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On the Riemann-Hilbert-Birkhoff problem for ordinary
differential equations containing a parameter

By Katsunori IWASAKI

Since Birkhoff [9, 10], several authors have studied the asymptotic
analysis of linear meromorphic differential equations with an irregular
singular point (see, for example, Wasow [35], Majima [22] and the ref-
erences therein for a lot of papers concerning this topic). Stokes phenom-
ena around an irregular singular point are of our central concern in
this theory. The treatment of this theory is, roughly speaking, devided
into the following three stages.

(i) the direct problem: to establish the formal and analytic reduction
of a differential equation, to compute Stokes coefficients arising from a
given differential equation and to investigate the properties of Stokes
phenomena arigsing from differential equations.

(ii) the inverse problem : to characterize Stokes phenomena arising from
differential equations and to construct and classify differential equations
giving rize to a prescribed Stokes phenomenon.

(iii) the moduli problem: to study geometrical structures of the space
of an isoformal family (see Babbitt-Varadarajan [2-6]) of meromorphic
differential equations up to an action of the analytic gauge transforma-
tion group. Remark that a Stokes phenomenon is a complete invariant
under this action.

There are so many papers concerning the direct problem (i) that
we cannot quote all of them here. In addition to Birkhoff [9,10], we
only refer to the classical works of Hukuhara [16, 17] and Turrittin [33,
34] (the Hukuhara-Turrittin formal reduction theorem). As for the in-
verse problem (ii), the works of Sibuya [30,31] and Malgrange [24] are
important. They introduced a new concept of the sheaf of germs of
asymptotically developable functions, established a kind of cohomology
vanishing theorem (the Sibuya-Malgrange theorem) and applied it to a
study of construction and classification problem of systems of meromor-
phic linear differential equations with an irregular singular point. Birkhoff’s
original work is also important (the theorem of Birkhoff’s canonical
form). The recent work of Babbitt-Varadarajan [2-6] deals with the
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moduli problem (iii) deeply on the basis of the Sibuya-Malgrange theory.

See Jurkat-Lutz et al. [7, 8, 18], Sibuya [29], Trjitzinsky [32] for other
aspects of the theory of Stokes phenomena and Majima [22] for an exten-
sion to several variables.

We call the inverse problem (ii) and the moduli problem (iii) in the
theory of Stokes phenomena the Riemann-Hilbert-Birkhoff problem (the
R-H-B problem for short). This is an analogue of the Riemann-Hilbert
problem for differential equations with regular singular points (see Rohrl
(28]).

It is well-known (see e.g. Wasow [35]) that the direct problem in
the asymptotic analysis of differential equations with a singular param-
eter around its singularity is basically analogous to that of meromor-
phic differential equations with an irregular singular point. So there are
a lot of papers concerning the direct problem on Stckes phenomena with
respect to a parameter. As far as we are aware, however, no one has
considered the R-H-B problem for Stokes phenomena with respect to a
parameter. So we shall study this problem in the present paper. Our
theory requires the notion of the sheaf of germs of the asymptotically
developable functions containing a parameter, Sibuya-Malgrange type
vanishing theorems for this sheaf, the study of a certain group action
on this sheaf and the deformation theory of holomorphic vector bundles
over the Riemann sphere.

On the other hand, our original interest lies in the speetral theory
for ordinary differential equations (see e.g. Naimark [27] and Dunford-
Schwartz [13]) as well as the R-H-B problem for Stokes phenomena with
respect to a parameter itself. On one side, there is the celebrated
Weyl-Stone-Titchmarsh-Kodaira theory for self-adjoint ordinary differen-
tial equations as a general theory. On the other side, there are many
particular (and deeper) analysis of spectra for particular classes of dif-
ferential equations, such as the Schrédinger equations with a decaying
potential. We know that asymptotic analysis with respect to a spectral
parameter was very often used in the latter type of researches. Com-
bining these observations, we are naturally led to an idea that we should
develop an asymptotic analysis of differential equations containing a
spectral parameter in a sufficiently general setting which will be adequate
to develop a general spectral theory as a supplement of the Weyl-Stone-
Tichmarsh-Kodaira theory. We hope that our result in this paper will
help further development of such a spectral theory.
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In this paper, we shall first consider the following germs of differen-
tial equations containing a parameter k& which is singular at k=co,

0.1) Y _ kPiql k)Y (around k=oo),

dx

where Pegl(n,C) is a fixed constant semi-simple matrix and
(0.2) q(z, k) € gl(n, a{l/k}).

Here a{l/k} is, roughly speaking, the totality of convergent power series
of 1/k with coefficients depending real-analytically on the variable z (see
Section 1 for the rigorous definition). Next, we shall consider the equa-
tion (0.1) in the case where an action of a cyclic group, called A-cyclic
action, is present on the equation (0.1). Namely we consider (0.1) under
the condition that the matrix P satisfies a certain condition (Hypothesis
5.1) and that

(0.3) q(z, k) € gl(n, a{l/k}) a-cyeric (see Section 5).

Finally we shall consider the germs of single m-th order differential
equations containing a spectral parameter,

(0.4) " +a,(@)o" "+ - - +an (@)} f=K"S,

where d=d/dx and a;(x) are germs of real-analytic functions. This class
of equations is closely related to a particular case of (0.3) (cf. Theorem
III).
As is shown later, any equation of the form (0.1) with (0.2) (resp.
(0.3)) can be reduced to the following simple equation
dY

. ——=kPY
(0.5 dx

by an appropriate formal gauge transformation (see Sections 5-6)

Y—>g(x, k)Y,

(0.6) g(x, k) € GLo(n, a[[1/k]]) (resp. € GLy(n, a[[1/k]]) a-cyetic)-

Thus, in this paper, we shall only deal with the simplest isoformal
families represented by (0.5). This is because we want to concentrate
our attension on making clear the mechanism of solving the R-H-B prob-
lem (the inverse and moduli problem) for the simplest isoformal families,
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for which the direct problem becomes easy to handle, and because con-
sideration of such isoformal families are sufficient for application to the
asymptotic analysis of differential equations containing a spectral param-
eter.

Now we shall state our main results. Just after that, we shall
roughly explain the notation and terminology apearing in the statement
of the main results.

THEOREM I (see Theorem 14.2). Let Pe€gl(n,C) be a semi-simple
matriz. Then we have the following commutative diagram of sheaves
over R':

Diff.» : Stokes.
0) i t
Dify

where 1 1s a natural inclusion map and s is a map defined by assigning
an element D—q € Diff, » to a Stokes phenomenon with respect to a param-
eter k which arises from the asymptotic behaviours of solutions of the
differential equation DW=qW. Moreover, what is most important, the
map t s surjective.

THEOREM II (see Theorem 16.2). Suppose that P€gl(n,C) is a semi-
simple matriz and A€GL(n,C) 18 a matrix such that A¥=id. and
wP=APA™", where id. is the identity matrix mm GL(n,C) and o 1s a
primative N-th root of unity. Then we have the following commutative
diagram of sheaves over R':

; S
D’Lﬁ‘w,P,A-cuclic - Stokesm,,,,A_W”c
(0.8) ; .
Diﬁ;’?lﬂ—rwlir

where 1 is a natural inclusion map and s 1s a map defined by assigning
an element D—q € Diffu. p.a-cyeric t0 am A-cyclic Stokes phenomenon with
respect to a parameter k which arises from the asymptotic behaviours of
cyclic solutions of the differential equation DW=qW. Moreover, what
18 most important, the map t is surjective.
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THEOREM III (see Theorem 17.4). We have the following commuta-
tive diagram of sheaves over R

8

Diﬁm,P,A-cvclic StOkeSw,P,A-cwlic

1
Diﬁ(f:‘,‘/)i-cyclic t

1

diff
where the maps s and 1 are the same as in Theorem 11 and the map t
1is defined by assigning an element L € diff to an A-cyclic Stokes phenom-

enon with respect to a spectral parameter k which arises from the
asymptotic behaviours of solutions of the differential equation

(0.10) Lf=k*f  (see (0.11)).
Here, m=(0,1, ---,n—1) and, moreover, P and A are n-by-n matrices
gwen by
0.1 1
. j . w
P= Y L
1 0 ot

®: a primitive n-th root of unity.
Furthermore, what is most important, the map t is surjective.

We shall roughly explain the notation and terminology appearing in
the statement of the above theorems, whose precise definitions will be
given in the subsequent sections. We denote by F——>X a sheaf &
over a topological space X. In this paper X is one of R', P!, P., R'XS",
R'X P! or R*XP., where P., is the real blow-up of the projective line at
the infinity.

a—>R': the sheaf of germs of real analytic functions over R
a{l/k}—R": the sheaf of germs of convergent power series in 1/k con-
taining a parameter z (see §1 for definition)

Diff.. )——R': the sheaf of germs of differential operators defined by

Dif.r={D—q(s. k) ala, k) € l(n, a{L/k) |,
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where D=d—Fkad(P) is a derivation (see Definition 4.2).

Diffos. p.a-cyric—>R": the subsheaf of Diff.,» whose elements admit a cer-
tain action of a cyclic group Zy=<A), called A-cyclic action (see
Definition 5.2).

Diff " ——R*: the sheaf of germs of certain type of partial connections
on the vector bundle E, over R'X P!, where, for m=(m,, - -, m,),
M= Sm,, m;€Z,

w=pr* O(m,)B- - - BO0(m,).

Here O(m) denotes the line bundle over P! with degree m and
pr: R*X P'——R' is the projection (see Definition 11.4).

Diff$') pi——R': the sheaf of germs of a certain type of partial connec-
tions on E, admitting A-cyelic action (see Definition 15.4).
diff—>R': the sheaf of germs of single n-th order linear ordinary dif-

ferential operators, i.e., the sheaf associated with the presheaf

(011)  ROJ—>diff(J)={L=0"+a,@)0" '+ - - - +a,(%);
a;(x) €al]), j=1, - - -, m},

where 9=d/dx (see Definition 17.2).

A—>R*X S': the sheaf of germs of asymptotically developable functions
containing a parameter, where R' denotes the parameter space
(see Definition 1.2).

GL(n, A)y—>R'xS*: the sheaf of n-by-n matrices with entries in
which are asymptotic to the identity matrix.

Stokes., —R": this sheaf is defined by (see Definition 8.1)

Stokes,. p=Image [R'7(GL(n, A)isN KerD)
2 Rir(GL(n, A) N KerD)],

where 7:R'XS'—>R"' is the projection and D=0—kad(P) is a
derivation (see Notation 4.1).

Stokese. p a-cyeic—>R*: a subsheaf of Stokes., which admits an action of
the cyclic group Z,={(A>=<{w) of order n (see Definition 9.1).

The point in the above theorems is as follows. The sheaves of
differential operators Diff...r, Diffeo.p a.cpiic and the sheaves of Stokes
phenomena Stokes,, p, Stokes. p .,.:.. are local object with respect to a
parameter k& which make sense only around k=oco. On the other hand,
the sheaves of partial connections Diff$”, Diff &% .. and the sheaves of
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differential operators diff are global objects with respect to a parameter
k which are defined for all k€ P'. We have natural correspondences
between these two types of local objects which assign an operator in
Diff..» (resp. Diffc p.a-cyaic) to its Stokes phenomenon in Stokes. , (resp.
StokeS, p,a-cyi). Our theorems assert that these correspondences are sur-
jective and, moreover, in certain cases, all Stokes phenomena are realized
even by elements of the global objects mentioned above. We note that
Dif.. r, Diffu.p a-cyeri. and diff are much more restricted than Diff¢" and
Diff &) oo, because the formers are global objects and the latters are
local objects. We can regard the formers are the “Birkhoff’s canonical
forms” of the latters.

In the present paper the word “parameter” is used in two different
senses. If we consider a differential equation (with space variable x)
containing a parameter k, then we regard k as a ‘‘parameter”. On the
contrary, if we consider a Stokes phenomenon with respect to a param-
eter k, then we regard the space variable x as a “parameter” (especially
as a deformation parameter of certain holomorphic vector bundles over
P' associated with a Stokes phenomenon).

As mentioned earlier, the author writes this paper expecting to apply
its results (especially Theorem III) to the spectral theory of linear ordi-
nary differential equations. For this purpose, it would be preferable to
work with the sheaf &——R' of germs of smooth functions rather than
the real analytic one a——R!, namely, to deal with a differential equa-
tion

(0" +a,(x)0* 7 + - - - +a,(2)} f=k"f

with coefficients a,(x), - - -, a,(z) in the sheaf & rather than a. In fact,
adoption of the sheaf € instead of a would still turn out to be all right,
but demand some technical modifications which would make an exposition
of our paper much more illegible. Thus we shall work with the sheaf
a.

The outline of this paper is as follows. In §1 we introduce the
sheaf JA——>R'xS! of germs of asymptotically developable functions con-
taining a parameter, define other related sheaves and state some prelim-
inary properties of them. In §2 we state a version of the Sibuya-
Malgrange theorem (Theorem 2.5, cf. Sibuya [30], Malgrange [24], Majima
[21]) for our sheaf A following Malgrange’s method. In §3 we establish
another version of the Sibuya-Malgrange theorem (Theorem 3.4) when a
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cyclic group Zy acts on the sheaves with which we are concerned. A
key is Lemma 3.6 which is an analog of the Hilbert Satz 90 (see also
Messing and Sibuya [26]). In §4 we define a sheaf Diff,, —R', a collec-
tion of certain differential operators containing a parameter k which
make sense only around k=oo, i.e. a local object with respect to &, and
show the existence of a formal solution of a differential equation in
Diff.,, (Theorem 4.5). In §5 we define a sheaf Diff., 4..yic—>R', @ sub-
sheaf of Diff., which admits an action of the group {A)>=2Zy, and show
the existence of A-cyclic formal solution for its elements (Theorem 5.3).
In §6 (resp. §7) we prove the existence of a fundamental system of
(resp. A-cyclic) analytic solutions asymptotic to a given (resp. A-cyclic)
formal solution (Theorem 6.1 and 7.1). In the non-cyclic case (§6) we
follow the standard method (see e.g. Wasow [35]) to prove such an existence
theorem. In §8 (resp. §9) we define a sheaf Stokes,——R' (resp.
Stokese, a..pi.—>R") of germs of (resp. A-eyclic) Stokes phenomena and
a sheaf Gauge,——R' (resp. Gaugee, s..,0i;c—>R') of germs of (resp. A-
cyclic) gauge transformation group acting on Diff., (resp. Diffu s-cyeric)-
Then we establish a bijection

(0.3) Gauge, \Diff., = Stokes,,
(resp' Gaugem.A-cﬂclic\Diﬁoo,A-oyz:lic - StOkeSoo,A-uyulic)

by utilizing the Sibuya-Malgrange type theorem (of cyclic version),
(Theorem 8.4 and 9.3). Note that sheaves so far defined are local objects
making sense only around k=oo.

