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0. Introduction and the statement of main results.

The scalar curvature, which is obtained from the Riemannian cur-
vature by taking two-times contractions, is certainly one of the simplest
invariants of a Riemannian manifold. Thus it will be interesting to
know how the behavior of scalar curvature is related to the global
topology of manifolds. However, scalar curvature is a much weaker
invariant than Riemannian curvature, it appears to be not so much
related to the global topology of a manifold as Riemannian curvature
is. Nevertheless, it is known that there are still certain interesting
results in this direction. For instance, the result due to Lichnerowicz
states that a closed spin Riemannian manifold with positive scalar
curvature has the vanishing A-genus. This result shows that there is
a topological obstruction for a closed spin manifold to admit a Riemannian
metric with positive scalar curvature.

In recent years further results have been obtained in this direction,
see [1]. In particular Gromov and Lawson found other topological ob-
structions for a closed spin manifold to admit a Riemannian metric with
positive scalar curvature and proved that torus never admits such a
metric. The obstruction, so called higher A-genus, is defined in the
following way.

Let X be a closed spin manifold. Let I" be an arbitrary discrete
group and % a rational cohomology class of K(/',1). Given a homomor-
phism from z,(X) to I, we obtain the corresponding map

f: X— K(I',1).
Then we consider the following number

A(u)(X)=CA(X)*(u), [XT)
where 9((X) denotes the total A-class of X and [X] is the fundamental
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homology class of X. We call this number A(u)(X) a higher A-genus
of X associated with w.
Then, Gromov and Lawson proved the following:

THEOREM [2]. Let X be a closed spin manifold of even-dimension.
We set I'=Z* and fix a homomorphism from =(X) to Z*. Then, if X
admits a Riemannian metric with positive scalar curvature, the higher
A-genus A(u)(X) vanishes for each u e H*(T* Q).

We note that Theorem also holds for an odd-dimensional closed spin
manifold X considering X xXS* and fx1: XxS'—>T*xS

Putting X=T* and f=id in Theorem, Gromov and Lawson proved
that torus does not admit any metric with positive sealar curvature.
Then these results suggests the following conjectures due to Gromov,
Lawson and Rosenberg [3] [10]:

CONJECTURE A. Suppose that M is a closed aspherical manifold.
Then M does not admit any Riemannian metric with positive scalar
curvature.

CONJECTURE B. Let X be a closed spin manifold and let us fix a
discrete group I' and a homomorphism from =;(X) to I. Then, if X
admits a Riemannian metric with positive scalar curvature, the higher
A-genus A(u)(X) of X vanishes for each u¢c H*(K(I",1); Q).

In this paper we shall prove Theorem A and B described below
which support Conjecture A and B respectively under some geometric
conditions. We first describe them below.

Let M be a closed aspherical manifold with =,(M)=I" and let us fix
a Riemannian metric on M. Then I" acts on the universal covering M
by isometries with respect to the induced metric from M. Furthermore
in Condition B below we assume that there is a vector bundle V which
is a I'-vector bundle over M and is equipped with I'-equivariant spin’
structure and [-invariant euclidian metrie.

CoNDITION A. There exists a smooth map ¢: M—R" satisfying the
following conditions:

1) ¢ is a proper map with non-zero mapping degree;

2) We denote by r the Euclidian distance from the origin of R”
to ¢(z). Then, there are constants C>0, N>0 and e<1 such that

le«(X) I <C-r| X ||
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for »>N and for any tangent vector X ¢& T.M.

CONDITION B. There exists a smooth map ¢: MXM—V satisfying
the following conditions:

1) When we restrict ¢ to {x} XM, it induces a proper map from
{x} X M into some fibre of V with non-zero mapping degree;

2) It is equivariant with the diagonal action on M X M, namely,

P(roy, 7)) =7 @@, %)  y €I}

3) We denote by r the distance from the origin of the fibre of V
to ¢(z,, :). Then, there are constants C>0, N>0 and ¢<1 such that

lex(X)<C-7r¢| X ||
for r>N and for any tangent vector X along the slice {x,} X M at (x,, ;).

We note that the properties with M in Condition A and B are
independent of the Riemannian metric chosen. In fact, let g and % be
two metrics on M and suppose that the property 2) of Condition A holds
for g. Then there are constants K>0 and L>0 such that g(X, X)<
K*h(X,X) and h(X, X)<L?-g(X, X) for any X € TM since M is compact.
Thus the property 2) of Condition A holds for & if we replace the
constant C by C.-K-L. The same argument holds for the property 3)
of Condition B.

THEOREM A. Suppose that M is a closed spin manifold satisfying
Condition A. Then M does not admit any Riemannian metric with
positive scalar curvature.

THEOREM B. Suppose that M is a closed manifold satisfying Condi-
tion B with = (M)=I". Let X be a closed spin manifold. If X admits
a Riemannian metric with positive scalar curvature, then the higher
A-genus A(u)(X) of X vanishes for each we H*(K(I',1); Q) and for each
homomorphism from =, (X) to I.

As a corollary of Theorem B we obtain the following results which
can be obtained combining the results of [7] [9] [10].

