%0°+C 07|
On the other hand, (4.1) and the integration by parts show
E . R . ..
wa) (" odtarar={" ox+ i)
o o

+ (A= qa—mp 2 — 07 ), w) — 72| Vuu||* — (qus, ) }dr

R 2
eroéag L fulear

R
+§ o H{(A—Go— T ~6" — 130”1, )
)
— TP (qu, w)}dr

=" ({L ot +otta—ammpo=r—mp ) | u)dr

—5" osp-2||vu||2dr—§” o2lqu, w)dr

o To

R R R
gkzgr ||u||2dr—gr aﬁp“leu[IZdr—gT o Hgau, w)dr

0
where

(02)" +02(2— g — 107" 0" — M0 P) |

kz = Sup,4<, %

(Note that k,, k, are independent of R.) Thus, from (4.3) we have
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R =
ws) | oilipar< B[ e 122 [* oo upar.
"o

Therefore, recalling that F'=||u|*—p(&, u)+ (A+a)||u|?— 0| Vu|*— (qu, u),
we see that

R 3 R . R 1
S o,?Fdr§Es a,?]lu”zdr—{—s a,§<—2—p2+2+a>||u||2dr
To 70 To
R - R
= | oo ulpdr—{ oilam, war.
7o "o

And hence, by dint of (4.3) and (4.5) again, the assertion of Lemma 8
is now clear.

For the proof of the theorems, we choose as
(4.6) p(r)=p(r)%,  pr)=PBp(r)"6(r)

where a and 8 are positive constants chosen appropriately in each case.
The function a(r) should also be determined later. By substituting these
functions into the definition of B(v, w), one immediately verifies the
following formula.

ProposiTION 1.
B(v, w)=({la+B—2)p* 0 A+ (a@+B)"'p(2—q1) — p°¢:
— B0 0@+ 1076 + Mo ) + (0%a) o, v)

+ (@ —pB)e* 6l w|?
+0*({2a+2¢,+ (21, — Bla—1)) p7*6" + (2n,— B) 0" 8}v, w).

Although the choices of a, 8, p(r) and a(r) will be different for each
theorem, we shall extensively choose as

¢(r) =const. p(r)*"6()
which, as we now show, realizes Condition 3 by itself.

PROPOSITION 2. If a>B and if Assumption,, s satisfied, then
Condzition 3 applies with ¢=const. o> 'p.

ProOF. Since e’ =p(r)?, we see that

const. {(R) :Sf o(r)fe f,o(s)““p(s)exp{—KSB o(t) ‘ﬂdt}dsdT.

r
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Putting Q(r)= S o(t)~*dt we have

const. {(R) =| ol S =ols)expl — K(Q(s) ~Q(r)dsdr
gs o(s g K@ Srop(r)ﬁ‘“e’“""drds
= ote -W"’gropWﬂ-ap(r)—ﬁe“mdrds
(5 p(s)e 20| ptryteredrds (it 2p=al
gLons,t Rp(s)" 15(s)e~¥aw Srop(r)‘ﬂe"o"’drds (if 28=a)

lconst p 8)*716(s) (1 —e ¥9®)ds

const p “16(s)(1—e ¥9®)ds

const o R)Z"’—const
- const o(r)*—const.
Hence, if f<a,
lim {(r) = oo, lim e ?®¢(R) =lim p(R) *{(R) =00
R -0 R—co R—o0

Thus, Proposition 2 is proved.

ProoF oF THEOREM 1. Choose and fix an arbitrarily ¢ (0<e<
min(y, A—E)). Set A,=pA+2i—q, Ay=—q—np "’ —n0"'p and put

a:—r‘;e : ﬁz——r; . a) =%rep“ﬁ-

Substituting them into the formula of Proposition 1, we have
Blo, w)=({(r =2 pA+70 601050~ a)

. D B e rs
+0° ‘p<“ Lieo ot "6 — B — Brap~" 0" — Brap ‘p>}v, v)

4
+eom 6]