The sheaf Diff.,, which is identified, as a set, with gl(n, a{1/k}) (see
Definition 4.2), is so “large” that the following problem naturally arises:
Find a subset X Diff.. as “small” as possible so that

(0.4) Gauge.- X =Diff.,

holds, (Problem 11.1). If this is solved, then, in view of the bijection
(0.3), we can conclude that an arbitrary Stokes phenomenon arises from
a differential equation of the class X, much smaller than Diff.. The
latter half of this paper is devoted to this problem and its A-cyclie
version (§11~8§17). In §11 we formulate this problem precisely. Our
choice of the subset X is as follows: Let E,——>R'XP! be a certain
vector bundle such that E, |« (® € R') is a holomorphic vector bundle
over P!, where m is a parameter specifying the type of vector bundle
(an n-tuple of Chern classes). We define X'=Dif™ to be a family of
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partial connections acting on sections of E, whose restriction to
E.| R (a neighbourhood of ¥=e in py are identified with elements of Diff*. Then
Diff™ can be regarded as a subsheaf of Diff.. in a natural way. Con-
trary to Diff., Diff "™ is a global object, so the latter is much smaller
than the former. In fact, their “sizes” are

Diff..=a>, Diff'™=aqa’ for some /< +oco,

(see Remark 11.9). In §12 we define the sheaf Stokes’——R' of global
Stokes phenomena and the sheaf Gauge™——R' of global gauge trans-
formation group, where an element of Stokes™ is a cohomology class
defined over J X P, with J an open set in R*. We establish the injection
Gauge™\ Diff ™ —— Stokes'™ (not surjection). After a preparation of some
results from deformation theory for holomorphic vector bundles over P*
(§13), we shall establish the identity:

Gauge.,- Diff = Diff., (Theorem 14.2)

in §14. §15-17 is devoted to the A-cyclic version of the above problem.
We formulate the problem in §15 and establish in § 16 the following
equality :

GaUGeos, 4-cyeric” DUF L eyeric = St0keSw, a-cyotic-
Finally, in § 17, under the condition (0.1) we establish
GAUGCos a-cyeric* VL= StokeS e, 4-cyotior
which contains the following equality as a simple corollary,
GAUGCor, 4-cyeric” DT ™ = Stokes., 4-cyeticr

where m=(0,1, ---, n—1).

§1. The sheaf of germs of asymptotically developable functions containing a
parameter

The sheaf (A——S' of germs of asymptotically developable functions
of one variable was defined essentially by Sibuya [30] and definitively by
Malgrange [24]. In a similar manner, we shall define the sheaf A——
R'XS' of germs of asymptotically developable functions containing a
parameter, where R'={x} denotes a parameter space. In this paper we
always assume that an asymptotic expansion is uniform with respect to
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a parameter on any compact subset, so we do not indicate it explicitly
in what follows. Although the concept of uniform asymptotic expansion
of a function containing a parameter has been developed and used by
several authors (see e.g. Wasow [35], Majima [21]), it is still worthwhile
to define it in a manner suitable for our aim.

As usual, let @ be the sheaf of germs of holomorphic functions over
any complex spaces, and a——R' be the sheaf of germs of real analytic
functions over R', i.e. a is the sheaf associated with the presheaf R'D
J——a(J) with

a(J)=lim O(V),
—

VoJ

where V is a complex neighbourhood of .J, and the inductive limit is
taken in terms of the natural restriction mappings. Let a[[t]]|—>R' be
defined to be the sheaf associated with the presheaf

R'DOJ—a[[t]](J) = li_)m O(V)IIt),

voJd

where O(V)[[t]] denotes the ring of formal power series with coefficients
in the ring O(V) and the induective limit is as above. The sheaf a[[¢]]
will be called the sheaf of formal power series containing a paraieter.
Moreover let a{t}——R' be the sheaf associated with the presheaf

R'DJ——a{t}(J)= lim QUXYV),

—
UbJ,V30

where the variable ¢ is regarded as a (complex) coordinate at the origin
in V. The sheaf a{t} will be called the sheaf of convergent power series
containing a parameter. Note that the sheaves a[t]] and a{t} are defined
so that their elements depend *“‘uniformly” on the parameter z € R'. In-
deed, for an element f=3 c,(x)t™ € q[[t]], all the (real analytic) coefficients
c.(x) are analytically continuable to a common complex neighbourhood
and, if f€aft}, then it converges uniformly in x in this common neigh-
bourhood.

REMARK 1.1. The sheaves q[[t]], a{t} and the projection =:R'XS!
—>R' induce the sheaves z*q[[t]]|—>R*XS' and r*a{t}]—R*XS'. In
spite of an abuse of notations, but for simplicity, we also denote the
latters by a[[t]] and a{t} respectively.

Now we define the sheaf of germs of asymptotically developable
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functions containing a parameter. Let us set

S'={tec; |t|=1},
S(r, Uy={t € C\J0}; |t| <7, t/|t| € U},

where >0 and U is an open set in S

DEFINITION 1.2 (A—R'XS"). Let J be an open set in R, V a
complex neighbourhood of J, r a positive number and U an open set in
St We say f(x,t)€ A(V,r, U) iff the following conditions are fulfilled.
(i) flz, t) eO(VXS(r,U)),

(ii) There exists a formal power series f= i fa@)t"eO(V)[[t]] such

m=0

that, for arbitrary M & N, an uniform estimate
M
| fla )= 3 fala)t™ SCult**,

holds for (x,t)€ VxXS(r, V), where Cy is a constant depending only on
M.

Then we say that f(x,t) is asymptotically developable to f in VX
S(r, V) as t tends to zero, and denote this situation by

f@t)~f= 2 fal@t® (S(r,V)3t—0,z€ V).

The formal power series f is called the asymptotic expansion of Sflx, t).
Next, let us set

AT xU)= h_m} AV, r,U),

r>0,VDJ

where the inductive limit is taken in terms of the natural restriction
map AV, v, U)—>A(V,r,U) with ">r>0 and V'DV>DJ, complex
neighbourhoods of J. Since the set of all subsets in R*XS! of the form
JXU with J open in R' and U open in S* forms a basis of open sets in
R'xS!, the correspondence JXU+—— A(JxU) defines a presheaf over
R'xS' which satisfies the sheaf condition. The associated sheaf will be
denoted by

A—R'x S,

and called the sheaf of germs of asymptotically developable functions
containing o parameter. For an element fe A(JXU), its asymptotic
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expansion fe€a[[t]](J) is uniquely determined. This situation is denoted
by
f~Ff U3t—0,2¢J).

REMARK 1.3. a{t}(J) = AT X SY).

PrOPOSITION 1.4 (Wasow [Theorem 9.4, 35]). If V and V' are com-
plex mneighbourhoods of an open set JCR' and V'€V (relatively compact),
then the following diagram is well-defined and commutative :

AWV, U) 22 o
al Ja
AWV 7, U) 222 o e]),

where 0=d/dx is a differentiation with respect to the parameter.

COROLLARY 1.5. By taking an inductive limit, we obtain from Prop-
osition 1.4 the following commutative diagram of sheawves:

uq asympt. a[[t]]

; J J ;
Jl asympt. a[[t]]
ProOPOSITION 1.6 (Borel-Ritt type theorem, Wasow [Theorem 9.6, 35]).

Let V and V' be complex meighbourhoods of an open set JCR' with
V'eV. Let r>0 and U be open in S'. Then, for an arbitrary formal

power series f(x,t)= f;ofm(x)t'" eO(V)[t]], there exists an element f(x,t) €
AV, r,U) such that
f@, t)~f(@,t) (S, U)d3t—>0,2€ V).

CorROLLARY 1.7 (Borel-Ritt short exact sequence). From Proposition
1.6, there is induced a short exact sequence of sheaves

incl.

1—GLmn, A)u— S GLn, A" G L, a[[t]]) —1,

where
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GL(n, A)u={F € GL(n, A); F~the identity matriz in GL(n,C)}.

REMARK 1.8. Corollary 1.5 and 1.7 are fundamental for asymptotic
analysis for functions containing a parameter. Recall that a key to
Proposition 1.4 is the Cauchy’s inequality. Thus, if we defined a sheaf
A—>R*x S' (smoothly dependent on a parameter) naively by using the
sheaf &——R" instead of a——R", then Corollary 1.5 would break down.
Hence, when we discuss it in a smooth category, we must modify the
definition of A so that Corollary 1.5 and Corollary 1.7 are simultaneously
valid. It is one of the difficulties in working with &, which, in fact,
can be overcome. However, we shall not go further to this matter (see

§0).
§2. Sibuya-Malgrange theorem for the sheaf A—R'XS"

Sibuya [30] and Malgrange [24] proved a kind of vanishing theorem
which plays a central role in asymptotic analysis, (see also Majima [21]).
They used it, among other things, for a study of a classification problem
of systems of linear ordinary differential equations with an irregular
singular point, or the Riemann-Hilbert-Birkhoff problem of local version
concerning Stokes phenomena. In this section, following the idea of
Malgrange [24], we shall state a similar theorem for our sheaf A—
R'xS!, which we shall utilize for a study of a classification problem of
systems (or single higher-order) linear ordinary differential equations
containing a singular parameter, or the Riemann-Hilbert-Birkhoff problem
of local version concerning Stokes phenomena with respect to a param-
eter.

To state the theorem we make some preparations. We start with
defining the sheaf 9——R'XS' in a similar manner as in the sheaf
A—rR*x S

DEFINITION 2.1 (9—>R'xS"). Let J be an open set in R, V a
complex neighbourhood of J, r a positive number and U an open set in
St We say f(x,t) € D(V,r, U) iff the following conditions are fulfilled.

(i) feC=(VxS8(r U)),
(ii) f(-,t)€O(V) for arbitrary fixed t€ S(r, U),
(iii) There exists a formal power series

f@t)= 5 fuwl@tt OV, H]

m,m’=0



264 Katsunori IWASAKI

such that, for arbitrary M e N, a uniform estimate

[fl@ t)— 3 S (@t < Cult*

m+m’'s

holds for every (z,t) € VXS(r, U), where Cy is a constant depending
only on M.

We call f(x, t)€O(V)[[t t]] the asymptotic ewxpamsion of the function
f(x,t) and denote this situation by

f@, t)~F(x,t) (S, U)dt—0,2€ V).

Now let us set
DJIxU)= lim P(V,r,U),
—

r>0,VDJ

where we take the inductive limit in the same way as above. Hence
we obtain a presheaf R'XS'DJXU——9D(J X V). The associated sheaf
will be denoted by

D—rR'X S
To an element f€ 9(J X U) there corresponds an element f(x, t) € a[[¢, £]]()
as its asymptotic expansion. We denote this situation by
f~f (Ust—0,z¢J).
Notation 2.2.
gl(n, 9),={f€gl(n, 9); f~the zero matrix in gl(n, 9)},
GL(n, 9)={F € GL(n, 9); F~the unit matrix in GL(n, 9)}.

tE

In what follows, “z” always denotes the projection

7T: R'XS'—>R.

Recall that, from a (non-commutative) sheaf F——R'xS’, the sheaves
Rir(F)—>R' (1=0, 1) are derived.

DEFINITION 2.3. To state the Sibuya-Malgrange theorem, we define
an equivalence relation between two elements in I'(J, R'z(gl(n, 9),)) as
follows, where J is an interval in R*: For A and Be I'(J, R°z(gl(n, D),)),
they are said to be equivalent iff there exist @ and ¥ ¢ I'(J, R°z(GL(n,
9))) such that
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(i) (3/of)@=A®, (3/ot)¥ =BY,
i) @ eI, Rz(GL(n, D)iy)).

REMARK 2.4. In what follows, we shall mainly use the variable k&
instead of ¢, where we always assume the relation ¢t=k"'. Thus t=0
corresponds to k=co and f~f (U3k—>co,x € J) stands for f~f (U3¢
—0,2€J), where U is open in S' and U'={§;£e€U}.

THEOREM 2.5 (Sibuya-Malgrange type theorem). Let ICR* be a com-
pact interval, then the following commutative diagram of bijections is
valid:

GI(n, a{1/k})(I)\GL(n, o[[1/k]])(I)

a
,BJ I'I, R'z(GL(n, A)y))

P
(I, Rex(gl(n, D))/~

Here a, B and y are maps defined as follows: Let U={U}i.s be a
various covering of S' which may be chosen according to our necessity.
«) For an arbitrary coset GL(n,a{l/k})(I)-F(x, k), it is shown by Prop-
osition 1.6 that there exists @.(x, k)€ '(IX U, GL(n, A)) (1€ 9) such that

D(x, k)~F(x, k) (U >k—>oc0,x€l).
Then we assign this coset to a cohomology class to which the cocycle
(070, on IXU,NIXU;}€Z(IXU, GL(n, A)iglIxSY

belongs. This correspondence does not depend on a choice of {@.} and a
representative F of the coset, and defines a map a.
B) For an arbitrary coset GL(n,a{l/k})(I)-F(x, k), it ts shown that
there exists a ¥(x, k) € '(IXS', GL(n,9)) such that

U(x,k)~F(x, k) (S'3k—oc0,x€1).

Then we assign this coset to an equivalence class defined in Definition
2.2 to which

A=—T"@/ot)¥ e I'(I, R'z(gl(n, D),))

belongs. This correspondence does mot depend on a choice of ¥ and a
representative F of the coset, and defines a map B.
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y) Let A be a representative of an arbitrary equivalence class in
(I, Rz(gl(n, D)y)/~. Then it is shown that there exist ¥, € I'(IXU,,
GL(n, D)) (1€ I) such that

(0/0D)T = A(x, k)¥..

Note that 7, is holomorphic in k€ U;NU,. Then we assign the.equiv-
alence class containing A to a cohomology class to which the cocycle

{7, on IXU,NIXU} € ZNIXU, GL(n, A)ig|IX S

belongs. This correspondence does mot depend on a choice of {¥} and a
representative A, and defines a map 7.

COROLLARY 2.6. The statement of Theorem 2.5 is equivalent to the
assertion that the inclusion map

inel.

r'(I, Rz(GL(n, A)))—> (I, R'z(GL(n, A)))
s trivial, and the both are valid.

It is valuable for later argument to recall how the maps « and y
are derived.
a) By the Borel-Ritt short exact sequence (Corollary 1.7), we deduce a
cohomology long exact sequence (see Giraud [14])

1—>1—>GL(n, a{l/k})(I)—>GL(n, o[[1/k]])
O SHIX S, GL (1, Al I x S)—H' (I X S', GL (1, A)|Ix SH)—s - - -
From the coboundary homomorphism &, the map
a:GL(n, a{l/E})(I)N\GL(n, o[[1/k])(I)—>I"'(I, R'z(GL(n, A)))

is induced. In particular, « is injective. The above long exact sequence
also proves the first half of Corollary 2.6.
) We have a short exact sequence of sheaves:

inel.