CoROLLARY. Congecture B holds for the groups which are realized
as the fundamental groups of the following spaces:

1) A closed spin® Riemannian manifold with non-positive sectional
curvature,
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2) The Seifert fibre space M(a)=(T*X W)|Q which corresponds to
a special Bieberbach extension a:1—Z*—>I"—>Q—>1 where W is a simply
connected spin® Riemannian manifold with non-positive sectional curvature,
Q@ s a discrete subgroup of Isom(W) and acts on W properly discon-
tinuously with compact quotient W|Q preserving the spin® structure of
W. (For the terminologies, we refer the reader to [9]. They will be
also recalled in 6.3.)

Gromov and Lawson have already proved Conjecture A when M has
a contracting proper map with non-zero mapping degree from its uni-
versal covering to the Euclidian space. (They obtain more general results,
see [3].) This corresponds to the case when ¢é=0 in Theorem A if M is
a spin manifold. However, the way to prove Theorem A is different
from theirs. It is rather similar to that of Miséenko [7], in which the
Novikov conjecture is proved for the fundamental groups of closed
manifolds with non-positive sectional curvature with the aid of Fredholm
complex theory. (See also [4].) We use this in the proof of Theorem A
and B. The geometric conditions described above play crucial roles there.

This paper is organized as follows. In Section 1 we shall review
the definition of Fredholm complexes and the relation between Fredholm
complexes and K-theory. Section 2 is devoted to the proof of a vanish-
ing theorem which is similar to that of Lichnerowicz. In Section 3 we
state the generalized Atiyah-Singer index theorem which is our principal
tool in this paper. In Section 4 we construct Fredholm complexes start-
ing from Condition A or B above. Section 5 and 6 are devoted to the
proof of Theorem A, B and Corollary.

The author is very grateful to Professor Akio Hattori for his help
and encouragement.

1. Fredholm complexes and K-theory.

This section is devoted to recalling the definition of Fredholm com-
plexes and the relation to K-theory. The main references of this section
will be [4], [12]. We shall later need this relation when we identify
the analytical index of a Fredholm complex with its topological index.
This identification is nothing but a generalized Atiyah-Singer index
theorem stated in Section 3.

1.1. Let H° and H' be Banach spaces and we shall consider bounded
operators from H® to H'. An operator F is called a Fredholm operator
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if it has a closed range and finite-dimensional kernel and cokernel. An
operator K is called a compact operator if the image of the unitball in
H" is relatively compact, namely, its closure-is compact. If K is a compact
operator on a Banach space H, the operator 1,— K becomes a Fredholm
operator on it. Furthermore if the image of an operator is finite-
dimensional, it is a compact operator. More generally the following
lemma holds; see [8].

1.2. LEMMA. Let H be a Hilbert space and K be a bounded operator
on H. We denote by (e}, a complete orthonormal basis of H and by
H(j) the subspace gemerated by {e}i>;. Lf the morm of the restricted
operator K|y, tends to zero as j goes to infinity:

}LIB K| gl =0,
then K 1is a compact operator.

1.3. DEFINITION. Let X be a compact topological space and let E°
denote vector bundles over X whose fibres are Banach spaces. Suppose
that we have a finite complex (a sequence of bundle homomorphisms)

A*: 0~—~—>E°—f—10—>E1——1>~--—>E”—>0

over X. Then A* is called a Fredholm complex if the following two
conditions are satisfied.

1) Compactness condition: The operators A*'-A' are compact
operaters when they are restricted on each fibre.

2) Existence of parametrices: There exist bundle homomorphisms
Bi: E‘*—E"* for which 1—(Bi**- A'+ A*"*- B*) are compact operators on each
fibre.

We call such operators B* parametrices of A*.

Note that if E° are finite-dimensional vector bundles, the conditions
1) and 2) are automatically satisfied and hence it defines a Fredholm
complex. In this case the alternating sum Y} (—1)'E‘ determines an
element of K(X). Furthermore a generalized Fredholm complex simi-
larly determines an element of K(X). We shall describe it in the
following.
P

0
Let P*:0 > B° > B! » ... — E"—— 0 denote a Fredholm

complex over X. Then P* is called acyclic if its restriction on each
fibre is exact. The following proposition is due to Segal [12].
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1.4. PROPOSITION. Suppose that X is a compact topological space.
Then if A* is a Fredholm complex over X, one can find a complex B*
consisting of finite-dimensional vector bundles F* over X and acyclic
Fredholm complexes P* and Q* such that A*@PP* is homotopically equiv-
alent to B*PR*, where homotopy equivalence means that two Fredholm
complexes can be deformed each other preserving the conditions 1) and
2) of 1.3.

Furthermore the alternating sum Y (—1)'F* in K(X) depends only
on A*.

We refer to the element Y (—1)'F" as the analytical index of A*
and denote it by index A*.

As to properties of Fredholm complexes we only need the following
one in this paper.

1.5. LEMMA. Let X be a compact topological space and A* be a
Fredholm complex over X. If the operators B'*'-A‘+ A"'-B', which
appear in 2) of 1.8, have trivial kernels, the analytical itndex of A*
vanishes.

The proof is similar to that of [12].
In the sequel we shall not distinguish a Fredholm complex from
the element of K(X) it defines and denote them by the same letter.