+p"“‘p<{%re+2pﬂ_‘qz+ (20— Bla—1))p™'6+ @ne— )56 v, w).
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By Assumptions,, .., we find that

the first inner product%r(l—E—%e)p“‘lﬁllvllz,
the last inner productg~%repa—1p(||w||2+||v||2)

for sufficiently large 7, say, r=7,. Hence, we can conclude
(4.7) B(v, w)=7(2— E—¢)p*6||v|? (r=mr,)

and thus Condition 1 is fulfiled by ¢=const. o= %6. This ¢ also satisfies
Condition 3 as was shown in Proposition 2. Next, changing 7, if neces-
sary, we have

a—Ai=p7"6(re/4+007 G+ 1070+ n079) 20 (r=1y),
which shows Condition 2. Hence, by Lemma 5, F(r) satisfies the inequality
(4.8) F(r)=zCp(r)™"™  (r=my),

and Lemma 8 shows that

sk ||u||2drzCsR aio(r) T edy
o Yo

v

R—1
CS o(r) T edy

ry+l

Cr p(r) 2 ¢dr+C,

with constants C>0 and C where r, is the number appearing in the
definition of oz. On the other hand, from u=p"""2y we have

R
o

Sro«n | f(=) lzdw=5 L"_l If Izp""dwdrzgz w*dr.

This proves the theorem.

Proor oF THEOREM 2. Since p=cr, we see from (4.1) that u=
(er)»D2f satisfies the equation

d+c?r?Au+ (A—q)u—n,r*u=0.
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Set a=y/2 and put®

Ay=cr*A+2—q—n,r7%
Al = Ov
—1

o(r)=r°%, p(r)=ar™, a(r) =%a(a—1)r’2,

and evaluate B(v, w). Then,
B(v, w) =<{20’2(a 1)t A zar«ﬂ(z-zirq —q)
144
—2(a— 1)n{r“‘3+%a(a —1) (a—2>ra-8}v, v).

Hence, it follows from 0<a<1, n,=0 and zirq-i-ng-ke(r) that for
144
any ¢ (0<e<i—E)
B, w)22ar* M (A—E—¢)|lv]|*  (r=3ry),

which shows that Condition 1 is fulfiled by ¢ =2a(2—E—¢)r*~'. Condition
2 is trivial with b=0. If 0<a<1, set |=K/(1—a). Then, noting ¢*”=
7%, Lz(r) of Condition 3 is calculated as

C(R) =const.r rs“‘l exp(_KS’ t‘“dt)dsdr
=const. " expliri-o)dr( s exp(—1s)ds

o

R (==}
= const.s exp(lrl—a)drg ity

To
Now, let us notice the following inequality. Let a be an arbitrary
constant, then

rt“’e“”dt =%x“’e“‘ —%rt“‘“‘e'”dt

zlm—ae—lz_(_z_x—a—le—lz_F a(a+1) Swt—a—ze—ltdt

l I? & z
gzilx‘“e‘“‘ (for large x),

5) The construction of F(r) with these p(r) and a(r) is essentially due to J. Uchiyama
[12], though the subsequent treatment is quite different from ours.
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irrespective of the sign of a. Accordingly, we have

R
C(R)= const.s r*~'dr=const. R*—const.

"o

If @=1, we can take K>1, and a direct calculation yields also {(R)=
const. B’—const. Therefore, Condition 3 is satisfied.

The above substitutes the part of the proof of Theorem 1 from the
beginning till (4.8), thence finally (4.8) is replaced by

Fr)zCr7®  (rz3ry),

from whence we can derive

R R
g ||u||2dfrgconst.§ 7y (r=3r).
L 7'

0

Thus, Theorem 2 is established.
Proor oF THEOREM 2’. Setting
Ay=c"r*A+2—q—nr7,
A,=0,
o(r)=rr, p(r) =0, a(r)=0,
we have
B, w)y={c*(y—=2)r*A+yrr2
—r[g+yrTigl—ny —2)r ", v) e |
Zrr([lwll*+Allv]%)
Zrr(|w]*+ (A, v) —p(v, w) +alv]?),
where we have used ¢=0 in the last inequality.

This inequality shows that Condition 4 is fulfiled with »=1. And
hence it follows from Lemma 6 that

F(r)zC  (rzry).

Replacing (4.8) by this inequality, we have only to follow the rest of
the proof of Theorem 1.