1—GL (1, A5G L0, D)a—isglin, D)y—0,
where the map 7 is defined by
J@)={(@/e)TW e gl(in, D), for ¥eGL(n, D).

This is a fine resolution of GL(n, A)q and in particular
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HYIXS', GL(n, 9)q|Ix S")={trivial element}.

Thus, from the above short exact sequence, we deduce a cohomology
long exact sequence

1—>I'(IX S, GL(n, D)ig|I X Sl)—j>F(I>< S, gl(n, D),|Ix S
O LHY(IXS', GL(n, A)gl I X S)—1.
The coboundary homomorphism ¢ induces a map
r: (I, Roz(glin, D)o))|~—I'(I, R'z(GL(n, A)))-.

The long exact sequence shows that y is bijective.

§ 3. Sibuya-Malgrange theorem of cyclic version

In this section we shall establish a version of the Sibuya-Malgrange
Theorem (Theorem 3.4) when a ecyclic group Zy acts on sheaves with
which we are concerned. The precise definition of this action will be
given in Definition 3.1 and 3.3. This theorem will play an important
role, among other things, in a classification of higher-order single ordinary
differential operators of the form: L=0"+a,(x)0" '+ - - - +a,(x) (Definition
17.2). The argument in this section remind us of Hilbert Satz 90 (cf.
Artin [1]). See also Sibuya and Camaron [12] and Massing and Sibuya
[26].

Let N=1 be a fixed integer and A be a fixed matrix such that

A€GL(n,C), A¥=id.

DEFINITION 38.1. GL(n, a[[1/%T]) 4-cpotic
={f(x, k) € GL(n, o[[1/k]]; f(x, wk)=Af(x, k) A"},
GL(n, a{1/k}) 4-eyerse =G L (1, a[[1/k]]) a-cyeric N GL(m, a{1/k}).

Here w is a primitive N-th root of unity.
DEFINITION 3.2. We say that U, a covering of S, is N-cyclic iff
oUeU  for any Ue .

DEFINITION 3.3. Let o€ R'n(GL(n, A)) and suppose that ¢ is a germ
at € R. Then ¢ is said A-cyclic iff there exist an N-cyclic covering
U of S'and a cocyele {Syv(x, k) on IXUNIXV;U, VeUle Z{IxU,
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GL(n, A)) which represents the cohomology class ¢, where I is an interval
containing x,, such that the following condition holds:

Sov,ov(®, 0k)=ASy v(x, K)A™ in IXUNIXYV.
We employ the following notations

R7(GL(M, A))s-cyorio=10 € R'n(GL(n, A)); ¢ is A-cyelie},
ﬂ{ln'(GL(n, J)id)A.WWZQIE(GL(n, uzl)id) ﬂ RIE(GL(’I’L, J))A-c‘yclic'

THEOREM 3.4 (Sibuya-Malgrange theorem of cyclic version). Let
ICR' be a compact interval, then we have a canonical bijection :

GL(1, a{l/E}) a-oporic NG L1, al[1/E]]) a-eperic
>_f_»]’(I, Rz(GL(n, A)ia) a-eyeric)-

Here the map a s defined as follows: Let U be an appropriate N-cyclic
covering. For an arbitrary coset GL(n, a{l/k})s-cpeic(l). Fl(x, k), it s
shown that there exist @y(x, k)€ I'IXU, GL(n, A)) (UeU) such that

Oy(w, k)~F(z,k)  (Udk—> o0, z€I)
B,u(w, 0k) = ADy(x, ) A~ in IXU.

We assign this coset to a cohomology class in Rz(GL(n, A)ig)a-cperic to which
the cocycle

(05'@y on IXUNIXVYEZIXU, GL(1, Aig) a-cyetic

belongs. This correspondence does mot depend on a choice of {@y} and a
representative F of the coset, and defines a map a.

COROLLARY 3.5. The statement of Theorem 3.4 is equivalent to the
assertion that the inclusion map

incl.

(I, Ra(GLn, A)ig) a-eperic) =L Ra(GL (1, A)) a-cperic)
s trivial, and both are valid.
To prove the theorem, we use the following lemma.
LEMMA 3.6. Let ICR. If G(x,k)€GL(n,a{t})(I) satisfies
(3.1) Gz, o 't)G(z, 0" %) - - - G(w, t) =id,
then there exists an F(x,t) € GL(n, a{t})(I) such that
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(i) F(x, ot)G(x, t)=G(x, 0)F(x, t),

G(x, 0)" 7G(x, & 't)G(x, &%) - - G(, t)

M=

PROOF. F(x, t)=

1

2=
1§

is an answer. Indeed, the condition (i) is directly checked by using (3.1).
Letting ¢t=0 in (3.1), we obtain G(z, 0)"=id. and hence F'(z,0)=id., the
condition (ii).

ProoF OF THEOREM 3.4 AND COROLLARY 3.5. By using Borel-Ritt
theorem and doing some extra work, we can easily show that the map
a “defined” in the statement of the theorem is actually well-defined. A
composition of « with the inclusion I'(I, R'7(GL(n, A)ia)a-eyerii—
I, Rz(GL(n, A)) coincides with a map which was denoted by « in
Theorem 2.6. Hence « is injective. Now we shall show that « is sur-
jective. Given an arbitrary element o of I'(I, R'n(GL(n, A)ig)a-cyeric)s
there exists a representative cocycle

{Su’v<x, k) on IX Uﬂ IX V} e Zl(IXCU, GL(ny L}q)id)A-cych!

where U is an N-eyclic covering of S*. Then, by Theorem 2.5, there
exist Ty(x, k) e F(IXU, GL(n, A)iw) (UeU) such that

(3.2) Uy(x, k)Syv(z, k) =T y(z, k) in IXUNIXV.
Since Sy y~id., we have likm Uy(x, k)= lim Ty(x, k) (=: T (x) € GL(n, a)(I)).

k- V3k—oo

Replacing ¥y(x, k) with T(x)¥y(x, k), if necessary, we may assume

Tylw, 00)= lim Vyle, k)=id.

On the other hand, we have

3.3) ¥, y(@, ok)ASy (@, k) =T (2, 0k)S,p..v(®, 0k) A=T (%, wk) A
in IXUNIXYV.

Combining (3.2) and (3.3) we find that
U@, k) AT y(x, k) '=T v (x, 0k) AT y(x, k)™ in IXUNIXV.

Hence, an element G(x, k) € GL(n, a{1/k})(I) is defined by setting G(z, k)=
U,u(x, ok) AT y(x, k) if (x, k) € IX U, whence

(34) V(@ k) A=G(z, k) y(z, k) (keUeU,zel).
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From this we have G(x,0)=A since ¥,(x,o)=id. It follows from
the assumption AY¥=id that ¥Ty(x, k)=¥ vy(®, 0"k)AY=G(x, 0¥ k).
T y-y(w, oV k) AV = .. =Gz, 0" k) - -Gz, k) - Uyl k), ie.,

Gz, 0" k)G (%, 0V 2%k) - - -Gz, k) =id.

Therefore, applying Lemma 3.6 to (3.4), we find that there exists an
F(x,k) € GL(n, a{1/k})(I) such that

F(x, ok)G(w, k)= F(x, k).

Now let us define @y(x, k) € '(IXU,GL(n, A)) (UeU) by
Oy(x, k)=F(x, k)T y(x, k) in IxXU.

Then we find that

Oy(x, k)Sy v(x, k) =Dy (x, k) in IXUNIXYV,
D u(x, wk)=F(x, 0k)¥ ,u(x, ok)
=AF(x, k)G(x, k)™ G(x, E)¥ y(x, k) A
=A0y(x, k)A™! in IXU.

Hence the asymptotic expansion @(z, k) € GL(n, a[[1/E]])(I) of @y(x, k) is
independent of Uec U and A-cyclic. In view of the method of construe-
tion, it is evident that « maps the coset GL(n,a{l/k})(I)-@(x, k) to the
cohomology class o, which shows that « is surjective. Hence the theorem
is proved.

§4. The sheaf Diff,——R' and formal solutions

In this section we shall define the sheaf Diff,——R' of germs of
matricial differential operators containing a parameter & which have a
simple pole at k=oco with a given residue P. We also discuss formal
solutions of differential equations defined by an elements of Diff... In
the following argument, we always keep a matrix P fixed, so that we
does not indicate explicitly the dependence on P. We assume that

4.1) Pegl(n,C): semi-simple.
Note that, then, for any C-algebra R,

ad(P) € End(gl(n, R)): semi-simple.
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Let us set
gl(n, R)’=Kernel[ad(P) : gl(n, B)—>gl(n, R)],
gl(n, R)” =Image[ad(P) : gl(n, R)—>gl(n, R)].

Since ad(P) is semi-simple, we have

gl(n, R)=gl(n, R)'®gl(n, R)",
ad(P)”=ad(P)|sm,x € GL(gl(n, R)").
Let
I’ : gl(n, R)—gl(n, R)’, T1”:gl(n, R)—>gl(n, R)"”

be projections with respect to the above direct sum decomposition and
denote

F'=11'F, F'=11"F for F'€gl(n, R).
Moreover we note that

gl(n, R)'gl(n, R)"=gl(n, R)"gl(n, B)'=gl(n, R)",
al(n, R)’: a sub-algebra of gl(n, R).

Notation 4.1 (Derivation D). We define a derivation D acting on
a space of m-by-n matrices with entries depending on x and %:

D=d—kad(P), d=d/dw.

DEFINITION 4.2 (Diff.—R"). For JCR', let f-Diff..(J) and Diff,(J)
be the following sets of differential operators:

f-Diffu(J)={D—q(x. k); q(=. k) € gl(n, a[[1/K]])(] )}
Diff(J)={D—q(, k); q(=, k) € gl(n, a{1/k})(J)}.

Since D—ql(x, k) is determined uniquely by q(x, k), the both will be identi-
fied. Sheaves associated with the presheaves J——f-Diff..(J) and J—>
Diff..(J) are denoted by f-Diff,— R' and Diff..— R" respectively. Note
that Diff.. depends on the matrix P. Thus we denote it by Diff, » if
we have to clarify the dependence on P.

Next we shall define a sheaf to which formal solutions to our dif-
ferential equations (see (4.2)) will belong.
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DEFINITION 4.3.
GLa(n, o[[1/k]]) = {W: f;o W)™ € GL(n, af[L/k]]); Wo(x) € GLin, a)'}.
Here, for a C-algebra R, we define
GL(n, R)’=GL(n, R)Ngl(n, R)'.

LEMMA 4.4. Let D—q(x, k) € f-Diff..(J) and W(z, k) € GL(x, a[[1/k]])(J).
If Wi(x, k) is a formal solution of the differential equation

(4.2) DW=q(x, k)W,

then W(x, k) € GLy(n, a[[1/K]))(J). Moreover, if we develop q and W into
Jormal power series of 1/k:

8

a(z, k) Gu(@)k™, Wiz, k)= 20 Wo()k™,

0

]

then we have the following reccurence formulas.

Wo 6 gI(n; a),v aWOZqSWDy
m—1
@—a) Wh=(q. W7) + Py (@u_W.) (m=1),

ad (P)' Wi, =0Wi— ¥ (quW.)"  (m=0),

=0
where the order of successive determination 1s
WOv {,y {7 é,, é! D) W:n/! W:n,y ctt.

Transition from W' to Wi, is unique since ad(P)” is injective, whereas
that from W' to Wi depends on a value Wh(x,) €C at x,€J.

THEOREM 4.5. For an arbitrary q(x, k)€ f~-Diff.(J), there exists a
formal solution of the equation DW=q(x, k)W, which belongs to
GLy(n, a[[1/E1)(J). Let W(x, k) be an arbitrary formal solution, then the
set of all formal solutions coincides with the coset W(x, k)-GL(n, C[[1/k]]).
Conwversely, for an arbitrary coset of GLy(n, a[[1/k]])(J)/GL(n, C[[1/k11)'(J),
let W be a representative of this coset and set q(x,k)=(DW)W™. Then
q(z, k) is determined only by the coset, independent of a choice represent-
ative W and belongs to f-Diff..(J). Namely, we have the following
bijection :
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S-Diffo(J ) >—>»G Lo(n, a[[1/E]])(J)/GL(n, a[[1/k]])'(])
w w
q(x, k) ——set of all formal solutions of DW=qW.

Proor. We shall check the fact that any formal solution is just
obtained by multiplying an element of GL(n,C[[1/k]])’ on the right of a
given formal solution W. Indeed it is clear that W=WC with
CeGL(n, C[[1/k]])) is again a formal solution. Conversely, for any other
formal solution W, there exists a matrix C=C(x, k) such that

W=WC, Clx, k)= Z; C..(x)k™™ € GL(n, a[[1/k]]) (J) N KerD.

Thus, if x, is an interior point of J, then we have
(4.3) C(z, k)=C(, k)’ +exp {k(x—2x,) P}C(xo, k)" exp { — k(x —x,) P}.

Let C{t, ---,t> be the set of formal Laurent series in ¢, ---,¢. The
above equality make no sense in gl(n, C{k)), where x € J being fixed, but
make sense as an equality in gl(n, C{k, x—x,)). Under this interpretation,
it is rewritten as

T S S L R e AN AL

n20 m<L0 n! mg0

+ Z E Dn,n—m(x—wo)"km’

220 n—m20

where

D, .= (—1)* : P"_”Cm(xo)”P" (n=m=0).

vl (n—y)!

T
i
i

By comparing the coefficients of (x—x)"k™ (n=m=0) in (4.4), we find
that

D,.,.=0 (m=m=0).

On the other hand, we can easily see that exp{t ad(P)}C, (z,)" = i D, .t
0

n=

whence exp{tad(P)}C,(x,)” is a polynomial in ¢ of degree at most m.
Therefore,

ad(P)"*'C,,.(x0)"” = (d/dt)™** exp{t ad (P)}C,, ()" | 1=o=0,

Since ad(P) is injective on gl(n, C)”, this shows that C,(x,)”=0 for m>0
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and then C(x,, k)”=0. Hence, by (4.8), C(x, k) =C(x,, k)’ € GL(n, C[[1/k])).
This proves the theorem.

§5. The sheaf Diff., 4..pi,—>R' and A-cyclic formal solution

In this section, we shall make a similar argument as in §4, when a
Zy-action is present. We have introduced matrices A€ GL(n,C) with
AV=id, (§3) and Pegl(n,C), semi-simple, (§4).