2. Dirac operator and vanishing theorem.

In this section we consider a flat Hilbert bundle and define the
corresponding Dirac operator. Furthermore we prove a vanishing theorem
similar to that of Lichnerowicz. In the sequel M will be a closed Rieman-
nian manifold with a spin structure and S will denote the spinor bundle
over M.

2.1. Let E be a vector bundle over M whose typical fibre is a
Hilbert space. Suppose that the transition functions of E take values
in a discrete subgroup of all invertible unitary operators on Hilbert
space. We call such a vector bundle E a flat Hilbert bundle over M.
Then we denote by I'(SQE) the smooth sections of SQE, which are
infinitely differentiable in the sense of Fréchet. Using the local trivi-
alizations this can be described as follows. Let U be a coordinate neigh-
borhood of E and fy be a trivialization over U:
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fo: Ely=UxH

where H denotes the Hilbert space with a complete orthonormal basis
{e:}2:. Under the identification through fy, a continuous section s of
SQE locally has the form

(-]
s= Z; s;e;
o

over U where s; are continuous sections of S over U. Now we denote
by V the covariant differentiation of S. Then s is a smooth section of
SQ®E over U if and only if each s; is smooth and

i IVisi|P<oo  (k=0,1,2, ---).

2.2. We shall define the Dirac operator D* on I'(SQFE). Let D:
I'(S)—I'(S) denote the Dirac operator over M. For a smooth section
s€['(SQE) we define D*(s) to be

DE<g)1 s,@)e,-): 3 D(s)Qe;

using the local representation of s in 2.1. It is well-defined since E is
a flat Hilbert bundle and D is a differential operator. Then D” preserves
the condition for smooth sections in 2.1 and therefore it defines an
operator on I'(S®E). We call Df a Dirac operator with coefficient
bundle E.

2.3. Let h denote the hermitian metric of SQFE which is induced
from those of S and E. It defines an inner product (,) on I'(SRE) by

(s, 1) :SMms, #)dwol

for s,te I'(SQE). Then D* is formally self-adjoint with respect to (,):
(D%s, t)=(s, D"t) s,te '(SQRQE).

Furthermore the following Weitzenb6éck formula holds:
(D®)'s, t) = (Vs, Vi) +<—Z—s, t) s,te I'(SQE)

where Vs means 3 Vs,Qe; with the local representation of s in 2.1 and
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x denotes the scalar curvature over M. If we replace DF by D, it is
the usual Weitzenbéck formula in [3], and the above formula can be
proved by using it without difficulty.

If M is an even-dimensional manifold, the complexified spinor bundle
S®C splits into the half-spinor bundles:

SRC=S.BS_
and the Dirac operator D also splits correspondingly:
0 D rey resy
D= D P — .
D+ 0 res_) re o)

The operator D, is similarly extended to the operator from I'(S,QF)
to I'(S_®FE) and it is denoted by DZ.

In the left of this section we fix a flat vector bundle E and denote
DF and D% simply by D and D,, respectively.

2.4. We define Sobolev norms | ||, (r=0,1,2,--:) on I"(SRE) by
[sli=((1+D%"s,s) sel'(SQE)

and call the completion of I'(SRE) with respect to || ||. a Sobolev space
of order n. We denote it by H"(S®E). Note that H°(SQFE) is the
Hilbert space of L*sections of SRQE.

Then we extend D on I'(SQE) to a bounded operator between
Banach spaces:

D: H"'(SQE) — H"SQE) n=0,1,2,---.

Actually, it suffices to show that it is bounded on I"'(SRQRE). To do this
we note that

I Dsll+lIslz=slz+:  s€I'(SQE).
Therefore we obtain
[ Dsl2< I8 ]1%41,
which proves the boundedness of D.

2.5. VANISHING THEOREM. Let E be a flat Hilbert bundle over M.
Suppose that the scalar curvature of M s bounded jfrom below by a
positive constant c¢. Then the Dirac operator D: H""'(SQRQE)->H"(SRQE)
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with coefficient bundle E has trivial kermel and cokernel.

ProoF. Let s be a section of ker D in H""'(SRQE). Then there
exists a sequence {s,} of smooth sections such that s, tends to s in
H"'(S®QE). Applying the Weitzenbsck formula in 2.3, we obtain

| Dsllz=((1+D*)"- Dss, Ds;)

( )DZ’ - Ds,, Ds,,)
j=0

Since Ds=0, | Ds.||. tends to zero and hence |s;|. tends to zero. On the
other hand we have

I Dselln+[Isell =8l 541

by the equality in 2.4. Therefore |s;|2,. tends to zero and s should be
zero in H**'(SQE).

To show that cokernel of D is trivial, we note that there is a
formally self-adjoint operator T such that T7?=1+4 D% see [11, p. 171],
[8]. Then we can verify that 7T induces isomorphisms from H**'(SQE)
to HY(SQE) (k=0,1,2, ---) and preserves the smooth sections I"'(SQE).

Now consider the bounded self-adjoint operator T"-D-T~"': H'(SQE)
—H(S®QE). The self-adjointness is well-defined since H°(SQE) is a
Hilbert space. Then we obtain

coker D=coker(T"-D- T
=ker(T"-D- T~ ')*
=ker(T"-D- T
=ker D



208 Hitoshi MORIYOSHI

which has already been proved to be zero above. Hence D has trivial
cokernel and the proof is completed.