ProoF OF THEOREM 3. If we put y=0 in the proof of Theorem 2,
it follows from ¢<0 that

B(v, w)=((—2¢™r*A—q+2n,r~*)v, v) 20.
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But this means, as is seen by Lemma 3, that
F(r)=B(u, &) =2¢""r"*|Vu|*— (qu, u) + 20" |
=0.
Now, since u=(cr)" "f and |Vf 2= offar|*+r~%|Vf|%, we see that
F=|a)*+c™r*(4u, u)+((A—q)u, )
=(er) {1 = T =1 A1+ 2 e
+m—=1r7(f, H)+AFIP—@f. F)}-
But since f and Vf remain bounded as r—0, we find

lim F(r) =lim sup F(r)

r—0 r—0

> —const. lim inf r"‘1S 1q+da),
r—0 sn
where ¢,=max(q, 0) is the positive part of ¢ which also belongs to
2.(M). Therefore, if we assume

lim inf r""lg 4+dw=2a>0,
s"

r—0

then

S 9.+(y) dy:Ser—nH—a,,.n—lS q.dodr
0 sn—l

lvi<e |y|* 20

13
gas r i idr =co

0

which contradicts that q, € S{,.(M). Thus,
F(0)=0

and hence F(r) is nonnegative for r=0.

If n=4, we have n,>0 so that F('r)>0 at the point where u=0.
That is, there exists an 7, such that F(r,)>0. Consequently,

F(r)=C>0 (r=rs).

Therefore, Lemma 8 together with the above inequality yields

S” lul'dr=CR  (rz3n).
"o
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If n=38, then n,=0. The case F(r)%0 does not bring about new
questions. On the other hand, F(r)=0 implies F(r)=0. But since §<0,
it follows that Vu=0 and (qu,u)=0. Hence u must depend solely on
r while ¢ must be constant. In this case, however, we obtain the above
estimate which is clear by seeing the solution u with %(0)=0. The
proof is completed.

(Indeed if »>3, f and Vf are not necessarily bounded at r=0.)

Proor oF THEOREM 4. We introduce a variable ¢ by
rzsr o(r)dr,
o
and set u=f. (As has been noted, z—oco as r—oo.) Then we have®
(4.9) b+ Au+p*2A—q)u=0 (0<r< o)

where the dot represents d/dz.
Let us now set

Ay=A+p*(2—q), A, =0,
p(r)=1,  »p(r)=0,  a(r)=0,

and substitute them into Definition of B(v, w) (with r replaced by z).
Then we obtain from Assumption,, that for an arbitrary ¢>0,

o

B(v, w)= (AW, v)

=20(3—a—So( 20 )"0 )

>206(A—E—e(r))|v]?
=epp||v|*

for large r, say, v=7,. Hence, Condition 1 applies with
$lz) =ep(z)p(c).

Condition 2 is trivial with b=0. Condition 3 is a conclusion of

(T :rr const. p(s)p(s)e ¥ ?dsdr

0Jz

6) If n=+2, it seems difficult to find r and w which satisfy an equation free of p and g,
the coefficient of 4 being kept decreasing.
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= ST const. p(s) p(s)e‘K‘Su edr
0

0

—> o (T—o0).
Hence, it follows from Lemma 5 that
(4.10) F(r)=3C (r=3c,)
for F(z)=|u|*+ (A, u).

We claim now

[ otte1Pie)de seonst. | p*lulde.

0

This inequality can be shown by modifying the proof of Lemma 8 as
follows. Recall that uw=f, dr=p dr, de=pdrdo=p*drde and |Vf|*=

af 2 7 £ 12 E -1
E| +lVf|>. Put T:S o(r)'dr and let or(r) stand for og(r).

o

Then we obtain
T T T
[} os0t(au, wae | s2e( otlulide+2e]] silulie
0 0
T _ T
+eS° a;uw||2df+css o 20 ul|dr
0
instead of (4.3). On the other hand, (4.9) shows
T T
[Fottaeae={ ({Fton +oioau, u)ie
T _ T
—[Jor1vuiras—{ oirqlulae
0
instead of (4.4). Thus similarly to Lemma 8, we are led to
T ...
[[osrarsc| dlulde—cif oflulide (T2,
This inequality together with (4.10) establishes Theorem 4, since
[ )= j Julodr
r0<r<R

’llu||2dr

gconst. T
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= const.r o(r)'dr (R=3r).

o

PrOOF OF COROLLARY TO THEOREM 4. Putting

SF V1+(p)dp, S VI¥t(o)dp

and writing p=p(r), we have l,o(d‘o) g +q== 1 aq +q<E+e(p) be-
2°\dr/ or 2 op

sides

SR p(,r)—ld/r:jl’ il_i_—t,(ﬁdpgc log P—— co.
o Py 0

Thus, writing e(o) as e(r), we verify Assumption,. Accordingly, Theorem
4 shows

RO T
ZCSR o(r) 'dr

o

:CS o IFT(edp,

for P=p, which proves the corollary.
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