HypoTHESIS 5.1. We assume that the matrices A and P satisfy the
following relation:
oP=APA™,
where o is a primitive N-th root of unity.
For the derivation D introduced in Notation 4.1, we set
D°=9—wk ad(P).
Moreover, let iy be defined by
i€ GL(gl(n, R)), is,F=AFA™ (Fe¢gl(n,R)).
Then, under the Hypothesis 5.1, we have
D°=i,Dij".
DEFINITION 5.2.
S-Diff o a-cveric=1{a(@, k) € Diff; q (2, 0k) = Ag(x, k) A7},
Diff o, a-cveric = Dilfoc N f-Ditff o, 4-eyeticr

GLo(n, a[[1/K]) a-cyerie={ W (@, k) € GLo(n, a[[1/k11); W (x, wk) =AW (x, k) A7},
GL(n, CI[1/k]]) 4-rye:e=GL{n, CI[1/K]])" N G Lo(n, a[[1/k]]) a-cuetic

For q¢€f-Diffeo s-cyoticr if a formal solution W of the equation DW=qW
belongs to GLy(n, a[[1/k]]) 4-epetir» then W will be called an A-cyclic formal
solution.

THEOREM 5.8. Let J be an open interval. For an arbitrary q(x, k) €
S-Diffn acparic(J), there exists an A-cyclic formal solution Wi(x, k)€
GLo(n, a[[1/k1)) a-eyeric(J) of the equation DW=qW. As that in Theorem
4.5, we have the following (well-defined) bijection
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f'Diﬁ‘W,A-cwlic(J)P—»GLO(/"" a[[l/k]])A-euclit(J)/GL(n' C[[l/k]])A-cch(J)
w w
q(x, k) ——>The set of all A-cyclic formal solutions of

the equation DW=qW.

Proor. It suffices to show the first half of the assertion of the
theorem. For an arbitrary element q(x, k) € f~-Diffes a-cyeric(J), at any
rate, Theorem 4.5 assures the existence of a formal solution Wi(x, k)€
GLo(n, a[[1/E]])(J) of the equation DW=qW. From the recurrence for-
mula in Lemma 4.4, we may assume that Wi(x, co)=id. at an x,€J.
Replacing k& with wk and taking D®=i,Di;" into account, we obtain from
the above equation

i Diz'W(x, wk)=Aq(x, k) A7 W (x, ok) =iq(x, k)iz'W(z, k).

Hence i;*W(x, wk) is also a formal solution of DW=q(x, k)W. It follows
from Theorem 4.4 that there exists a matrix C(k) € GL(n, C[[1/k]])’ such
that

W (x, wk)=AW(x, k)C (k) A™.

In particular, by W (%, o0)=id., we have C(co)=id. Thus, if we set
C(k)=C(k)A™", then we can rewrite these equalities as follows

(5.1) Wiz, wk)=AW(x, k)C(k), Cloo)=A".

S}nce AY=id.,, tlgs shmzvs thaE W, k) AW (x, ok)=A"Y. W(z, " k)
Cl k)= =W, k)C(x)- - -Cl0"%)C(w" k), whence

(5.2) Ck)C(wk) - - -Clo"%)C (0¥ k) =id.

Thus, if we set

Cll) = 3, Cll) - Clar~)Clar"h) 4* € in, CT1/RI),

then we find that (cf. Lemma 3.6)

C(k)C(wk)=C(k)A™,
C(oo)=id., ie. C(k)€GL(n, C[[1/k]].

On the other hand, by Hypothesis 5.1, C(k)=C(k)A " and C(k) € Ker ad(P),
we obtain the commutation relation PC(k)=wC(k)P. Together with

(5.3)
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PA=w07'AP (Hypothesis 5.1), this shows that

P-Clk)= le ﬁ PCk) - - -Clay~k) A
=L 3 oGl PC(wk)- - -Cloi) 4
N i=1
==L S iCk)- - -l k) PA
N i=1
= zlv é o -0 iC(k)- - -Clo k) AP
—C(k)-P.

This shows that C(k) € GL(n, C[[1/k]])’. Hence Theorem 4.5 implies that
W(x, k)=W(x, k)C(k) is also a formal solution of DW=qW. Moreover
(6.1) and (5.3) implies that W(x, wk)=AW(x,k)A™' holds. Therefore
Wiz, k) is an A-cyclic formal solution to be desired. This completes the
proof of the theorem.

§ 6. Existence of an analytic solution asymptotic to a formal solution

We show in this section that, for any formal solution W(z, k)¢
GLy(n, a[[1/k]]) of an arbitrary q(x, k) € Diff.,, there exists an analytic
solution which is asymptotically developable to W(x, k) as k——oco in an
appropriate sector containing an arbitrary direction.

THEOREM 6.1. Let JCR' be an open interval and x,€J be a point.
Let W(x, k) € GLy(n, a[[1/E]])(J) be any formal solution for an arbitrary
q(x, k) € Diff.(J). Then there exist an open interval ICJ containing x,,
an open covering U of S* and

Wy, k) e TIXU,GL(n, A))  for UeU
such that the following conditions hold:

DWy=q(x, k) Wy n (x, k)€IXU,
Wylx, k)~W(z, k) (Usk——c0,z€1I).

We call such a system {Wy(x, k);Uc U} a fundamental system of solu-
tions for q(x, k) € Diff..

DEFINITION 6.2 (Characteristic sector). Consider the set
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{k € C\J0}; real parts of all eigenvalues of kad(P)"” € GL(gl(n,C)”)+0}.

This is clearly a disjoint union of a finite number of open sectors S with
vertex at the origin. Each member of these sectors will be called a
characteristic sector. The set of all characteristic sectors is denoted by

S.

ProOF OF THEOREM. Since q(z, k) € Diff..(J), we may assume that,
for sufficiently small a,, b,>0 and a sufficiently large >0, there exists
an open set V in C such that

[, — 200, To+2a0] X v/ —1[ —2a,bo, 2a,b,]C V,
q(x, k) € gl(n, O(Vx{|k|>r}).

Let a and b are numbers such that 0<a<a, and 0<b<b, which will be
definitively chosen later. Moreover let us set

. oﬂ,.
o, =x,—2a(1F+ —1b), s

B.=x,+2a(1F+ —1b), %2 v 7 ry+2a
V=(z,—a, %+a)++ —1(=b, b). % \
O_e /9

Let ¢,>¢,>0 be defined by tan¢,=3b and tan ¢,=3/b respectively, then
the following is valid: (See Figure)

+

tpSarg(@—az)s+¢ (xe V),
+o S arg(f:—2)sS + ¢, (xe V).

For p>0 and £<7 we define

S(o; & p)={keC; < argk<y, |k|>p},
S(&, 7)=8(0; &, 7).

In the following argument, we keep an arbitrary characteristic sector
S=S(6,, 0, fixed. Let us set

S+:S(00+¢1, 0+ @), S_=S(00—g00. 0,— 1),
[as, 2]: a line segment joining «, with z,
[z, 8.]: a line segment joining x with 3.,



278 Katsunori IWASAKI

for x€ V. Then we observe that
kx—t)eS if keS,, z€V, tela,, z]U[w, B.]
Since ¢, tends to zero as b does, we can take b=5b(S) so small that
2¢,<6,—0,.
In what follows, we keep such a b=b(S) fixed. Then we see that
S, US_=8(0,— ¢y, 0, +¢,) 28,

namely, S is a proper subsector of S,US._.

We proceed to the second step. Let gl(n, R)Y (resp. gl(n, R)”) be the
direct sum of eigenspaces corresponding to eigenvalues of kad(P)”¢
GL(gl(n, R)”) (k€ S) whose real parts are positive (resp. negative), where
R is a C-algebra. Note that gl(n, R)? are independent of a choice of
ke S and depend only on S. Moreover,

gl(n, R)""=gl(n, R){Dgl(n, R)".
Now we define projections [, as follows:

IT_: gl(n, R)—gl(n, R)'Dgl(n, R)Z,
IL, : gl(n, R)—gl(n. R)Y,

and we set S, (0)=S.N{|k|>p}.

Let Wiz, k) €gl(n, O(V)[[1/k]])(J) be an arbitrary formal solution
for q(x, k) € Diff..(J). If we take an open set V, such that VeV,cV,
then by Borel-Ritt theorem (Proposition 1.6) we can find ¥(x, k)¢
GL(V,xS,.(R,) such that

U(x, k)~W(x, k) (S.(Ro) D k——r00, 2 € V),
where R, is a sufficiently large number. Therefore, if we put
Sz, k)=D¥ —q(z, k)¥ € gl(n, O(Vi X S.(R))),
then we obtain by Proposition 1.4,
(6.1) Sflx, k)~0 (Si(Ro) 9k——>0, € V).

Next we shall show that there exists @(x, k) € gl(n, O(V X S.(R,)) such
that
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DO=q(x, k)O+f(x, k),

6.2) O(x, k)~0  (S.(Ry) Dk——o00,x€ V).

To do this we define an operator L by

(6.3) (LO) (@, k) = S " explk(@—t)ad(P)}I1_O, k)dt

g

+j'” explk(s—t)ad(P)}T1, (¢, k)dt,

By

(weV, ke S.(Ry)),

where the paths of integration are line segments joining o, with  and
x with B, respectively. Moreover, we define an operator M by

MO=L(q(z, k)D).
If we set F=Lf, then, by (6.1) and (6.3), we see that

(6.4) F(z, k) € gl(n, O(VXS.(Ry)),
F(z, k)~0 (S.(R)3k— 00, z€ V).

We provide gl(n, O(V X S.(R))) with the supremum norm | .|z (R>R,) for
it to be a Banach space. The lengths of the paths of integration in-
volved in the operator M are proportional to a. So the operator norm
of M as a linear operator acting on gl(n, O(V X S,(R))) admits an estimate:

[M|z<Clgllza, (BR=R,),

where C is a constant. Let a=a(S) be a fixed number such that
0<a<1/(C|qlle). Then we have

[M]|z< | M|le,<1, (R=R,).
Therefore the integral equation
O=MP+F, ®egl(in,O(VXS.(R)))
has a unique solution, for which an estimate
10l:=(1— M) |1 Flz (RZE)

holds. Hence (6.4) shows that @(x, k)~0 (S.(R,) 2k——c0, x€ V), which
proves (6.2). Now (6.2) shows that W =¥ —@ satisfies

Ws, (2, k) € GL(n, O(V X S.(RY)),
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DWS:‘: =q(w, k) Wsi,
Wsi(w, k) ~W(x, k) (S.(R)3k—c0,2€V),

for sufficiently large R,=R(S)>R,.
So far, we have kept an S¢S fixed. But, from now on, let S run
over the set S of all characteristic sectors. Set

I=(x,—a, x,+a), a=min{a(S); Se S}

For Sc S, let U, (S) be open sets of S* such that S, (R(S))=S(R(S), U.(S)),
and let U be the set {U.(S); S€S}. Then U is an open covering of S
Finally we define W, (Ue<U) as follows:

Wy=Ws, (resp. Ws ) it U=U,(S) (resp. U_(S)).

Then it is clear that the interval I, the covering U of S* and the system
{(Wy(x, k); Ue U} are what are to be sought. This proves the theorem.

§7. A-cyclic analytic solution asymptotic to an A-cyclic formal solution

In this section we assume Hypothesis 5.1 and discuss a similar prob-
lem as in §6 when a cyclic action is present.

THEOREM 7.1. Let JCR' be an open wnterval and x,€J be a point.
Suppose that W(x, k) € GLy(n, a[[1/k]]) a-cyeric(J) be an arbitrary A-cyclic
formal solution for q(x, k) € Diffee a-cyeric(J). Them there exist an interval
IcJ containing x,, an N-cyclic covering U of S* and Wy(x, k) € '(IXU,
GL(n, A)) (UeU) such that

DWy=q(x, k) Wy, (x,k)elIxU,
Wylx, k)~W(x, k) (Usk——c0,x€1),
Woo(x, 0k)=AWy(x, E)A™', (¢, k) e IXU.

_ Proor. By Theorem 6.1, there exist an interval ICJ, a covering
U of S*and Wyl k)e '(IxU, GL(n, A) (TUeU) for which the first
and the second properties of the theorem are satisfied. Let U be the
minimal N-eyeliec covering of S*' which contains qJ. Then the cyclic
group Zy=<w)> acts on U in an obvious way. So we devide U into
orbits with respect to this action. By the minimality of U over ‘f]
each orbit contains at least one element of 9J. Thus we can specify an
element of U as a representative of an arbitrary orbit. If UeU and
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Ueq is the representative of the orbit through U, then U is expressed
as U=w'U for some j€ Z. Then we define W(x, k)€ "IXU, GL(n, A))
as follows

Wy, k) =AWz, 0 k) A,
Since the formal solution W satisfies W(x, wk)=AW(x, k)A™*, we get

Wy, E)~AW(x, 0 k) AT =A7- A" W(x, k)A7- A~
=W(x, k) (Udk— 00, x€l).

Moreover, from the fact that D°=i,Di;' and q(z, k) is A-cyclic, it follows
that
DWy=i,4iD?" (i45) (A Wo(x, 0 k) A™)
=AD" Wo(w, 0 k) A
=Aiq(x, 0~k) Wp(x, 0™) A~
=A Aiq(x, k) AP Wy, 0 k) A~
=q(x, k) Wy(x, k).

Therefore, the interval I, the N-cyclic covering U of S' and the system
(Wylx, k); Ue U} satisfy the first and the second assertions of the
theorem. Moreover, it is clear from the definition of Wy(x, k) that they
also satisfy the third assertion. Thus the theorem is proved.

§8. Stokes phenomena and gauge transformation group

In this section, we define two sheaves: Stokes,—>R!, the sheaf of
germs of Stokes phenomena, and Gauge.— R, the sheaf of germs of
gauge transformation groups acting on Diff... We shall obtain a natural
map Diff.,— Stokes., by assigning q(z, k) € Diff.. to a Stokes phenomenon
arising from a fundamental system of solutions for g(x, k). This map
induces an injection Gauge,\ Diff..—> Stokes... Our goal in this section
is to show that it is a bijection.