2.6. We conclude this section by recalling the work of Kazdan and
Warner [5], see also [1]. Let M be a compact manifold. Suppose that
there is a Riemannian metric of M with positive sealar curvature, namely,
a metric whose scalar curvature is non-negative everywhere and strictly
positive at some point. Then they proved that M carries a conformally
equivalent metric with strictly positive scalar curvature. Therefore, by
virtue of this result we can replace the condition with M in the van-
ishing theorem by the following: M admits a Riemannian metric with
positive scalar curvature.

3. Index theorem.

In this section we shall state a generalized Atiyah-Singer index
theorem and show that the analytical index of a certain Fredholm
complex vanishes over a closed spin Riemannian manifold with positive
scalar curvature.

3.1. Let X be an even-dimensional closed spin manifold and M be
a compact topological space. Consider a Fredholm complex

A% 00— B A B — 0

over MxXX. We assume that E® and E' are flat Hilbert bundles along
{y} x X for each y¢& M, namely, the transition functions are locally con-
stant along {y}XM. Then we can construct two families of Dirac
operators with coefficient bundles {Ef},.» and {E}},cx. We denote these
families of operators by {D%(¥)},ex and {D(y)},cu. respectively. Then
we shall define a complex DRA* over M in the fellowing way:

o HMS_®EN, ¢y Al
0 — {H"™(S, QE)}l en — S — {H"(S_-QE)}yex —> 0

n+1 1
(HYTHSLQF)), ey

where

o [{ Di(y) o 1
A_{<1®A,>}M A'={(-1Q4, Di(¥)}en

Here we denote Ef|,xu Al yxu by E;, A, respectively.
Note that the above complex is not necessarily a Fredholm complex.



Positive scalar curvature 209

However, if it is the case, following holds.

3.2. A generalized Atiyah-Singer index theorem. If DQA* 1s a
Fredholm complex over M, its analytical index is cohomologically given by

ch(index(D®A*)) =% (X)ch(A*)/[X]

m H*(M:; Q), where ch is the Chern character homomorphism from K*(M)
to H*(M; Q).

The proof is similar to that of [7, p. 102].

Now we shall investigate the above index when X admits a
Riemannian metric with positive scalar curvature.

3.3. PROPOSITION. Let X be an even-dimensional closed spin mani-
fold which admits a Riemannian metric with positive scalar curvature.
If Compactness condition in Definition 1.3 s satisfied for DRQA*, then
1t 18 a Fredholm complex over M and furthermore the analytical index
vanishes.

Proor. The vanishing theorem 2.5 shows that Di(y) are invertible.

Thus the family {D%(y)},c» has the inverse bundle homomorphism, which
is denoted by L‘. We set

B'=(L", 0)

~(5)

oo )

Then,

0 1 2 1__ 0 0 1
A BB A= ( o )L 0)+ (Ll)(—1®A,{D+(y>}>
0
<1®A —L(1®A) 1>
0
A B=(-104. L) |, )=1.

Since AL A =D.(y) - (1QA4,)—(1R®A,)-D%(y) is a compact operator by
Compactness condition, sois L}-A}-A}-Ly=(1QA4,)- L) —L;-(1QA4,) is also



210 Hitoshi MORIYOSHI

a compact operator. Thus the above calculation shows that 1—B.-A°,
1-(A}-B,+B}-A,) and 1—A}-B? are compact operators and therefore
we can take B’ as parametrices of DRQA*. It also shows that B! A°
A°’-B'+B*-A' and A'-B* have trivial kernels. Hence DRA* determines
a trivial element in K(M) by Lemma 1.5, which completes the proof.

4. Construction of Fredholm complexes.

In this section we shall construct Fredholm complexes A* and B*
under Condition A and B, respectively. It will then turn out that
Compactness condition holds for the complex D®A*, which makes Prop-
osition 3.3 useful. The Fredholm complex B* plays a crucial role in
proving the vanishing of the higher A-genus.

4.1. Construction of a Fredholm complex A*. We assume that M is a
manifold of even-dimension m =2k with Condition A. Let f,: S"'—Ul(k)
be a map representing the generator of x,_,(U(k)). Here we regard S™!
as the unit sphere in R™ and U(k) as a subset of the square matrices
M(k,C) of order k. Then we shall extend f, to f: R"—M(k,C) by the
following formula:

S, 0 -, 0m ) =2 (1) fo(6" - - -, 077

where (7, 6", --+,0™") denotes the polar coordinate of R™ and 7 :[0, oo)—R
is a smooth function such that (r)=0 if and only if »=0, and z(r)=1

if »r>1. Then the Bott generator of K(R™) is represented by {Vi» Vi
where V denotes a k-dimensional trivial complex vector bundle over R™
and f is regarded as an endmorphism of V.