DEFINITION 8.1 (Stokes,—R'). We define the sheaf of germs of
Stokes phenomena by

Stokes..=Image [ R'x(GL(n, AN KerD)——s Riz(GL(n, A) N KerD)]

where 4 is the natural inclusion map and =: R'XS'——R' is the projec-
tion.
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DEFINITION 8.2 (Gauge.,—R'). Consider the sheaf of multiplicative
groups over R':

GLo(n, o{1/k}) = {g(x, k)= gogm(x)k"’” € GL(n, a{l/k}); g,(x) € GL(n, 0)'}-

This group acts on Diff,=gl(n, a{l/k}) in the following manner: For an
element g € GLo(n, a{l/k}), let p(g) be defined by

o(g) : Duff, Diff..
w

w
q 1———> gqg '+ (Dg)g™"

This action is called a gauge transformation. The group GL,(n, a{l/k})
regarded as a transformation group in the above sense acting on Diff.,
is called the gauge (transformation) group and denoted by

Gauge,=GLy(n, a{1/k})—> R

REMARK 8.3. For a differential equation DW=q(x, k)W, if a new
dependent variable W is introduced by W=g'W, g€ Gauge., then the
above equation is transformed into

DW={p(g)q}W.
THEOREM 8.4. We have the following bijection of sheaves over R':
Gauge,\ Diff >—> Stokes.,

where the bijection 1is defined as follows: Let q(x, k) be an arbitrary
element of Diff., and be a germ at x,€R. We may assume that
q(x, k) € Diff(J) with x,e JCR. Choose a formal solution W(x, k)€
GL(n, o[[1/E]])(J) of the equation DW=q(x, k)W. Then, by Theorem 6.1,
there exist an interval I (xv,€ICJ), a covering U of S' and sections
Wy(x, k) € I'(IXU, GL(n, A)) (UeU) such that

DWy=q(x, k)Wy, Wy~W (Usk—> 0, xz€I).
From {W,} we have a cocycle
(Syv=Wz'Wy on IXUNIX Ve Z*IXU, GL(n, A)unNKerD),

which represents a cohomology class in I'(I, R'z(GL(n, A)ixNKerD)). Let
g be the ivmage of this cohomology class by the inclusion map

Rz(GL(n, A)iyN KerD)—> Rz(GL(n, A) N KerD) = Stokes...
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Then a map Diff.,— Stokes., is defined by assigning q(x, k) to o. We
note that this map 1s well-defined, i.e. independent of possible choices of
a formal solution W and a fundamental system of amnalytic solutions
{Wy} asymptotic to W. The meaming of the above bijection is that the
map Diff,—>Stokes,, is surjective and that two elements of Diff.. give
rise to a same Stokes phenomenon 1iff they are transformed into one
another by a gauge transformation.

Proor. We devide the proof into three steps: (i) well-definedness

of the map Diff,——Stokes., (ii) well-definedness and injectivity of the
map Gauge,\Diff..—>Stokes,, (iii) surjectivity.
(i): Let W and W be two arbitrary formal solutions of DW=q(x, k) W.
Let {Wylyew and {Wylyew be fundamental systems of solutions asymptotic
to the formal solutions W and W respectively, where €U is a sufficiently
refined covering of S!. Then, if we set Wy,=W,Cy;, we have Cy€
I'(IxU, GL(n, A)NKerD) and

Sov: =W Wy=Cs'W5'W,Cy=C5*SyvCy on IXUNIXYV.

Therefore the two cocycles {Sy.v} and {S,,} give rise to the same coho-
mology class in R'z(GL(n, A)NKerD). This shows that the map Dif.
——Stokes,, is well-defined.

(ii): We first show that, for an arbitrary gq¢ Diff., and g€ Gauge., q
and §=p(g)q give rise to the same Stokes phenomenon. Indeed, if we
choose {Wylycw as a fundamental system of solutions for ¢, then we can
take {Wy;=gWy}ycw as that for . Hence we have S, ,= W' W,=Ws'W,
=Sy.v, which implies that ¢ and § give rise to the same Stokes phe-
nomenon. Conversely, suppose that ¢ and g € Diff.,, give rise to the same
Stokes phenomenon. Namely, we assume that, in the following two
process

gt VY’ {VKU}‘ {su,v= VYEIVKV}y
G—> W—{Wy}—>{Sy,y= W' Wy},

the two terminal cocycles in Z'(IXU, GL(n, A)yNKerD) represent the
same element of R'zr(GL(n, A)NKerD). Then there exist C, e 'IXU,
GLy(n, A)NKerD) (UeU) such that

Su)V:CEISU,VCV in IX Un IX V-

This relation is rewritten as follows
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Wo(WyCy)'= Wy (W,Cy)™  in IXUNIXV.

Hence we can define an element g€ I'(I XS, GLy(n, A))=GL,(n, a{l/k})
(I)=Gauge,(I) by putting g=Wy(W,Cy)™* in IXU, and we have

Wuzg- (WUCU)‘

Taking the fact Cy, € KerD into account, we obtain

7= (DWy) W5*=g(DWy)-Cy(WyCy) g™+ (Dg) (WyCy) (W Cy) g™
=9(DWy-Wy')g™'+(Dg)g ' =gqg ™+ (Dg)g~'=p(g)q.

This shows that the map Diff,,——Stokes,, induces an injection Gauge,, \ Diff-.
—Stokes...

(iii) : Let {Syy on IXUNIXV}€ ZIXU,GL(n, A)ynNKerD) be a rep-
resentative cocycle of an arbitrary Stokes phenomenon o¢. Then, by
Theorem 2.5 and Corollary 2.6, after passing to a refinement of the
.covering if necessary, we can find W,eI"IXU,GL(n, A)) for UeU
such that

WUSU,V: Wy in IXUNIXYV.

Since Sy v(x, k)—id (UN V 3 k—— o), it follows that Wy(x, oo) = Wy (2, o).
Hence, by replacing Wy(x, k) by Wy(x, co)*Wy(x, k) if necessary, we may
assume that Wy(x, oo)=id. ie. Wy(x, k) € 'IXU, GLy(n, A)). Since
Sy.v € KerD, we find that

(DWy) W3'=(DWy)Sy,v(WySy,v) = (DWy) W' in IXUNIXYV.

Therefore an element q(z, k) € I'(IX S, gl(n, A))=gl(n, a{l/k})(I)=Diff..(I)
can be defined by putting q(x, k) =(DW,)W3' for (x, k)€ IxXU. By the
construction, it is evident that q(x, k) gives rise to the Stokes phenome-
non o. This implies that the map Diff..——Stokes, is surjective and
the proof is completed.

§9. A-cyclic Stokes phenomena and A-cyclic gauge transformation group

In this section we assume Hypothesis 5.1.

DEFINITION 9.1 (Stokes, a..peic—>R'). We define the sheaf of germs
of A-cyclic Stokes phenomena by
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incl.

R'=z(GL(n, A)iun KerD) a-eyeus >
——)g{lﬂ' (GL (n, L)zl) N JCGI‘D)A.W,;;;,,

Stokes, 4oy, =Image <

where 7 : R'xX S'——R! is the projection.

DEFINITION 9.2 (GOUQ€w 4.cyic—>RY). We define the sheaf of A-
cyclic gauge transformation groups by

Gaugem,d-cuclic = GLO (nv a{l/k})A-cvclic'

We regard Gaugeé., a..,:.c a8 a transformation group on Diffe 4-cyeii, Where
the action of GaUgew a-cyeric ON Diffeo, s-cyeric is defined to be the restriction
of that of Gauge, on Diff., (see Definition 8.1).

THEOREM 9.3. We have the following bijection of sheaves over R':
Gaugeco,A‘cynlic\Diﬁm,A—cyclic_—)StOkesm,A-cyclic;

where the bijection as defined as follows: Let q(x, k) be an arbitrary
element of Diffw s-cyic and be a germ at x,€ R'. We may assume that
q(x, k) € Diffo peeyeric(J) with x € JCR'. By Theorem 5.3, there exists an
A-cyclic formal solution W(x, k) € GLo(n, a[[1/k]]) a-everic(J) of the equation
DW=qW. Then Theorem 7.1 implies that, for some interval I (x,e ICJ)
and some N-cyclic covering U, there exist Wy(z, k) € I'(I XU, GL(n, A))
for UeU such that

DWy=q(z, k)Wy  in IXU,
Wolx, k)~Ww k)  (Udk— oo,z 1),
Wy, ok)=AWy(z, )A™  in IXU.

Then an associated cocycle {Sy v(x, k)=Wz' Wy on IXUNIXV}e Z'IXU,
GL(n, A)uynKerD) is A-cyclic, i.e.

Sov,0v (¥, 0k)=ASy v(, k) A m IXUNIXV.

Hence this cocycle represents a cohomology class in R'z(GL(n, A)uN
KerD)4..pir. Let o be the image of this cohomology class by the inclusion
map Rz(GL(n, A)NKerD)s.puiem—— R'x(GL(n, A) N KerD)4.prs.  Then
a map Diffe, s-cyeric—>Stokese 4-yic 18 defined by associating q(x, k) to o.
Indeed, this map is well-defined, i.e. independent of possible choices of an
A-cyclic formal solution W and a fundamental system of A-cyclic
analytic solutions {Wy} asymptotic to W. The above map induces a
bijection
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Ga’ugeoo,A-cvclic\Diﬁ'co,A-cvclic ) StOkesco,A-m/olic-

ProOF. The proof is almost the same as that of Theorem 8.1, except
for an utilization of the ecyclic version of Sibuya-Malgrange theorem
(Theorem 3.4) instead of Theorem 2.5 in proving the surjectivity of the
map Diff.. a.cyeric—>St0k€Sw 4-cyeri- Hence we omit the proof.

§10. A Reduction
We introduce the following notations:

Diff’=Image[ad(P) : Diff.—> Diff..1=1{q"; q € Diff..},
Diffl a-cyeric=10"; @ € Diffs, a-cyerichs

Gaugel,=Gauge, N Ker ad(P),

Gaugel, a-cperio=GOUGCeq 4-cyeric N Her ad(P).

Then we have the following:
THEOREM 10.1. Gaugel,- Diff?= Diff.,,
Gau’ge;,A-cyclic * Diﬁ‘{x{,A-cvolic = Diﬁw,A-cyclic'

In particular, any Stokes phenomenon arises from an element of Diff’..
Similarly, any A-cyclic Stokes phenomenon arises from an element of
Diffl a-cyeric-

REMARK 10.2. Diﬁ‘g’A.wc“c = Diﬁ‘;’, n Diﬁw,A.cch.

Proor oF REMARK. Indeed it is clear that the first set contains
the second. Thus we shall show Diff a-cyeric D Diffen, a-cyoric N Diff2.  Let
q(x, k)" € Diff” 4..,0i. be an arbitrary element, where q(z, k) € Diffee, 4-cpetic-
Then there exists an r(x, k) € Diff., such that q(w, k)’=ad(P)r(z, k). In
the cyclic case, we assume the relation wP=APA™" (Hypothesis 5.1). So
we have

Aq(x, k)"A'=ad(APA™) (Ar(x, k) A™")=ad(P){wAr(x, k) A7}

Hence Aq(xz, k)”A*e Diff?. On the other hand, since ad(P)q(x, k)’=
ad(P)q(x, k), we observe that

ad(P)q(x, wk)”=ad(P)q(x, wk)=ad(P)Aq(x, k)A™!
=A{ad(A'PA)q(x, k)}A'=w'A{ad(P)q(x, k)}A™*
=w 'Af{ad(P)q(x, k)"}JA'=0  ad(APA™) Aq(x, k) A™
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=w'ad(wP)Aq(x, k)"A'=ad(P){Aq(x, k)" A™'}.
Since ad(P) is injective on Diff?, we obtain
q(x, wk)’'=Aq(x, k)"A™".

This shows that gq(x, k)’ € Diffus a-eyeric Whence  DiffZ 4. CDIFEN
Diffr. 4-cyeric a8 desired.

Proor or THEOREM. Clearly it suffices to show that Diff..CGaugel, -
Diff”, and Gaugel scypoics DUFL a-cyeric D Diffoo, a-cyerice ' To do this, for any
q € Diff.., let us find G € Diff”? and g€ Gaugel, such that g=p(g)§ holds.
This condition is rewritten as

Dg=qg—94q, g€ Gaugel, §€ Dif”.
Further, it is equivalent to the condition
ag=q'g, 3=97'0"y.

Since Gaugel, forms a (topological) group, the equation 9g=q’g has a
solution g in Gaugel,. If we set §=g '¢”g, then we have q=p(g)§. This
proves the first assertion.

Secondly suppose q € Diffw s-cp1ir then Remark 10.2 implies that ¢’
and ¢” are A-cyclic. Thus we solve an initial value problem 8g=¢’g,
gl.-.,=id. to obtain a solution g in Gaugel s.,u.. Then g=g'¢"g is
also A-cyclic. Hence g € Gaugel, 4.cyis and § € Diff”, 4..,... are what are
to be sought. This proves the second assertion.

§11. Vector bundles over R'XS' and partial connections on them

We established in §8 the bijection Gauge.,\ Diff.>Stokes,, (Theorem
8.4). However, the sheaf Diff., is “too large”, so the following problem
is the next to be considered:

Problem 11.1. Find a representative, which is as “simple” as possi-
ble, of each orbit of the action of Gauge, on Diff.,. In other words, find
a subset X C Diff., as “small” as possible so that

Gauge,- X = Diff.,

holds. If this is solved, them it turns out from the above bijection
that an arbitrary Stokes phenomenon does arise from much smaller class



288 Katsunori IwASAKI

X of differential operators in Diff..

Hereafter, we devote ourselves to consider this problem. We start
with considering the meaning that 2 is as “small” as possible. Recall
that Duff..=gl(n, a{1/k}) is an object whose elements make sense only
around k=co with respect to a parameter k. Thus, if we let X to be
a set of “global” operators defined on R'XP'={z}X{k} whose restriction
into R'X{a neighbourhood of k=oo} belong to Diff., then we can think
of ¥ as a “small” subset of Diff.. More precisely, we let X to be a
set of partial connections satisfying certain conditions which act on sec-
tions of some vector bundle E, over R'xS' introduced below:

Let

m=(my, - -, Mm,), M;€Z, MEM=<-+ M,
be an n-tuple of integers and be
pr: R*X P'—— P : projection.

A vector bundle over R'XP' which is the pull-back of a holomorphic
vector bundle O(m,)®- - -PO(m,) over P' by the above projection will be
denoted by

E.=pr*O(m,)®- - - PO (m,)—> R* X P*,

where O(m) is the line bundle with Chern class m € Z=H?(P!, Z).

DEFINITION 11.2 (O—>R'XPY). Let JCR' and DC P! be open sets.
Put

OJ x D)= lim O(V'x D),

VoJd

where V runs over all complezc neighbourhoods of J. The slleaf associated
with the presheaf JX D——((Jx D) will be denoted by O.
Write P! in the form:

P'=D,UD,, D,:a neighbourhood of k=y in P' (v=0, co).

Then E, is defined to be a vector bundle whose transition relation in
terms of an appropriate fiber coordinates, £=:(&,, -- -, &,) over R*X D, and
p="(n, -+, 9.) over R'XD,, is given by
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k™
e

kmn

DEFINITION 11.3. Let m=(m,, ---,m,), m;€ Z, m;<---<m, be an
n-tuple of integers and P=(P;)cgl(n,C) be a matrix. Then the pair
(m, P) is said to be admaissible iff

’m,-—mj<—1 lmplies P,']'ZO.
The meaning of the admissibility will be clear in Definition 11.4 below
(see also Remark 11.5).

DEFINITION 11.4 (Diff *™——R"). Suppose that (m, P) is an admissible
pair. For an open JCR! set

0(x. k) € gl(n, O)(J X Dy)

> . gu(z. k) € gl(n, O)(J X D)
0@, B)2() =2 (k) (kP -+ ¢, b))

. qo(, k)
Diff ()= q=<
9-(z, k)
We denote by Diff*” the sheaf associated with the presheaf J——
Difft™(J).

REMARK 11.5. In order that Diff'™ is not empty, it is necessary and
sufficient that the pair (m, P) is admissible.

REMARK 11.6. For g€ Diff "™ (J), we can define an operator V, acting
on sections of E,|;x,t by

E—> (0 —qo(x, k))& in JXD,
P—>(0—kP—q.(x k) in JXD.,

where & and » are fiber coordinates of E, over JX D, and J X D,,, respec-
tively. The operator V, is a partial connection whose exterior differential
part acts only along the parameter space R'. Note that V, has a single
pole at k=co with a prescribed residue P.

REMARK 11.7. An element ¢q=%(q,, ¢.) € Diff*"™ is uniquely determined
by a specification of the first (or second) entry g, (or q.). Note that
the second entry q. belongs to Diff., in the sense that ¢, determines an
element D—gq.(x, k) € Diff., and they are identified. Therefore we can
regard that
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Diff'™ c Diff..
Thus we arrive at the following problem:
Problem 11.8. Can we conclude that
Gaugee,r- Diff ' = Diff o » ?
Or, for which pair (m, P) does this equality hold ?

REMARK 11.9. In view of the definitions of Diff., » and Diffe" (Defi-
nition 4.2 and 11.4), we can see that their ‘“sizes” are measured as
follows.

Diff=(a{l/k})" =0, Diff™=d,

for some /€ Z such that 0</<n*(m,—m,+1), where m=(m,, ---, m,),
m=-..-<m, This shows that Dif™ is much smaller than Diff., and
that Problem 11.8 is an exceedingly meaningful problem.

§12. Fundamental system of solutions for Diff‘™, the sheaf Stokes™——
R' and a map Gauge ™\ Dif " —Stokes™

In this section, we shall define the sheaf Stokes™——R* of “global”
Stokes phenomena and consider a map Diff "™ ——Stokes™. This map is
defined by assigning a partial connection in Dif‘™ to a ‘“global” Stokes
phenomenon which is associated with a fundamental system of solutions
of this connection.

Let p: PL——P' be a real blow-up of P' at the infinity. For sim-
plicity, we also denote by p: R'XPL——R'XP' the projection. Then we
can consider that

Pe=(P'\{o}) US?, Pl e =idpi\ e}, P(S?)={o0}.

DEFINITION 12.1 (j——+R‘><P;,). We define a sheaf A over R'XP.
as follows.

uq|R‘><<p1\(oo)> :@In‘xm‘\(mw Jl|R1x51:ulL

The sheaf GL(n, j) is defined in an obvious manner. Moreover the
sheaf GL(n, A)y is defined by

GL(n, chlt)idmlx(Pl\(M):GL(n’ 0) FENPENCRIY
GL(n, qu')idlklxslz GL(n, A)ia.
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Let ¢='(q,, 9) be an element of Diff*” and be a germ at z,E€ R
We consider an equation V,s=0 for local sections s of the vector bundle
E.. This equation is rewritten as

{0—qo(, k)}6=0 in JXD,

JCR
(21)  0—kP—q(wBr=0 in JxD. 7K
§=02(k)y,
where §="(§, ---, &) and p="(p, - - -, 7,) are fiber coordinates of E, over

R'X D, and R'X D,, respectively, moreover, D,=C and D, is a neighbour-
hood of k=oco. Consider a pair (5, H) of fundamental solutions of (12.1)
and transform it into (Z, W) by

H=ZexplkxP), H=Wexp(kxP).
Then we obtain the following system of equations,

DZ={q,(x, k) —kP}Z in J XD,
(12.2) DW=q.(x, k)W in JXD,,
Z=Q(k)W.

Since the first equation of (12.2) has no singularity with respect to the
parameter &k in D, it has a solution

Z(x, k) € T'(JX Dy, GL(n, O)).

It follows from §5 and §6 that the second equation (12.2) has a formal
solution W(x, k) € GLy(n, a[[1/k]])(J) and then has a fundamental system
of analytic solutions {W;} asymptotic to W(x, k), i.e.

Wy(z, k) € I(IXU, GL(n, A)) (Ue),
Wy(x, k)~ Wz, k) (Usk—>o0,zel),

where I is some open interval such that z,€ IcJ and 9J is a covering
of S

Notation 12.2. For a covering U of S, we set U,={D,}UU. Then
U, is regarded as a covering of PL.

DEFINITION 12.3. Such a system {Z, W, (U 1)} mentioned above is
called a fundamental system of solutions for q & Diff™.

The system {Z, Wy (Ue )} satisfies a transition relations
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Z(x, k)Sy(z, k)=2(k) Wy(x, k) in IXD,NIXU,
Wy(x, k)Sy.v(x, k)= Wy(x, k) in IXUNIXYV,

for U, Ve<U, where

Su(@, k) € I'(IXD,NIXU, GL(n, O) N KerD),
Svv(@. k)€ I(IXUNIXV,GL(n, O) N KerD).

(12.3)

These satisfy a cocycle condition:

SUSU,V:SV in IXDonIXUnIXV,
SU,U’SU',U”:SU,U" il’l IX UOIX U, nIX U”.

In other words, we have
{Su, Syvi U, Ve Uy e ZM(Ix Uy, GL(n, A)iy N KerD).

This cocyele determines an element of I'(I, R'#(GL(n, A)u NKerD)). Let
s(q) be the image of this element by the inclusion map R'#ZGL(n, A)gN
KerD)— R'#(GL(n, A) NKerD), where 7#:R'XPL—>R' is the projec-
tion.

DEFINITION 12.4 (Stokes™——R'). We define the sheaf Stokes™ of
germs of global Stokes phenomena by

Stokes™ =Image [R'%(GL(n, A) N KerD) 25 Riz(GL(n, A) N KerD)).
An element s(q) € Stokes'™ 1is called the global Stokes phenomenon of
q € Difft™,

REMARK 12.5. The map Diff*™ 3 q——s(q) € Stokes" is well-defined.
Namely, the Stokes phenomenon s(q¢) does not depend on a choice of a
formal solution W and a fundamental system of solutions {Z, W;}. A
proof of this assertion is similar to that of Theorem 8.4 and is omitted.

DEFINITION 12.6 (Gauge™—R'). We define the sheaf Gauge™ of
gauge transformation groups to be a sheaf associated with the presheaf
J——Gauge™(J), where

Gauge™ (J)={g="(gs, 9..) € GL(n, O)(J X Dy) X G Lo(n, a{1/k}) ();
902 (k) =2 (k) 9o},

where J is an open set in R'. This is a group acting on Diff'™ by



Riemann-Hilbert-Birkhoff problem 293

o(g) : Dy Dygrem (g € Gauge'™)
w w
— (% (909695 + (0g0) 95" )
q <qw> (grmqm.q;,ur(6.<Jroc,)g;1 )

PropOSITION 12.7. The map Diff"——>Stokes™, q—>s(q) induces
an wmjection

Gauge ™\ Diff ™ >—>Stokes™.

PrROOF. Given q and G, suppose that s(q)=s(q). Let {Z, W, (UcU)}
be a fundamental system of solutions for ¢ and {Sy, Sy, (U, VEU)} be a
cocycle representing the Stokes phenomenon s(q). The counterparts for
g are denoted by {Z, W, (UeU)} and {Sy, Su.v (U, VeU)} respectively.
Note that, after passing to a refinement of a covering if necessary, we
can take the covering U,={D,}UU of PL in common for q and §. Then
we have the transition relations,

ZS,=2QWy, ZS,=2W, in IXD,NIXU,

(12.4) WSy r=Wo WeSpw=Wy in IXUNIXYV.

It follows from the condition s(gq)=s(§) that there exist B and C, (U€ <)
such that

SU: BSUCEIy SU,V': CUSU,VC;I’
BeT(IXDy, GL(n,0)NKerD), Cy€ 'IXU,GLy(n, A)NKerD).

By these relations, we find that W,C, Wz'= W,C, W;' in IXUNIXYV.
Hence an element g.. € GLy(n, a{1/k})(I) can be defined by putting g.=
W,CyW5" in IXU. Then we have W,Cy=g.Wy. Since W,Cy is also a
solution of DWy;=@G..Wy and has an asymptotic expansion

WUCUNQOQW (UB k—_}m, Ue CL])’

we can replace WyCy with Wy. Similarly we can replace ZB with Z.
After this replacement, we have S, ,=S,, and S;=S,. Therefore it
follows from (12.4) that

Z8Sy=2Wy in IXD,NIXU, Wy=g.Wy in IXU.

Combined with the relation ZS,=Q2W, (see (12.4)), we observe that
go=2ZZ7" satisfies

900=2Z ' =QW, W52 '=029.27 ¢ GL(n, O)(Ix D).
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Hence, g="(g,, g.) € Gauge'™ and Z=g,Z, Wy=9..Wy. Taking into account
the relations ¢,=0(Ze**%)-(Ze**")?, qu=(DWy)W™ in IXU and their
counterparts for §, we obtain 0(g)(g, ¢w)=(Gs ¢). Conversely, if this
relation holds, then it is easily seen that s(qg)=s(q) holds. Hence the
map Diff "™ ——Stokes'™ induces an injection Gauge" \ Diff ™ —>Stokes™.

§13. Deformation of holomorphic vector bundles over P!

In order to solve Problem 11.8, we shall require some results con-
cerning deformation of holomorphic vector bundles over the projective
line P'. We start with a well-known theorem on the structures of holo-
morphic vector bundles over P

THEOREM 13.1 (Birkhoff [9, 11], Grothendieck [15]). Amny holomorphic
vector bundle of rank m over P! is equivalent to a direct sum of n holo-
morphic line bundles. Any holomorphic line bundle over P! is determined
by ts Chern class€ H*(P', Z*)=Z. Hence, for any holomorphic vector
bundle V of rank n, there exists an m-tuple of integers m=(m,, ---, m,)
such that

V=0m)®- - -PO(m,), m,€Z, m=---<m,.
For a family of holomorphic vector bundles, we have

THEOREM 13.2 (see Kodaira [20]). Let X, (x € R) be a smooth family
of compact complex manifolds and let V,.—> X, (x € R) be a smooth family
of holomorphic wvector bundles. Then the dimension of H*(X, O(V,) is
upper semi-continuous in x for any p.

THEOREM 18.3. Let V,—P' (|x|<x,) be a smooth family of holo-
morphic vector bundle over P'. Suppose that

Vi=0(m)®- - -B0(m,), m<---<m,, m,—m=1.
Then there exists a constant x, (0<x,<x,) such that
V.=V, (|z|<x).

ProoF. By considering the deformation V,®O(—m,—1) instead of
V. if necessary, we may assume that m,=—1. Then V, has no holo-
morphic section, i.e. dim H°(P',O(V,))=0. Hence it follows from Theorem
13.2 that there exists a constant x, (0<2,<m,) such that dim H°(P',O(V,))
=0 for |x|<wx, Therefore, if we write V, for a fixed z (Jx|<x;) in the
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form V,=00)®---@O(,), L<---<Zl,, then we have [,<—1. On the
other hand, since the Chern class of a line bundle does not change under
a smooth deformation, the Chern class of the determinant line bundle
det V, does not change as x varies: c(det V,)=c(det V,). Namely, m,+
ceotm,=hL+---+1,. Let m=#{5; m;,=—1} and n{=4#{j;;=—1}. Then
n—2n=—-2(n—n)—ni=h+-- - +l,=—-2(n—mn,) —m,=n,—2n, since m;=
—2 (j<m—mn,+1). Hence we have n{=n,. Again, by Theorem 13.2, there
exists a constant =z, (0<x,<x,) such that dim H°(P,O(V,)Q0O(1))<
dim H° (P}, O(V,)Q®@O(1)) for |z|<x,. This means that n/=4#{j;,=—1}<
#{5; m;=—1}=mn,. Combined with n{=n,, it follows n{=m, Therefore
we have L+ .- -+, =m+---+m,=—2pand ;£ -2 (1<5<p), where p=
n—n,. Hence we must have I;=m; (=—2,1=<7<p) and then /;=m, (1<
Jj<mn). This shows that V,=V, for |x|<wx,.

REMARK 134. If m<Z---<m,, m,—m,=2, then a deformation
V,—P' with V,=0(m,)P---PO(m,) does not necessarily preserve the
structure even in any small neighbourhood of x=0. Indeed, in this case,
the space of infinitesimal deformations at V,, H'(P', ©O(End(V,))), which,
by Serre duality, is canonically dual to H°(P', O(End (V,)*®QT*P")), is
easily shown to be a non-zero space.

THEOREM 18.5 (see Kodaira [20]). Let p: M——S be a smooth family
of compact complex manifolds and let 7: B—> M be a smooth family
of holomorphic vector bundles over M. Let us set M,=p7}(x) and B,=
n (M,) (x€8). If dimH*(M,O(B.) 1is independent of x€S, then a
natural restriction map:

r,: H (M, O(B))—H* (M., O(B.))

18 surjective. Here O(B,) 1s the sheaf of germs of holomorphic sections
of the holomorphic wvector bundle B,— M, and O(DB) is the sheaf of
germs of smooth sections of the smooth vector bundle B— M such that
their restrictions to B,— M, belong to O(B,).

REMARK 13.6. Kodaira [20] stated the above theorem for a smooth
family. But it will turn out to be true for real analytic family, if the
proof is examined carefully by the method of Kato [19].

THEOREM 13.7 (Parameter-dependence of a trivialization of bundles).
Let n:C)——R'XP' be a real-analytic family of holomorphic vector
bundles over P' and let V,=zn"'(x), (x€ R"). Suppose that 18 @ trivial

%0
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bundle for an x,€ R. Then Theorem 13.3 implies that V, 1s pointwisely
trivial whenever x ts sufficiently near x,, What we assert here is that
there exists a trivialization of V, depending real analytically on the
parameter x in a meighbourhood of x,, More precisely, by the definition
of real analytic family, there exist a mnetghbourhood |x—x,|<r of x, in
R, am open covering {D,, D.} of P!, where D, is a meighbourhood of
k=y (v=0,00), and a transition function

T(x, k) € I'((@o—7, Z+7) X (DyN D.), GL(n, ©))

of the wvector bundle~ V.(|Jx—x| <7) such that T(x, k)=id. Then there
exist @,(x, k) € GL(n, O)((w,—F, 2y+7) XD,), (v=0, oo) such that

oz, k) T, k) =Po(x, k) in |x—a| <F, k€ Dy Do,

where {D,, D..} is an open covering of P* with ve D,eD, (v=0, ) and 7
18 a sufficiently small number such that 0<F<r.