Now we shall construct the complex A* over M. Let W denote
the pull-back ¢*V and h denote the pull-back ¢*f. Equipping V with
the canonical flat connection and hermitian metric, we obtain the induced
connection and metric on W. Denoting by = the covering projection
M—M, we set

Ev: Z@fc(mhv w.
Av: Z@n(z)=v hr

where > P means a Hilbert completion of a direct sum. Now we define

a complex A* to be

0 > K/ A:E > 0
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where E={E,},cx and A={A},c». Then, the vector bundle E is a flat
bundle over M and the bundle homomorphism A consists of Fredholm
operators. In fact, flatness of E is obvious from the above construction
and Fredholmness of A, follows from the fact that h. is invertible
except over x€ ¢ '(0). Therefore, A* determines a Fredholm complex
over M.

Next we shall prove the following lemma which will ensure Com-
pactness condition for DR A*.

4.2. LEMMA. Consider the situation wn 4.1. Then there is a constant
¢>0 such that

IVhll.<c-7¢- |Vl

for r>N. Furthermore, |[Vh|. tends to zero as x goes to infinity in M,
or equivalently, r goes to infinity.

PrROOF. Let {X;} be an orthonormal basis of T.M. Then the norm
IVh||. is given by
|V |2= 51V

Since W is equipped with the induced metric from V, we obtain

ZIIVx,hIIZ= E”st.(xj)f”?a(x)
= Tlle«(X)) ||2||V(p.(xj)/u«:.(xj)uf|]2¢<r>
< Zlex X IPIVAe
= ZC-r- 1 X1V o
=m-C*r*-||Vf|5e

which yields the inequality if we set c=+/m -C.

To prove the latter statement, it suffices to show that r¢- ||Vf] tends
to zero as r goes to infinity. Now let f*#(x) denote the (@, )-component
of f(x) € M(k,C). By the definition, f is equal to f, for »>1 and hence
f is independent of r there.

Recall that the polar coordinate are given by

1

' =7r-cos

2

2 =r-sin 6'-cos 6*

g™ '=r.5in *-sin 62 - - - sin 6™ %.cos O™ !

™ =r.sinf'-sinf? - .- sin f™"%.gin f™!
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and their Jacobian matrix is given as follows:

cos @' sin 6'- cos 6*
—7r-sin 6! r-cos 6'-cos 6°
0 —7r-8in 6*-8in 6%
0 0
0 0

Thus the inverse of the Jacobian matrix has the form

gy Ry e TRy,
4 Ay TGy o TG,
r”‘_l.aml e 7"”_2-(1,,”,,

where A=(r"""-sin™%6" - .. sin ™% ! and a,; denotes a smooth function
independent of .
Since the differentials 9/*#/or vanish for r>1, we obtain

ap
aéf T (V3% rhay o Qe 0

x

1 . . X o
=r™ Al : : 96"

af af
o G TGy e Tl | |
ox™ oo™

=rt. Vet

for r>1 where V* denote smooth mapping into R™ independent of r.
Therefore it follows that

=5

afet
- j,a,p ox’

=Z vl

2

and hence
r¥-||Vf|[P=r®="2. ‘Z;; V)2 —> 0
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as r—>oco. This completes the proof of Lemma.
We can now state the key proposition:

4.3. PROPOSITION. If an even-dimensional closed spin manifold M
satisfies Condition A, them Compactness condition holds for the complex
DRA* constructed as in 3.1.

Proor. Consider the following diagram:
H*(S,QE) —2— H"S_®E)
1®Al J1®A
H"*(S,QEFE) Y H"(S_QE).
Then Compactness condition for DX A* means that the above diagram

commutes modulo compact operators. We shall prove this fact in the
following.

Let U be a contractible open set in M and y, a point of U. Then
E|y is isomorphic to the product bundle UX ¥y -y, W. over U through
the trivializations of W over = }(U). Then we can represent a local
smooth section s€ I'(U, S,QE) as

S= i S,;®e,;
i=1
where s;€ I'(U, S,), and {e;}, denotes a complete orthonormal basis of
> @rxy=y, W consisting of the orthonormal basis of each direct summand

W.. Then the difference D, -(1QA4)— (1QA) D, is locally calculated as
follows:

(D, (1@4)—(1®4)-D,)( L 5.®e)
D,-(1® £&h.)-(1® £&1.)-D.}(Z s.@e)

0. Zo@he)-(19 TN Do)
= > D,-(s;Qh.e)— ; D, s:Qh.e;

Il

o,
El

= % 5 olX)Va (s®he) — T ( £ e(X)Vx,5)@hee

1,7 j=1 i,z
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Ms

2.
i, 1

g: e(X)( T 5@ (Vxh)er)
¢X)(1® OV, ) Sa®e)

¢(X;) {VXJ-Si®h’xei+si®(Vth’) i} — E E c(X )Vx $:Qh.e;

£
<.
I

where {X;}7.; is an orthonormal basis of TM at y==(x)c U and c¢(X))
denotes the Clifford multiplication by X;.

Suppose that we are given a partition of unity subordinate to a
finite covering consisting of coordinate neighborhoods of M. Using this,
we can split D, -(1QA4)— (1QA)-D, into a finite sum of local operators
as described above. Thus it is sufficient to prove that the operator

1Q 2D(Vxh).: HU; S,QFE) — H'(U; S,QE)

is a compact operator. Here we note that H*(U;S,®E) is isomorphic
to H*(U;S,)® >PW, and that 1R 2(Vxh). can be considered as a
tensor product of two operators,

1y: H"Y(U; S,) — H"(U; S,)
and

S®Vah).: TOW. — HW..