Proor. By Theorem 13.3, the bundle V, is trivial for each |x—ux,|<r
if >0 is sufficiently small. In particular the dimension of H°(P', O(V,))
does not depend on x. Hence Theorem 13.5 implies that the restriction
map

r: DIXPLOEV)—L(PLO(V))  (z€J)

is surjective, where J=(x,—7, %,+7). Let £§='(§, ---,&,) and p="(p, - - -,
n.) be fiber coordinates of C{/ over JXxD, and JXD., respectively with
respect to the transition function T(x, k). Then, since T'(x, k)=id, we
can take m sections of V. whose fiber coordinates are ¢;=*(0, ---, 1, -,

0), (=1, ---,n) over both JXD, and JXD.. Therefore it followsj from

the above surjectivity that there exist ¢, ;(z, k) € (O(JXD,))", (v=0, oo,
j=1, ---,n) such that

T(m, k)gbm,,-(w, k) =¢0,,~(CB, k) in JXDO n JXDoor
&5, k) =¢;  (v=0, o0).

Thus if we set @, (x, k)= ({,..(x, k), -+, d,..(x, k), (v=0,00), then &, be-
longs to gl(n, O®)(JxD,) and, moreover, satisfies det ¥, (x,, k)=1 in ke D.,.
Hence, we can choose an open covering {D, D.} of P' and an interval
J = (x,— 7, x,+7) such that
det ¢,(x, k)#0  in (x,k)eJx D, (v=0, o),
D,eD, D.cD., JclJ.
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Hence @, (x, k)=¥,(x, k)™ € GL(n, O)((mo—F, 2o+7) X D,), (v=0,0) are de-
sired matrices. The theorem is thus established.

§14. A result for the trivial bundle: Gauge,- Diff ®=Diff,

In this section we shall give an affirmative answer to Problem 11.8
in the case where the vector bundle E, defined in §11 is trivial, i.e.
m=(my, ---,m,)=(0, ---,0).

REMARK 14.1. When m=(0, ---,0), the pair (m, P) is admissible for
arbitrary P€gl(n,C). Moreover, in this case, we have

D1 “”:{q:( %o >=< kP+q(x) >; q(x) S g[(nv Cl)}.
e q(z)

THEOREM 14.2. Let Pcgl(n,C) be a semi-simple matrixz. Then

Gauge.- Diff © = Diff..
Namely, the map
Diff® — Stokes.,
18 surjective.

IDEA OF THE PROOF. From the commutative diagram

R'x P, 5
T
incl. T \

Rl, ;S’l_—z)_l o0
R'xS! —7 (),
we have a natural restriction map

r: Stokes™ —> Stokésw.

Let o € Stokes., be an arbitrary element and be a germ at z,€R. We
ask whether ¢ comes from Dif™. The consideration will be made
through the following steps.

(i) We construct an element € Stokes'™ such that r(r)=¢ in a natural
way.

(ii) We ask whether ¢ comes from Diff*™.

(iii) Recall that = represents some cohomology class over a set JXPL,
where J is an open interval containing z,, By making use of Sibuya-
Malgrange type theorem, we “crush” = into a cohomology class over the
space J X P



298 Katsunori IwWASAKI

(iv) By (iii) we obtain a deformation of holomorphic vector bundles
V.— P (zeJ).

(v) If the above deformation is trivial, i.e. does not change the type
of vector bundles, in a neighbourhood of x=x, then it turns out that r
actually comes from Dif™.

(vi) When m=(0, - -+, 0), we utilize Theorem 138.3 to show that the If-
part of (v) is valid, whence Problem 11.8 is affirmatively solved.

ProOF. Let o be an arbitrary element of Stokes. and be a germ at
2, € R*. Then we can choose a representative cocycle of o:

{So,v on IXUNIXV; U, VeUleZ(J XU, GL(n, A)an Ker D),

where JCR' is an open interval containing xz, and U is a covering of
S  After passing to a refinement of the covering if necessary, by
Theorem 2.5, there exist Wy € I'(J XU, GLy(n, A)), (UeU) such that

(14.0) WUSU,V: WV in JX Un JX V.
We define Sy(x, k) in JXDyNJ XU as follows.
Sy(xg, k) = Wu(xg, k),
Sy(, k) =exp{k(x —z,) P}Sy (%, k)exp{—k(x —,) P}.

Then Sy(z, k)€ '(IXD,NJIXU, GL(n,O)NKerD) and {Sylyew satisfies
the cocycle condition

(14.1) Su(x, k)Sy,v(x, k)=Sy(x, k) in JXD,NIXUNIXV.

To see this, if we denote the right-hand side of (14.1) by Sy, k), it
is clear from the definition of Sy(w, k) that Sy, (@ k) =Sy (xe, k). More-
over, both Sy, and S, satisfy the differential equation DS=0. Hence,
by the uniqueness of the solution of an initial value problem, we have
S’U,V:SV i.e. (14.1). Thus we have obtained a cocycle r such that »(c)=o,
where

t={Sy, Sp.v: U, VeU}e Z"IxU,, GL(n, A)un Ker D).
Let us now define T(x, k) »by
T(x, k) =Sy(x, k) Wy(z, k)™ if (x k)eJXUNJT XD,
It follows from (14.0) and (14.1) that
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Su(@, k) Wy(x, k) '=Sy(x, k) Wy(x, k) in JIXUNJIXV NI XD,
This shows that T(z, k) is well-defined and satisfies
T(z, k) € GL(n, O)(JXD,NI XD.),  T(m, k)=id.

Let V, (x€J) be holomorphic vector bundles over P' with transition
function T(x, -) with respect to the covering {D,, D.}. Then a defor-
mation of holomorphic vector bundles over P*,

V.— P (xed), V., =00 - BO0) (n-tuple)

is defined. Therefore, by Theorem 13.8, this deformation is trivial in a
neighbourhood of x=x, Hence Theorem 13.7 implies that, if we choose
a covering {D,, D.} of P' such that ve D,cD, (v=0, ), a sufficiently
small open sub-interval J of J containing w, and rewrite D, J by D,, J
respectively, then there exist @,(x, k) € GL(n, ©)(J X D,), (v=0, co) such that

Oo(x, k) T(x, k) =P(x, k) for (x,k)€JXD€JXD.,.
Combined with the definition of T(x, k), this shows that
Do(z, k)Sy(x, k) = (x, K) Wy(x, k) in JXD,NJIXU

for every UcU. We can regard @ (z, k) as an element of GL(n, a{1/k}).
Then we may assume further that @.(x, k) belongs to GL,(n, a{l/k}) by
replacing @..(x, k) and @,(zx, k) with @ (x, o) - D (x, k) and @ (x, 0o) 'Dy(x, k),
respectively. Thus, if we set Wy(x, k) =@ (2, k) Wy(x, k) € GL(n, A)(J XU),
then

Wy, k)Sy.v(x, k)= Wy(x, k) for (xk)eJxXUNIXV.
From this equality and the fact that Sy, € Ker D, we obtain

(DW) W eglin, A)(JIXU), (Ue),
(DWy)Wz'= (DWy)W5' for (x,k)eJxXUNJIXV.

Hence an elgmerlt d(x, k) € gl(n, @) (JXD,) is (well-)defined by putting
Go(z, k)= (DWy) W3* if (x, k)€ JXU. Similarly

0o, k) = (DB, (z, k)Dy(x, k) +kP € gl(n, O)(J X Dy)
is also defined. It follows from @,Sy= Wy, and Sy € Ker D that
a0, k) =qo(x, k) + kP for (x,k)eJXD,NJXD.,.
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Since ¢, is holomorphic in k€ D,, (v=0, ), we see that q.(z, k) is inde-
pendent of k. Writing q.(z, k) =q.(x), we also have gq,(x, k)=q.(x)+kP.

Therefore,
¢="(qw(x) + kP, q..(x)) € DifFf.

Now it is evident from the construction of ¢ that a cohomology class
represented by the cocycle z is the global Stokes phenomenon € Stokes®
associated with g€ Diyff“. This shows that the map Diff*“—Stokes., is
surjective. In view of the bijection Gauge,\ Diff..>Stokes,, (Theorem
8.4), the above statement is nothing other than the equality Gauge,,- Diff®
=Diff.. Hence the theorem is established.

§15. Fundamental system of solutions for Diff§"),. ., the sheaf
Stokesy)...—R' and a map Gaugel™),....; \Diff & )yei.—>Stokes ")

A-cyclic

In this section we shall make a similar discussion as in §12 in the
cyclic case. Thus we shall hereafter assume that

AY=id,, oP=APA™.

Moreover a multi-index m=(m,, ---,m,) and a transition function 2(k)
=diag(k™, ---, k™) which determines a vector bundle E, will be fixed.
Further we put the following assumption on m and A.

REMARK 15.2. The above assumption is a condition in order that
the matrix Q2(wk)AQ(k)™ is an entire function of &, or equivalently that
the matrices A and Q(k) are commutative.

Notation 15.3. Set
B=Q2(w)A=AR(w).
Note that Remark 15.2 implies that
B=02(wk)AQ(k)™

DEFINITION 154 (Diff{),...—>R"). Let (m, P) be an admissible pair
and satisfies the above mentioned conditions. We define the sheaf
Diﬁfﬁn-‘n)uclic by

Diﬁ.&“—‘c)wlic: {q = <

(Io(xy k)

) e pigee 1<% o= -l BT
¢a(®, k) ’ '

q(x, k)= Bg,(x, k) B™
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DEFINITION 15.5. A covering U,={DJUU of PL=(P"\{oo})US" is
said to be N-cyclic iff U is an N-cyclic covering of S' and D, satisfies
a)DozDo.

DEFINITION 15.6 (Stokesi{"),...—~R'). We define a subsheaf Stokes{")...
of Stokes'™ as follows. Set

C(x, k) =exp(xkP) Q2 (k)exp(—akP) € Ker D.

Let o€ Stokes™ and be a germ at z,€ R. We say that o belongs to
Stokesy™,..;. iff there exist an open interval JC R' containing ,, a suitable
N-cyelic covering U,={D,}UU of P and a cocycle {Sy, Sy,v; U, VeU}
€ ZNJXU,, GL(n, A ).« Ker D) representing the cohomology class ¢ such
that

Sy € MJIXD,NIXV, GL(n, A)un Ker D),
Syv€L(IXUNIXV, GL(n, A)un Ker D),

Sou(®, wk)=AC(x, k)Sy(x, k)A™* for (x, k)€ IXDNJIXU,
S,v.or(®, k) =ASy v(x, k)A™ for (x,k)eJXUEJIXV.

DEFINITION 15.7 (Gaugey.,...—~R"). Let us set

Gaugefan-‘c)wlic: {g: ( 9o > € Gauge(m);

o

Jo(, 0k) = Ag.(x, k)A"‘}
go(x; (!)k) :Bgo(w, k)B_l

We observed in §12 that a natural map Diff*—Stokes'™ is defined.
Similarly we shall show that a natural map Diff§,...—>Stokesi™),.;. is also

A-cyclic
defined. To do this, we state the existence of a fundamental system of
cyclic solutions for g € Dif .-

LEMMA 15.8. Let q=%(q,, q) be an element of Dif{™ and be a

A-cyclic

germ at %, € R'. Let U,={D}JUU be an N-cyclic covering of PL.. Then,
Sfor a sufficiently small open interval J containing x, the system of
differential equations

DZ={q(x,k)—kP}Z  ((x. k)€ JXD,),

(15.1) DW=q.(z, k)W ((x, k) € JX D),

has a fundamental system of solutions Z(x, k), Wy(x, k) such that
ZeGL(n,O)(JXD), Wo€GLyn, )(IxT), (UeU),
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(1) Z(x, wk)=BZ(x, k)C(x, k)*A™ in J XD,
(ii) Wz, wk)=AWy(x, k)A™! m JXU.
(iii) There exists a W(x, k) € GLy(n, a[[1/k]]) a-cyeric(J) such that

Wyl k)~ Wiz, k) (U3 k—oo, z€J).

We refer to such a system {Z, Wy} as a fundamental system of cyclic
solutions.

Proor. The existence of {W,} is already shown in Theorem 7.1.
We shall show the existence of Z(x, k). The transformation

(15.2) B(x, k)=Z(x, k)exp(xk P)
converts the equation (15.1) into the equation
(15.3) 05 =qo(x, k)5.

Let Z(x, k) be a solution of the equation (15.3) having an initial value
Z(x,, k) at x=2x, which is independent of %k and commutative with B.
For example, 5(x, k)=id. will do. By using q,(x, wk)=Bq,(x, k)B™, we
see that B™'F(x, k)B also satisfies the equation (15.3). Moreover,
B™'F(x, k)B has the same initial value at x, as Z(x, k) does. Hence,

g (x, ok)=BE (x, k)B™".

By way of (15.2), this equality leads to the property (i) of the lemma.
This shows the existence of Z(x, k) and proves the lemma.

By using this lemma, a map Dif{,...—>Stokesy),.... is defined in a
natural manner.

DEFINITION 15.9. Let q¢='(qo, q=) € Diff ")yi.. By Lemma 15.8, we
can take a fundamental system of eyclic solutions Z, W, (Ue€U) for q.
Assosiated with this system, there exists a cocycle

{Su. Spv; U, VeUye (I XU, GL(n, A)s€ Ker D)
which satisfies the following conditions

Z(x, k)Sy(z, k) =2 (k) Wy(x, k) for (x, k)eJXD,NJIXV,
Wy(x, k) Sy v(x, k)= Wy(x, k) for (x, k)eJXUNJIXV.

This coeycle satisfies the conditions of Definition 15.6, whence it deter-
mines an element of Stokes{"),..., which will be denoted by s(q) and called
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the global A-cyclic Stokes phemomenon of g. We have thus obtained a
map s: Diff§",..—>Stokes )y, ¢—s(g). As in §12 (see Remark 12.5), this
map is well-defined, i.e. independent of a choice of a fundamental system
of eyclic solutions for gq.

ProPOSITION 15.10. The map s: Dif,ai.—>Stokesy i, induces an
ngection
S Gafuge,(an-‘c)ucuc\Diﬂ‘(A"-‘c)yctic — StOkesfﬁc)yclin-

PrOOF. Proof is similar to that of Proposition 12.7 and is omitted.