Now we choose {¢;}2, such that x—oo as i—>oco0 when e¢; is contained
in a direct summand W,, and denote by H(k) the subspace generated
by {e}ize. Then the operator norm | X(Vxh).|sw| tends to zero as k
goes to infinity by Lemma 4.2. Hence, it follows that EEB(VXJ.h), is a
compact operator by Lemma 1.2. On the other hand, 1,:H"*(U;S,)
—H"(U;S,) is also a compact operator, which is nothing but the Rellich
lemma. Therefore, 1Q X (Vxh). is a compact operator since a tensor
product of compact operators is again a compact operator. This com-
pletes the proof of Proposition.

4.4. Construction of a Fredholm complex B*. Suppose that M is an
even-dimensional closed aspherical manifold satisfying Condition B. Then
we shall construct a Fredholm complex B* over M X M.

First we note that there is a map

¢:M>F<M—>V/F

by the property 2) of Condition B, where M 31< M denotes the [-orbit
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space with the diagonal action and V/I" denotes the quotient vector
bundle over M. We also note that M X M can be considered as a fibre
r

bundle over M with the fibre M. Then the property 1) in Condition B
implies that @ maps each fibre of M X M into some fibre of V/I.

r
Now we shall discuss the Thom class of V as we discussed the Bott
generator in 4.1. The Thom class is represented by
S, 7, FS_,
fE&)=z(ll&l)-c/IEl)  on &€V

where S, and S_ denote the half-spinor bundles of V, p, denotes the
bundle projection of V, z is the smooth function defined in 4.1 and ¢(»)
denotes the Clifford multiplication by 7. Since V has a equivariant spin®
structure, f induces a homomorphism

I (PFS )T — (08S,) /T
over V/I'. Then we set

Wﬁ::(—ﬁ*((p;ks:t)/]’)
h=g*(fIT)

and we define a Fredholm complex B* over M XM to be

B
B*:0 B, » E_ >0

where
Et(vl,vz): Z GB (Wt)z

p(z)=(y1,¥3)

B(vl,vz) = Z @ hz'

2(2)=(¥1,¥p)
Here we denote by p the covering projection M X M—Mx M. Then we
r

obtain the following commutative diagram.

ESII e— We — E,
Lo
VI «—— MXM

b

M «—— MXM = MxM
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where pi(y1, ¥2) =¥

Recall that (p#S.)/I” admit connections which are flat along the fibres
of V/I', namely, the transition functions are locally constant along the
fibres. Hence we can equip W. with the induced connections by  which
are flat along the fibres of the bundle p,-p: M X M—M mentioned

previously. On the other hand, p: M X M—MxM yields the covering
r
projection if we restrict p on the fibres of the bundle M x M—M. Hence,
r

from the construction, it follows that E, are flat Hilbert bundles along

the slices {y}xXM. Furthermore B is a homomorphism -consisting of
Fredholm operators, which is proved by the same argument as in 4.1.
Thus B* determines a Fredholm complex over M x M with Hilbert bundles
E_ which are flat along the slices {y}x M.

5. Proof of Theorem A and B.
To prove Theorem A and B we need the following lemma, see [4].

5.1. LEMMA. We assume that the aspherical manifold M in Condi-
tion A or B is even-dimensional, say 2k. Now we consider the Fredholm
complexes A* and B* constructed in the previous section. Then, the
following holds:

1) ch(A*)=d-uy
ch(B*| yyxu) =d - Uy (yeM)

where uy denotes the generator of H™(M; Q) such that {uy, [M1>=1, and
d denotes the mapping degree of ¢ or @|uxm;

2) Let p, and p, be projections from MX M to M such that p,(¥., ¥) =W
and p.(Yi, ¥o) =Y. Then for any finite-dimensional vector bundle F over
M, it follows that

¥ (F)QB*=pi (F)QB*.

5.2. Proor oF THEOREM A. We first consider an even-dimensional
manifold M. Suppose that M admits a metric with positive scalar
curvature. Then Compactness condition holds for DXA* by Proposition
4.3 and hence the analytical index of D®A* vanishes by Proposition 3.3.
On the other hand, we obtain

ch(index(DRA*)) =<9(M)ch(A*), [M])
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=< (M) du, [M])
= <duM! [M ]>
#0

by Theorem 3.2 and Lemma 5.1, 1). However this formula contradicts
the previous statement. Therefore M does not admit any metric with
positive scalar curvature.

For an odd-dimensional manifold M, consider M xS' and apply the
same argument to this. Then, it follows that M x S' does not admit any
metric with positive sealar curvature. However, a metric on M with
positive scalar curvature induces such a metric on M xS'. Hence M does
not admit any metric with positive scalar curvature. This completes
the proof of Theorem A.

Next we shall show Theorem B. For the proof we need the follow-
ing lemma to calculate ch(B¥).