§16. A result for the trivial bundle in the cyclic case:
Gaugeco,A-ovclic : Diﬁfto-)cvclic = Diﬁ‘co,Awyclic

In this section we shall answer to Problem 11.8 in the A-cyclic
case. Here we assume that the bundle E, is trivial, i.e. m=(0, ---,0).
Then, note that Assumption 15.1 put no restriction on the matrices P
and A.

REMARK 16.1. If m=(0, ---,0), then we have

A=RB,
Diﬁ.f-)auclic: {q:< qm(x) +kP> 5 qw(x) € g[(n, C() }
() [4, ¢(2)]=0

THEOREM 16.2. Swuppose that P€ gl(n, C) is semi-simple, A€ GL(n, C),
AV=id. and wP=APA™. Then

Ga’ugeco,A-cvclic ‘ Diﬁ‘fﬁo}ryclic :Diﬁoo,A-cvclim i~e-
Diff Q. ic —> Stokesa, ..yeri: SUTIeCtive.

ProOF. Let ¢ be an arbitrary element of Stokes. s..,... and be a
germ at x,€ R'. Then there exists a representative cocycle

{Syv on IXUNIXV}YEZHIXU, GL(n, A)iynN Ker D)

A-cyclic

of o, where J is an open interval containing z, and < is an N-cyclic
covering of S'. After passing to a refinement of the covering if neces-
sary, we apply Sibuya-Malgrange theorem of cyclic version (Theorem 3.4)
to this cocycle. Then there exist Wy(z, k) € I'(J XU, GLyn, A)), (Ue)
such that
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WU(x, k)SU,V(x, k) = Wy(x, k), (x, k) € JX Un JX V.
Woo(x, ok)=AWy(z, k)A™, (x, k)€ JXU.

Now let us choose a neighbourhood D, of 0¢€ P such that U,={D,}uU
becomes an N-cyclic covering of P.L. As in the proof of Theorem 14.2,
we define Sy(x, k) € I'(JXDyNIXU, GL(n, O)NKerD) in the following
manner,

(16.1)

Su (2, k)= Wy(z, k),
Sy (x, k) =exp{k(x—1x,) P}Sy (xok)exp{ —k (x— x,) P}.

It then follows from the second part of (16.1) and the assumption
wP=APA™ that the relation
S,u(x, wk)=ASy(x, k)A™*

holds. Hence, in a similar manner as in the proof of Theorem 14.2, we
obtain a cocycle

{SU! SU,V} e ZI(JXCL](I, GL(ny J) id ﬂ J(.‘er D)A-cyclic'

Let = be an element of Stokes{),. represented by this cocycle. Now
what we have to do is to find an element of Dif{.,... which gives rise
to ¢ as its global A-cyclic Stokes phenomenon. As in § 14, we can define

T(z, k) € ['(JXDyNJXD., GL(n,O)),

by putting T(x, k) =Sy (x, k) Wy(x, k)" if (, k) € JXDyN I XU, Ue U, where
we put D.= UU U, a neighbourhood of oo in P'. By the definition, we
ey

have
(16.2) T(x, wk)=AT(x, k)A™", (x, k) €I XDyNJXD,.

We regard T(x, k) as transition functions of holomorphic vector bundles
over P! parametrised by z. Since T(x,, k)=id. by definition, Theorem
13.3 implies that the structure of these vector bundles doés not change
near x=u, whence Theorem 13.7 implies the following: let {D,, D.} be
an open covering of P! such that ve D,eD, (v=0, o), J be a sufficiently
small interval such that «,€ JcJ and rewrite D,,J as D,, J respectively.
Then there exist @,(x, k) € I'(J X D,, GL(n,)), (v=0, co) such that

(16.3) Doz, k)T (2, k) =D (2, k), (x,k) € JXDyNJ XD
Replacing k¥ by ok in (16.3) and using (16.2), we obtain
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(16.4) Oy(x, wk)AT(x, k) A =0 (x, wk).
Combining (16.3) and (16.4), we find that
(16.5) Qy(x, wk) ADy(x, k) ' =Do(2, 0k) ADo(x, k)™ in I XDyNJ X D..

Here we may assume that @,(x, 0)=id, since, if necessary, we can replace
Oy(x, k) and @ (x, k) by @y(x, 0)7'Py(x, k) and D,(x, 0) 'D.(x, k) respectively.
The equality (16.5) implies that the both sides of (16.5) are holomorphic
in k¥ on P! whence they are constant in k. Thus let us denote them
by A(z). Substituting k=0 into (16.5) and using @,(z, 0)=id, we obtain

A(xr)=A. Hence we have
(16.6) D,(x, wk)=AD,(x, k)A™", (x,k)eJI XD, v=0,oo.

Now let us put Wy(x, k) =@ (x, k) Wy(x, k). Then, as in the proof of
Theorem 14.2, a function q.(z, k) =q.(x) € gl(n, a)(J) is (well-)defined by
putting

0, k) ={DWy(x, k)} W5 if (x,k)eJxU, UeU.

Moreover, set q(x, k)={D®,(z, k)}®,(z, k) '+ kP € gl(n, ©)(J XD,). Then we
have

@(x, k) =q.(x) +kP.
Taking into account (16.6) and W,y(x, ok)=AWy(z, k)A™", we have
0eo(%) = (@, k) = AWy (1, k) A7 = Agua(w) A7,
ie. [4,4¢.(x)]=0. Hence it follows that g=*(q,(x, k), q.(x)) € Dif{

A-cyclice

As in the proof of Theorem 14.2, it is now clear that ¢ gives rise to
the A-cyclic global Stokes phenomenon ¢. This establishes the theorem.

§17. A result for the bundle E, with m=(0,1, ---, n—1) in the cyclic case:
Ga’ugew,A-cyclic ¢ di.ﬁ‘: Diﬁ‘oo,A-cyclic
In this section we shall solve Problem 11.8 for m=(0,1, ---,n—1)

in the A-cyclic case. By doing this, our Main Theorem stated in §0
will be simultaneously established. Thus we assume throughout this
section that the m-tuple m of Chern classes of the vector bundle E, is
as follows.

(17.1) m=(0,1, .-+, n—1).
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We note that this choice of m comes from the shearing transformation
which we usually make in studying an asymptotic behaviour of a solu-
tion of a differential equation of the form

Lf={o"+a:(x)0" '+ - - +a.(@)}f=FK",

as k tends to infinity. Our aim in this section is to show an equality
(see Theorem 17.4) which implies

Ga’ugem,A-cyclic ¢ Dq’ﬁ’.&“—‘gvclic = DZﬁ‘w,A-cualim

as a simple corollary.

We start with providing a typical example of the matrices P=(P;,)
and A=(A;;) which are “compatible” with m assumed in (17.1). Recall
that the imposed conditions on (m, P, A) are as follows.

(1) Pegl(n,C): semi-simple,

(2) A€eGL(n,C): A¥=id.

(3) wP=APA™,

(4) (m, P): admissible (see Definition 11.4).
(5) [2(w), A]=0 i.e. m;#m; implies A4;;=0,

where Q(k)=diag(1, k, k% ---,k*"). First, (5) implies that A must be
diagonal. Let us now assume N=n. Then, by (2), the diagonal entries
of A are n-th roots of unity. We thus assume that A=diag(1, 0™, ---, 0'™"),
where  is a primitive n-th root of unity. Then (3) is written as wP;;
=w’"'P;;, whence P;=0 if j—1%=1 (mod n). Thus we pick up a permuta-
tion matrix

0 1
(17.2) P= BRI 1
1 "0
This matrix clearly satisfies (1). The admissibility (4) reads that P;,=0

(7 —i>1), whence is satisfied by P. In this case the matrices A and B
are

(17.3) A=diag{l, 0™}, - -+, 0"}, B=id.

Throughout this section, we assume that the triple (m, P, A). is defined
by (17.1), (17.2) and (17.3).
In order to utilize a result in §16, we note that
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qo(x) + kP

0l2) >; ¢.(x) € Diag(n, a)},

D?/.ﬁ‘A cyelic— { —_<

where Diag(n, a) denotes the set of n-by-n diagonal matrices with entries
in a. Furthermore, Diff*™ and Diff{"),... are described in the following
manner. Let a[t]—>R' be the sheaf of polynomials in ¢ with coefficients
in a.

LEMMA 17.1.

Diff™m =!lg= %(2, k) .
™ =49= € gl(n, a[k]) X gl(n, a[1/k]);
9e(%, k)

ki-itP; (1—3<0)
&l k)ij=1, .- . .
kl JHP + Z @sj, U( )k1 Iy (?‘—.7 20),

0 (t—3<0)
Qoo(®, K)s; e ,
[Ea’u u( )k ? (1_320) }

DifF, = {q=( %!z, k) ) € g1 (n. ak]) X g{(n. o[1/k]);

4=(%, k)
Qo(, k) ;=K P+ a;(x),
9=(%, k)is=ai; (@)K,
where

a;(z) €a, ai;(zx)=0 (i<j)}-

ProoF. By the definition, ¢="*(q,(x, k), 9..(x, k)) belongs to Dif™ iff
%€ gl(n, a{k}), g.€gl(n, a{l/k}) and gq(z, k) =2 (k){kP+q.(v, k)}2(k)". An
explicit caleulation of this conditions gives the description of Diff™ in the
lemma. Secondly, Diff{"),... consists of such elements ¢="*(q,, q..) € Dif*™
that q,(x, ok) =q,(z, k) holds. Here we used B=id. Hence g¢,(z, k) must
belong to gl(n,a[k"]). This condition, together with the first assertion
of the lemma, gives the description of Diff{",.., in the lemma.

DEFINITION 17.2 (diff—R'). For an open set JCR!, set
diff(J)={L=0"+a,()0" '+ - - - +a.(x); a;(x)€a(])}

Denote by diff the sheaf associated with the presheaf J—diff(J). Alter-
natively the sheaf diff can be defined by
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diff={"(q(, k; a), qo(, k; a)); a=(a,(x), - - -, a.(x)) €a*},

where
0 1
Qo(, k; a)= ) . ' . ,
. . . .
E*—a,(@) —au(x) - —as(x) —a,(x)
0
Qo(®, k; a)=
_0a(x)  _ aa(®) . a(®)
1 D A (%)

The two sheaves, defined above and denoted by the same notation diff
are identified in an obvious manner.

REMARK 17.8. By considering diff in the sense of the second defini-
tion, we see that

d”;ﬁCDiﬁ‘f{r{‘gwlicCDiﬁw,A-cyclic-

THEOREM 17.4. Let m=(0,1, ---,n—1) and let the matrices P and
A are defined by (17.2) and (17.3). Then we have

Ga’ugeoo,A-cwlic ° d’&_ﬁ‘: D’l:,ﬁ‘oo,A-cyclicy
diff — StokeSw,p,a-cyeris: SUTJECtIVE.

In particular, an arbitrary A-cyclic Stokes phenomenon does arise from
some n-th order single ordinary differential equation of the form,

Lf={0"+a,(@)0" '+ --- +a.(®)} =k, a;x)€a.
Proor. From Remark 17.3 it is evident that

Ga’u’gew,A-cych‘c * diﬁcpiﬁm,A-nyclic‘
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Conversely, if it is assumed that Gauge., s-cyeic - Aiff D Diff O.yeric, Which will
be proved in the next lemma, then Theorem 16.2 implies that

Ga’ugeco,A-cyclic * di.ﬁ.CGaugeoo,A-cvclic ¢ Diﬁs)-)ryclic CDiﬁ‘w,A-cych'

This establishes the first equality in the theorem. The second surjection
in the theorem is a result of Theorem 9.3 and the equality just estab-
lished. Hence what remains to be shown is the following:

LEMMA 17.5. GAUGC o, 4-cyeiic* VU D DUF Dyt

Proor. Recall that any element of Dif{.,... is of the form
“q(x)+kP, q(x)) where g(x) is a diagonal matrix with entries in a(J)
with J an interval in R', namely

Q(w) :dlag{bl(x)’ R} bn(x)}! bg(x) € G(J)

To establish the lemma, it suffices to find g € Gaugeo 4-.pc:. and

0

k)= , i )
p(x ) a,.(x) az(-’li) _al(x) ¢ (x) € a(J)

n—1 k

such that p=p(g)q holds. In order for g to be A-cyclic, let g be as-
sumed to be of the form
9= (K7'9:;(2))sj=1,...nr  9:5(2) € A(J).

Further, we assume that
(17.4) g:;;(x)=0 (1<j), g;(x)=1 (1<j=n).

Clearly such a g belongs to Gauge. a.yai. Secondly, we shall see that
each entry g;;(x) of g and a;(x) of p can be determined successively with
respect to an ordering introduced in these entries in a way mentioned
later. To do this, we rewrite the condition p=p(g)q as

(17.5) Dg=pg—gq,

and equate the both sides of the entries of (17.5). If 1<j or i=j5<m,
then the (7,7)-entries of the both sides are equal to zero and there is
no condition. For other four cases (i) 1<i<n, j=1, (i) 1<j<i<n,
(iii) 1=m, 1<gj=n, (iv) t=n, j=1, the (4,j)-entries of (17.5) give rise to
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the following equalities.

(1) gi+1,1:agi,l+gi,lbl (1§i<'n),
(ii)s; gi+1,j:gi,j—1+agij+gijbj 1gi<n, 1<5<n),

j—1 )

(lll),- Q= — (agn,n+1—j+gn,n+1—jbn+l—j+gn,n-—j) - IZ; QGnri-tmri-;  (1S3<0),
n—1

(iv) An= — (agn,1+gn,1b1) - 1;1 QiGnp1-i,1

Let us now introduce a total ordering < in the set {g.; 1<j<i<n} as
follows:
9:<0,. if j<p or j=p, i<v.

Then the recursion formulas (i); (1<i<n—1), (ii); 1<j=<it<n—1) and
the assumption (17.4) allow us to determine g;; (1=<j<t<m) successively
with respect to the above mentioned ordering. Then the recursion
formulas (i),_; and (ii),_;,,; (1<j<n) determine g¢,; (1=<j<n—1). Hence
all g./’s are determined. Now the first terms in the right-hand sides of
(iii); and (iv) are regarded as known. Let us further introduce a total
ordering in a,(x), ---,a,(x) in this order. Then the recursion formulas
(iii); (1<j<n) and (iv) allow us to determine a,(z), - - -, a,(x) successively.
Therefore it is shown that the desired gauge transformation g and the
functions a,(x), - - -, a,(x) actually exist. This proves the theorem.

Note added in proof. In this paper, only the cyclic action is con-
sidered. But most results can be extended to the case where a more
general group action is admitted. As a special consequence, Stokes
phenomena arising from self-adjoint differential operators can be charac-
terized completely. These results will be taken up in a separated paper.
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