Let M be a 2k-dimensional closed manifold and % be an element of
He"(MxM; Q). We denote by {e}’, a basis of H*"(M; Q) such that
e,=1€ H'(M; Q), ex € H*(M; Q) and {ew,[M])=1. Furthermore we denote
by {e¥} the dual basis of {e}, i.e.

Ce:;Uef, [M])=0.;.
5.3. LEMMA. Suppose that

u| {ptixM —€N

(eaxl)Uu=(1xa)Uu
for any a€ H*"(M, Q). Then, w has the form

u= Y (e¥Uay) Xe;

3

modulo H®(M, Q)QH*(M; Q) where ay is an invertible element of
Hevcn(M; Q>-

Proor. We represent u in the following way:

u= 3 a;Xe;+d

where a;€ H*(M; Q) and d& H*(M; Q)QH*“(M; Q). Then it follows
that
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(e x 1) VW IMI=(E (e Ua) xe:)[[MI+((ef x 1) Ud)[M]
= ¥ efUaie, [MD

=e¥Uay
and
(Ixef) Uu)/[[M]= by (@: X (ef Ue) [[M]+ (1xeF) Ud)/[M]

= ¥ aer Ues M)
= Z @:0;;
=a;.
Considering the assumption, the above calculations yield

e;k U a/N:aj
and hence
u= Y (ef Uay) Xe;
modulo H**(M; Q)QH" (M, Q).
Furthermore it follows that

6N=7l/| {ptixM
= Z a;Xe;| {pt))(M+dl {pt}x M
1

= 2 <as [pthe:.
Since {e;} forms a basis of H**"(M; Q), we then obtain

{ay, [pt])=1.

Now, a cohomology class ac H*(M; Q) is invertible if and only if
{a,[pt]>+#0. Hence this fact completes the proof of Lemma.

5.4. PrROOF OF THEOREM B. First we assume that both M and X
are even-dimensional. Then we consider the Fredholm complex B* over
Mx M constructed in 4.5 and pull it back over M XX by the map 1Xxf.
Since the Hilbert bundles E. are flat along the slices {y} X M, (1X f)*E,
are also flat along {y} X X. Then we can verify that the complex DR
(Ix f)*B* satisfies Compactness condition by the same argument as in
Proposition 4.3. Hence it follows that the analytical index of D® (1 X f)*B*
vanishes from Proposition 3.3.
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On the other hand, the Chern character of B* has the following
form by Lemma 5.3 together with Lemma 5.1.

ch(B*)= % efayXe;.
Hence a generalized Atiyah-Singer index theorem yields

ch(index(D® (1 X f)*B*)) =% (X)ch(1 X f)*B*)/[X]
(X)X eran X f*e[X]

)Y efan((X)f *e;, [X ).

I

Here we note that {¢¥ay} also forms a basis since ay is invertible. There-
fore we obtain
AX)f*e;, [X D=0

for each e;, Hence the higher A-genus A(u)(X) vanishes for each
w€ H*(M: Q) because {e;} forms a basis of H**"(M; Q) and (X) is a
polynomial of 4¢-dimensional cohomology classes.

When M and X are of general dimensions » and k, respectively,
we consider the manifolds M X T** and XX T* Then, applying the
above argument to these manifolds and a map fX¢: XX Tt—>MX T%*"
where ¢ denotes an embedding of T* into the first k-components of T%*",
we obtain

QUX X T (fXe)*u, [ XX T*>=0

for each ue H¥*(MxT**; Q). Now we choose u=1u,Xu, such that
uy € H*(M; Q), ui € H*(T**"; Q) and {uy, ¢,[ T*]>=1. Then, noticing 3 (T* =1,
it follows that

XX TR (FX0)* (ug X wa), [X X T*])
OUX) X A(TH) (f *uo X ), [XTX [T

a

=UX) S *wo, [ XD *ue, [T
= A(X) S *uo, [XTD
for each u,€ H*(X; Q). Thus the proof of Theorem B is completed.

6. Proof of Corollary.

In this section we shall show that Condition B holds for closed spin®
manifolds with non-positive sectional curvature and some Seifert fibre
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spaces described in [9]. Then, Corollary follows from this applying
Theorem B to these manifolds.

6.1. Let M be a closed spin° Riemannian manifold with non-positive
sectional curvature. We set

V=TM
¢: MXM— TM
@ (1, T2) =€XD5, ().

Then, the properties 1) and 2) in Condition B are easily verified with
M and furthermore it is well known that the property 3) holds for M
with ¢=0; see e.g. [6]. Thus we obtain the following.

6.2. PROPOSITION. A closed spin® Riemannian manifold with mon-
positive sectional curvature satisfies Condition B.

6.3. Next we show that Condition B holds for some Seifert fibre
spaces. However, before doing so, we shall recall the construction of
such Seifert fibre spaces according to [9].

Let W be a simply connected Riemannian manifold with non-positive
sectional curvature and let @ be a discrete subgroup of Isom(W). We
assume that the action of @ on W is properly discontinuous and the
quotient space W/Q is compact. We further assume that @ acts on
T*x W by covering transformations such that the following diagram

commutes:

T"XW—TL—»W

Q| e

(T*X W)IQ — WIQ.
Then, the action of @ on T*X W is given explicitly by
q: T"XW—T"XW
(¢, w)=(t-m(q™", w), q(w))
for ¢ €@, where m denotes a map
m: QXW— T*

Considering this covering T*X W—(T*X W)/Q, we obtain the following
exact sequence:
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a: 1— Z* > I > Q > 1

where [ denotes the fundamental group of (T*X W)/Q.
Conversely, suppose that we are given a exact sequence a:1—Z*
—["—>Q—1. It is known that such an extension determines a map

m: QXW— T*

and m induces a Q-action on T*X W by the previous formula. Then,
Conner and Raymond showed that (T*x W)/Q is a closed manifold if and
only if I" is torsion-free. They called such a extension a Bieberbach
extension. In the sequel we shall denote (T*X W)/Q by M(a).

Then, Rees [9] singled out particular types of the Bieberbach ex-
tensions and called them special extensions. Here we do not discuss them
in detail. However, we only need the following property with them in
the sequel.

P) Let a be a special extension and let m denote the resulting
map from a:
m: QXW — T*.

Then, there exists a constant ¢>0 independent of €@ and w € W such
that

[m(g, -)«(Y) | <[l Y|
for any Ye T, W.

6.4. While we have discussed only Seifert fibre spaces in the above,
we here consider a general aspherical manifold M as in Introduction.
We use the same notation as there.

Let ¢ be a map from M to V such that

i) it is a proper map into some fibre of V with non-zero mapping
degree, and

ii) there exist C>0, N>0 and ¢<1 such that

[« (XN <C-7| X |

for »>N and for any tangent vector X T.M. Here we denote by r»
the distance from the origin to ¢(x) as usual.

Now we shall denote by S the set of all above maps and define
a [-action on § by the formula y(¢)=y-¢-y' for yeI’. Then the
following diagram commutes:
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¢

_ % v

|
(o)

M
a
M———-vV.

6.5. LEMMA. Suppose that there is a [-invariant contractible subset
SoCS.  Then, we can find a smooth map ¢: MxM—V satisfying all
properties in Condition B.

Proor. We shall construct ¢ over skelton by skelton. Suppose that
M is equipped with I"-equivariant simplicial decomposition. We then
choose representative simplexes {¢{"}; of the I'-orbits for each n-skelton
M(n).

First we construct ¢ over M®x M. We define ¢ to be an arbitrary
¢€S, on each ¢ x M and extend them over M@ xM in such a way
that ¢ is compatible with the diagonal action, i.e. the following diagram
is ecommutative:

p=¢

cOXM ———

rxll lr

7(0®) X M—>¢=r(¢) V.

This map satisfies Condition B over M x M. Note that ¢| . ,xu (x € M)
is also an element of S, since S, is I'-invariant. Then we can extend
¢ over o x M satisfying Condition B because S, is connected. Then we
can also define ¢ over M™x M in a similar way as above. Continuing
the above step we can construct ¢ over M X M because S, is a I'-invariant
contractible set.

Now we return to the situation in 6.3.

6.6. We consider a manifold M(a)=(T*X W)/Q in 6.3. Let ¢ be a
map from W to R* such that

lox(M)lI<Le- Y] (YETW)

for some constant ¢>0. We denote by 9 the set of all above maps.
Furthermore we set

Do: REXW —> TR*XTW
Do o(t, w)=(t+0o(w), exp; (w)) € T.R*X T,W
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where s 9),ve W. Here we identify TR* with R*XR* in canonical
manner. Now we denote by &, the set of all ¢, , parametrized by 9 x W.
Note that S, is contractible since 9 x W is contractible.
Here we define a IM-action on TR*X TW by
r: TR*XTW — TR*XTW
(Y, Z)=(Y, r(Z2)).

Then we obtain the following:
6.7. LEMMA. &, 18 a [-invariant contractible subset of S in 6.4.

Proor. First we verify that S, is a [-invariant set. Actually, it
follows that

7 Pou 7 w) =70 (E+M(r, W), TN (W))

r(t+m(r, w)+o(y~(w)), exp:*(r(w)))
rt+m(y, w)+o-r (w), r™-expyiy(w))
(t+m(y, w)+o-r~(w), exp;i(w)),

II

Il

namely,
-1__
7 Do T =50, 40r L1

where w(y, ): W—R* denotes a lifting of m(y, ): W—T* Since 9 is
invariant under the addition by #(y, ) and since y acts on W by an
isometry, the above formula has shown that S, is a I'-invariant set.

Next we verify that S, is a subset of S. In fact the property P)
in 6.3 yields this. Hence it follows that S, is a '-invariant contractible
subset of &.

Therefore, if TR*X TW admits a equivariant spin® structure, the
manifold M(a) corresponding to a special extension g satisfies Condition
B by Lemma 6.5 and Lemma 6.7. Thus the following holds.

6.8. PROPOSITION. Let M(a) be a manifold corresponding to a special
extension @ and we further assume that W is a spin® manifold and that
Q acts on W preserving the spin® structure. Then M(a) satisfies Condi-
tion B.

Finally we note that there is a manifold which satisfies the condition
in Proposition 6.8 but not admit any metric with non-positive sectional
curvature. Actually the same argument as in [9] holds in our case
although we put more assumptions on M(a) than in [9].
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